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Abstract

Understanding the transmission of inoculum between periods where the host plants are
present is central for predicting the development of plant diseases and optimising mitigation
strategies. However, the production at the end of the growing period, the survival during
the intercrop period, and the emergence or emission of inoculum after sowing or planting can
be highly variable, difficult to assess and generally inferred indirectly from symptoms data.
As a result, there is a lack of large data sets which is a major brake for the study of these
epidemiological processes. Here we focus on Leptosphaeria maculans that causes the black leg
of oilseed rape. After having infected leaves, at early stages of the plant, and migrating into the
stem, it causes a basal stem canker before harvest. It then survives on stubble left in the field
from which ascospores are emitted at the beginning of the next growing period. In this study
we first developed an image processing framework to estimate the density of fruiting bodies
produced on stubble. Then, we used this framework to analyse automatically a large number
of stems collected in oilseed rape fields among a cultivated area. Having performed a quality
assessment of the processing chain we used the output data to investigate how the potential
level of inoculum may change with the source field, the considered year and the stem canker
severity at harvest. Besides the insights gain into the blackleg of oilseed rape, this work shows
how image-based phenotyping may support epidemiological studies by increasing substantially
the precision of high throughput disease data.
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1 Introduction

In agro-ecosystems many plant diseases have cyclic epidemics and their dynamics are highly influ-
enced by both temporal and spatial discontinuities either induced by the climate (e.g. seasonality)
or by human actions (e.g. sowing and harvesting) (Bousset and Chèvre, 2013; Hamelin et al.,
2011). From an epidemiological point of view, the space-time partitioning of host-crops, and the
space-time pathogen transmission among the cultivated area and between growing seasons are main
determinants of both invasion and persistence of plant diseases (Bousset and Chèvre, 2013; Gilli-
gan, 2002; Hamelin et al., 2011). Within these determinants, the between-year (or growing period)
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transmission of the pathogen, that gives the level of primary inoculum at the beginning of the next
growing season, remains particularly difficult to predict and estimate (Bailey et al., 2004; Bousset
et al., 2015). However, this temporal dispersal of the pathogen is an important step to design and
predict the level of success of mitigation strategies, either based on the use of resistant varieties
(Marcroft et al., 2004b), biocontrol agents (Bailey et al., 2004) or preventive management of crop
residues (Wherrett et al., 2003).

In that context, the necessary epidemic data are generally difficult, costly and time-consuming
to acquire (Bousset et al., 2015, 2016). Furthermore, as the direct quantification of the pathogen (or
inoculum) and the infectiousness status of hosts plants (Susceptible, Latent, Infectious, Removed)
are still challenging for plant diseases, they are indirectly inferred from pathology status data
(Leclerc et al., 2014), often insufficient for testing mechanistic models without resorting to time-
consuming Bayesian methods (Bousset et al., 2015). In this context, developing high-throughput
and high-precision phenotyping methods appears as a main challenge for plant disease pathology
and epidemiology (Bousset et al., 2016; Simko et al., 2016). For instance, as already shown by several
authors, image-based phenotyping can be useful for detecting and quantifying disease symptoms
(Camargo and Smith, 2009; Mahlein, 2016) and automated image processing enables one to expand
substantially the throughput of disease data (Karisto et al., 2018; Stewart et al., 2016) which may
feed modelling approaches and support empirical studies.

Depending on the pathogen, the inoculum that can survive between the periods where the
host-crop is present can be propagules (e.g. sclerotia, oospores) lying into the soil or pathogen
structures (e.g. mycelia) surviving on host (or alternative hosts) debris within or above the soil.
In the particular case of stubble-borne diseases, after some delay during which fruiting bodies
are formed and when suitable environmental conditions occur, infectious spores are released and
dispersed around the stubble inoculum-source. Then, besides trapping the suitable aerial spores,
one can use the number of fruiting bodies as a proxy of the level of the source of inoculum (Bousset
et al., 2015). One reason that has slow down the researches in this direction is the technical difficulty
of estimating fruiting bodies numbers on a large number of emitting debris. Direct enumeration
can be achieved for large sclerotia of Sclerotinia sclerotiorum (Taylor et al., 2018) but becomes
impractical for microsclerotes of Ramolispora sorghi (Brady et al., 2011). Similarly some authors
have been able to estimate perithecia of Mycosporella fijiensis on leaves (Burt et al., 1999) or
pseudothecia of Leptosphaeria maculans on stubble (Lô-Pelzer et al., 2009b), but, without the use
of automated phenotyping methods the observation time, and the tediousness, limit the number of
samples that can be processed.

The simplest use of digital images for counting fruiting bodies is to provide a way to postpone the
assessments, thus enabling to process more samples than would be possible in real time. On pictures
of excised leaf discs infected with R. sorghi, Brady et al. (2011) manually marked the microsclerotia
before counting them and retrieving their sizes from numbers of pixels. This could be regarded as
a slight improvement to excising the necrotic area and measuring it by tracing the shape of the
cut section on to graph paper and later counting the numbers of perithecia of M. fijiensis under
the microscope (Burt et al., 1999). A more advanced use of imaging is to use common processing
methods and algorithms, generally implemented in open software such as ImageJ (Schindelin et al.,
2015) or Ilastik (Sommer et al., 2011), to segment regions or objects. Nowadays, there are numerous
instances of such use of imaging in phytopathology, e.g. detection and counting of microsclerotes
of Calonectria pseudonaviculata (Yang and Hong, 2018) or quantification of lesion size and number
of Zymoseptoria tritici on wheat leaves (Karisto et al., 2018; Stewart et al., 2016). At this stage,
it is important to evaluate the quality of the segmentation method (supervised or unsupervised),
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for instance by assessing the discrepancy between the processed images and a set of images that
were annotated by an expert (i.e. ground truth). When the image processing framework is reliable
enough one could use it as a pipeline for generating a large number of automatic measurements.

In this study we concentrate on L. maculans that causes blackleg on oilseed rape crops and has
a substantial economic impact worldwide. Epidemics are initiated early in the growing season by
stubble-borne spores that can spread between fields among the landscape and the estimation of
the production of inoculum sources, or the level of inoculum that is transmitted between growing
seasons, is challenging and requires dense data (Bousset et al., 2015). We begin by presenting
how we collected oilseed rape stubble left after harvest in a cultivation area during six years in
order to assess stubble-borne production on inoculum between growing seasons. Then, we develop
an image-prosessing framework to segment fruiting bodies produced on collected stubble. After
having assessed the quality of the segmentation method we used it to process automatically a large
number of images, and thus collected stubble. It allowed us to produce many pathological data
which were used to evaluate how fruiting bodies’ production changes between years and fields and
how the level of production can be linked with the blackleg severity after harvest. We finish by
discussing the interest of our work for plant disease epidemiology and presenting some perspectives.
An overview of our proposed approach is provided (Fig. 1, see also Fig S2).

2 Materials and Methods

2.1 Pathosystem

Leptosphaeria maculans causes stem canker on Brassica species (West et al., 2001). Epidemics are
initiated in autumn and leaf spots are observed from autumn to early spring. Stem cankers develop
from spring to summer, up to the time of harvest, following systemic growth of fungal hyphae
from leaf spots to the leaf petiole through xylem vessels, and subsequently to the stem base. The
fungus can survive as hyphae in crop stubble, forming two kinds of fruiting bodies: pycnidia and
pseudothecia. Pseudothecia can only be formed by sexual reproduction if isolates of opposite mating
types co-occur in the same oilseed rape stem. Spores produced in pseudothecia are, respectively,
conidia (pycnidiospores) passively rain splashed short distances and ascospores actively ejected, and
wind dispersed (Bousset et al., 2015; Marcroft et al., 2004a; Savage et al., 2013). Infected stubble
ensures the carry-over of the fungus from one season to the next (Bousset et al., 2018; Lô-Pelzer
et al., 2009b; Marcroft et al., 2004b,a), and serves as the main source of inoculum. The severity
of blackleg in the plant at maturity was related to the inoculum later produced from the stubble
(Lô-Pelzer et al., 2009b; McGee and Emmett, 1977). The formation of pseudothecia and hence the
discharge of primary inoculum was influenced by the genotype of the infected stubble (Marcroft
et al., 2004b) and by chemical treatment (Wherrett et al., 2003). The quantification of inoculum
was achieved either by direct counting under the microscope (Lô-Pelzer et al., 2009b) or by visually
recording pseudothecial density in classes from 0 to 100% (by 10% increment) of the stubble surface
area infested with pseudothecia (Marcroft et al., 2004b; Wherrett et al., 2003). As the area occupied
by pseudothecia was correlated with pseudothecia numbers (Lô-Pelzer et al., 2009b), automated
detection on pictures could be used for the quantification
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2.2 Field data collection and corresponding climate covariates

Oilseed rape stems were collected in a total of 29 farmers oilseed rape fields located near Le Rheu
(48.1◦ N, 1.5◦ W), in Brittany, France, from June 2013 to June 2016, 2-3 weeks before harvest
(Table 1) (Bousset et al., 2015). Stem canker severity was assessed on a 1 to 6 scale (Delourme
et al., 2014) as follows: S1 = no disease, S2 = 1-25%, S3 = 26-50%, S4 = 51-75%, S5 = 76-99%,
S6= 100% of crown cross section cankered. Following assessment of canker severity on 9901 stems,
2540 pieces of stubble comprising the crown and upper 10 cm were selected. From each of the fields,
a maximum of 30 stems in each of the 6 severity classes was kept. This sampling was constrained
by the availability of stems, as the distribution of stems into canker severity classes depends on the
overall disease severity in the field of origin (Lô-Pelzer et al., 2009a). To keep track of stem canker
severity of stem pieces throughout the experiment, two 5 mm diameter holes were drilled, and stem
pieces were grouped by 5 on two wooden BBQ sticks painted in blue and labelled with a barcode
(Fig. S1AB).

Over summer, each selected stubble was matured outside at INRA Le Rheu, on a 1:1:1 mix of
sand, peat and compost (Fig. S1C), with moisture and temperature depending on the local climate
and natural rain only (Fig. S3). In autumn, this stubble was placed in experimental plots of winter
oilseed rape and further incubated under the plants (Fig. S1D). When pseudothecia had appeared
and finished to release spores, each stubble was washed and stored dry. The climate in the area is
oceanic, and meteorological data were obtained from the INRA CLIMATIK database, for Le Rheu
weather station, on an hourly basis. Cumulative temperature (Fig. S3A), rainfall (Fig. S3B) and
days favourable for pseudothecial maturation were calculated (Fig. S3C). A day was considered
favourable if the mean temperature was between 2 and 20◦C and if the cumulative rainfall over the
previous 11 days beforehand (including the day in question) exceeded 4 mm (Aubertot et al., 2006;
Lô-Pelzer et al., 2009a). Given these parameter values, 64 favourable days were required for 50%
of pseudothecia to reach maturation.

2.3 Image acquisition

Because we aimed at detecting black fruiting bodies on the dark and non homogeneous background
of oilseed rape stubble, special care was taken with standardisation of pictures. To ease automated
detection of stems, a picture of each group of 5 dry stems was taken on a blue background (PVC
sheet Lastolite Colormatt electric blue). As mentioned before, BBQ sticks had been painted in
blue. The barcoded label was always placed at the same place and included on the picture (Fig.
S1EF). Attention was paid to have stems parallel to the small side of the picture, with crown end
of the stems on the same side. To ensure the absence of stem shade on the picture, each group
of 5 dry stems was placed on a glass plate, 16 cm above the blue PVC sheet. Two FotoQuantum
LightPro 50 x 70cm softboxes were placed on both sides of the stubble with 4 daylight bulbs each
(5400K, 30W). We checked that the bulbs were within the lower 45 angle to avoid reflection of the
lights on the glass plate. Pictures were taken with a Nikon D5200 with an AF-S DX Micro Nikkor
40mm 1:2.8G lens, on a Kaiser Repro stand, with a wired remote control. Aperture was set at F22
for maximal depth of field, iso 125, daylight white balance. Pictures were saved as RGB images
with a resolution of 6000 x 4000 pixels (Fig. S1F).
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2.4 Image processing

2.4.1 Pre-processing

For each digital image, the sample unique identification number (suid) was retrieved by reading
the barcode using the ZBar library (Brown, 2018) and the stubble pieces were segmented using
morphological image processing (Gonzalez and Woods, 2006). Then, each digital image was au-
tomatically split in several new images, each containing only one stem, and each being identified
by their common suid and their stem number. Finally, each new image was cropped to focus on
our region of interest, composed of only the 5 cm portion on crown end of the stem, i.e. where
pseudothecia is mainly located.

2.4.2 Data sets

To define our training and test sets, we selected 81 stems from pre-processed images to span the
range of stubble origin, of canker severity classes, of pseudothecial density and of stubble colour.
We included tricky cases like stubble with holes (pitch dark on the pictures) or moulded with
other saprophytic fungi. Each of these images was manually processed by a single observer. Using
GIMP 2.8 software (The GIMP team, 2018), a new binary picture was created where each of the
pseudothecia seen was coloured. This provided us with pairs of files, one with the original picture;
the other being an overlay containing the expert manually-detoured pseudothecia.

There was no expert manually-detoured stubble pieces because the problem of segmenting the
foreground stubble from the blue background was negligible compared to segmenting the fruit-
ing bodies from the stubble. Hence, each stubble was segmented using a classical unsupervised
clustering-based thresholding method (Otsu, 1975).

Out of the 81 annotated images (i.e. ground truth), 20 were used as a training set for fruiting
bodies detection by supervised learning (see 2.4.3) and 61 were used as a test set, to ensure the
generalised trained method performed properly. To construct our sets, we randomly split our data
and verified that the resulting fruiting body densities of each set were comparable, i.e. a mean den-
sity of 0.028 and 0.027 and a standard deviation of 0.030 and 0.023, respectively for training and test.

2.4.3 Fruiting bodies detection

Following typical steps for machine-learning in image processing (LeCun et al., 2015; Sommer et al.,
2011), we (a) derived several non-linear image features, using convolution operators (Gonzalez and
Woods, 2006), to capture local image characteristics and (b) chose a state-of-the-art classifier to
learn from the test set. We stated our problem as predicting the class of each pixel of each image
as a function of the computed features, assuming that each individual pixel can be in either state
F (fruiting bodies) or in state S (stubble or stem).

Concerning point (a), we computed classical features for colors (gaussian, spaces derived from
RGB), edges (laplacian) and textures (eigenvalues of tensor structure and hessian). As a picture
often contains informative characteristics at different level of organisation, we computed our features
at different scales around every image’s pixel. Hence, for each feature, a maximum of 4 scales were
computed with relevant range up to 7 pixels away. As for solving the classification problem, i.e.
point (b), we chose to use gradient boosting (Friedman, 2001) as a recent and robust supervised
ensemble learning method.
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2.4.4 Post-processing and quality assessment of the processing chain

We used complementary metrics, on the test set, to assess the quality of our model : (i) for each
image, we computed the model accuracy i.e. the number of true positive and true negative pixels
divided by the total amount of pixels (ii) and, for the whole test set, we computed the correlation
between predicted and observed fraction of fruiting bodies pixels in states F (fruiting bodies) and
S (stem).

As it is common in image processing, we decided to add some post-processing, which in this case
aimed at improving even further the image processing chain including the detection routine. We
chose a very simple, yet efficient post-process, consisting in a computer-assisted expert curation of
the predicted fruiting bodies segmentation. An easy to use graphical user interface was developed
for rapid assignation of a post-processed state, i.e. ”correct” or ”incorrect”, to each processed image
by visually evaluating the predicted RGB image compared to the original one. Finally, we assessed
the effects of year, field and severity before incubation on the probability of being classified as state
”incorrect” by using a Generalised Linear Model (Binomial distribution and a logit link function)
and Wald tests.

2.5 Statistical analysis of processed fruiting bodies data

We kept the post-processed images which were classified in state ”correct” by the curator (n=2094)
to assess the influence of (i) when and (ii) where the infected stems were collected, and (iii) the
observed severity before incubation on the production of fruiting bodies. For each image i we
considered the number of pixels in states F (fruiting bodies) and S (stem), i.e. nF,i and nS,i, and
used a likelihood function based on nF,i ∼ B[(nS,i + nF,i), p] with a logit link function to build
Generalised Linear Models and analyse the effects of year (4 levels), field (27 levels) and severity
before incubation (6 levels) with Wald tests.

The whole image processing described in 2.4 was developed in Python using the scikit learn and
image libraries (Pedregosa et al., 2011; van der Walt et al., 2014) while all the statistical analyses
were performed with R (R Core Team, 2018).

3 Results

3.1 Fruiting bodies detection

As previously stated, our post-processing rely on an expert curation. On our test set, this process
set aside 10 out of the 61 images (i.e. 16%). Over the curated set, this lead to a mean and median
accuracy of 0.97 with a minimum at 0.87 and a maximum at 1. The adjusted R-squared between
predicted and observed F/S is 0.87. For comparison, the adjusted R-squared without curation
would have been 0.59. See also Figure 2 for representations of the model accuracies and predicted
versus observed F/S.

Over the 2540 stems, 446 were classified as ”incorrect” by the expert after post-processing. This
percentage of discard (17.5%) is similar with what happened for the test set (16%). Examples of
’correct’ and ’incorrect’ segmentations are provided in figures 4 and 5. The year (p = 0.03) and
field (p < 105) variables had significant effects on the probability of being incorrectly segmented but
only explained respectively 6.6% and 3.2% of the deviance while the effect of the severity before
incubation of oilseed rape stems was not significant (p = 0.15). We explained these results by
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high level of humidity which occured near harvest in some years (i.e. 2014 and 2015) and fields
hence induced a darkening of stems. Our segmentation method failed, by overestimating the level
of fruiting bodies pixels, in these particular conditions.

3.2 Statistical analysis of processed fruiting bodies data

Our processing chain, whose components are illustrated in Figure 1, allowed us to quantify satisfac-
torily fruiting bodies on 2094 stems collected during 4 years in a oilseed rape production area. The
distribution of the fraction of Fruiting bodies pixels (F/S) has a mode close to zero and exhibited a
positive skewness with only a few outliers above 8%, which illustrates the low occurrence of fruiting
bodies on oilseed rape stems (Fig. 3a). As suggested by graphical descriptive analysis (Figs. 3b-d),
the statistical analyses confirmed the significant effects of the three categorical variables tested
here (i.e. p-value< 10−15 for year, field and severity before incubation) on the presence of fruiting
bodies on stems (Table S7). Year, field and severity before incubation explained respectively 6.4%,
15.9% and 22.1% of the deviance and these results were similar without the post-processing step
(i.e. 8.5%, 16.3% and 19.4% explained by year, field and severity). The pairwise comparisons of
least-square means pointed out a significant differences between all the considered fields, and, the
4 seasons during which stems were collected, 2015-2016 being the one with the lowest production
of fruiting bodies and 2013-2014 the highest. The severity classes were logically ranked from the
lowest to the highest except for classes S6 and S5 that were reversed (Table S9). This confirmed
that severity at harvest is positively correlated with fruiting bodies production but suggested that
class S6 (100%) should be merged with S5 (76-99%), at least from an epidemiological point of view.
For supplementary information on these statistical analysis, see sections S-4 and S-5.

4 Discussion

High throughput phenotyping is a rich new ground upon which to base tomorrow’s epidemiological
research. In this article, we achieved the construction of such a framework, binding automatic data
extraction, using image processing, with statistical analysis of relevant explanatory variables. By
careful curation and annotation of 81 numerical images of biological samples (i.e. ground truth),
we managed to subsequently generate 2094 new reliable data. The gain in statistical power for
testing the effects of covariates on pathogen development is obvious but, one can also note that this
shifts the experimental bottleneck from time-consuming sample’s data extraction (low throughput)
to experimental sampling ’en masse’ (high throughput).

On top of its methological aspect, our current study is congruent with previous results on the
blackleg of oilseed rape and opens the prospect to refine assessments. McGee and Emmett (1977)
pointed to the fact that more pseudothecia appeared on stems with higher canker severity. However,
they did not attempted to quantify fruiting bodies, and focused on liberated spores among three
severity classes and four liberation dates. In their study, Marcroft et al. (2004b) visually estimated
the percentage of area covered with pseudothecia and were able to process 320 stems to cover 2
years, 2 sites and 4 varieties. They did not find a significant effect of severity, but they had severity
levels averaged over all stubble of a variety and not per individual stem. Lô-Pelzer et al. (2009b)
followed individual stems and counted pseudothecia, insisting on the tediousness of the task on
hundreds of stems. They were able to generate precise data from experimental plots and confirmed
that the positive relationship between the number of pseudothecia and the severity of the blackleg
also apply for farmers’ fields, though in the latter case more variation was observed. Thus, our

7

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 7, 2018. ; https://doi.org/10.1101/488890doi: bioRxiv preprint 

https://doi.org/10.1101/488890
http://creativecommons.org/licenses/by-nc-nd/4.0/


results are in agreement with previous ones for canker severity classes 1 to 5, and suggest that new
studies should be set up to understand discrepancies regarding class 6. Moreover, by developing an
image-processing framework for quantifying pseudothecia on stubble we confirmed the statement
of Lô-Pelzer et al. (2009b), who suggested that the use of digital images could be a way to improve
the quantification of pseudothecia on stubble, and demonstrated that it enables one to increase
the numbers of processed stems to thousands. Finally, our study is also in line with findings of
Marcroft et al. (2004a) who identified a significant effect of host species and oilseed rape variety on
both the visual density of pseudothecia and the numbers of liberated ascospores before suggesting
that reduced potential for inoculum production could be a trait worth breeding for.

Our framework now provides a way to achieve sufficient throughput in data collection to study
genotype effects more precisely than previous studies (e.g. (Lô-Pelzer et al., 2009b; Marcroft et al.,
2004b)). Indeed, because Marcroft et al. (2004b) did not track canker severity on individual stems,
the observed reduction of fruiting bodies jointly results from reduced canker severity, and potentially
from the genotype. Lô-Pelzer et al. (2009b) were able to see the effect of a genotype with quantitative
resistance on the distributions of severities, though they observed no effect of the genotype at a given
severity. Screening more genotypes is needed to identify if there is variation for this trait in current
germplasm, and our framework provides a way to do so. The number of produced pseudothecia
is known to change with the year and the location of the sampling (Lô-Pelzer et al., 2009b). Our
results are in agreement with these findings, although in our study different host varieties might
further contribute to amplify these effects. From the biotrophic and asymptomatic presence of the
fungus in the stem, visible cankers appear progressively when crop matures. Moreover, the delay
between infection and symptom appearance (i.e. incubation period) is known to vary between
host-plants in a population and the distribution of the incubation period could also change with
some covariates like the host-age when the infection occurs (Leclerc et al., 2014). Then, when
collecting disease data for a multi-year and site study, the sampling can occur at different stages in
these processes, and thus introduce more variability in the relationship between the visual canker
severity and the resulting fruiting bodies produced. We believe that our framework which allows
the quantification of pseudothecia on a large number of stubble could be used to study precisely
the dynamics of pseudothecial appearance and investigate how it may be influenced by year, field
and potentially cropping practice effects. It has been demonstrated that during pseudothecial
maturation, ascospores appear at a rate following a sigmoid-shaped function (Wherrett et al.,
2004) that is affected by climate (Naseri et al., 2009); chemical treatment (Wherrett et al., 2003)
or cropping practice after harvest (McCredden et al., 2018). In combination with methods for
ascospores counting, the use of image-based quantification of pseudothecia could help to disentangle
pseudothecial maturation and ascospores emission by providing large and precise data-sets. Then,
one would be able to estimate the distributions of the i) time to ascospores emission (pseudothecial
maturation), ii) the number of spores produced by pseudothecium and iii) the emission function
that are key processes for understanding and predicting the initiation of L. maculans epidemics in
oilseed rape crops.

Yet, we must keep in mind that our current (and futur) results depends heavily on the quality
of the imaging framework for data extraction, which involve many different processes. For example,
in fig. 2, one can note that, in our study, the median accuracy is slightly worsen by the post-process
expert curation while the adjusted R-squared is extremely improved. It highlights the usefulness
of processed-images curation by an expert as the human operator can consider image features that
were not not captured by the pixel-wise accuracy metric to filter the predictions. One way to
remove, or at least lessen, the need for human post-processing could be to enforce object detection
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instead of pixel-wise classification (Sommer et al., 2011; Ren et al., 2017). An even more advanced
use of imaging would be to use new imaging sensors (e.g. hyperspectral, chlorophyll fluorescence)
in combination with machine learning methods (e.g. deep learning) which are already used in plant
phenotyping (Barr et al., 2017; Pound et al., 2016) and expanding in phytopathology (Moghadam
et al., 2017; Wang et al., 2017). Hence, our whole framework could benefit from a cascade detection
(Zhou, 2012) of fruiting bodies with different steps involving different sensors and/or algorithms.
For example, a first step could be to apply our current algorithm on RGB images then, if image
acquisition, data extraction and expert curation was prompt enough, we could acquire new images
of expert rejected stubbles with advanced imaging sensors (e.g. hyperspectral) hoping that this
type of signal lead to improved accuracy over RGB color space. Such a combination of sensors
could increase the overall accuracy while still cutting costs (as opposed to scanning all samples
with any and every sensors available).

Besides improving the image processing, we could also improve the epidemiological models
for predicting disease development. For instance, we may take advantage of the high-throughput
epidemiological data stream by developing predictive risk models using state-of-the-art machine
learning incorporating readily available covariates (e.g. climate, remote sensed land-use, . . . ). On
the mechanistic side of things, it would be also interesting to use our phenotyping framework to pro-
duce time-space data at the landscape scale and feed previously developed spatio-temporal models
(Bousset et al., 2015) and refine the challenging quantification of epidemiological processes such as
anisotropic dispersal between locations, between-year inoculum transmission and the susceptibility
of host-fields. Finally, the combination of high-throughput image-based epidemic data with current
next generation sequencing methods appears as an interesting perspective to tackle demo-genetics
questions to understand better of the genetic structures of host-plants influence the population
genetics of L. maculans among a cultivated area and improve the management of plant resistances
for a durable control of the disease (Bousset et al., 2018).

Acknowledgements

We thank Farmers near Le Rheu who allowed us to assess disease in their fields. We thank Yannick
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Table 1: Numbers of stems assessed for canker severity, selected for incubation, kept after post-processing. Timing of stem harvest,
start of incubation, transfer on fiend plots and end of incubation by drying.

Season Field number Stem number Date
Severity Incubated Post-processed Harvested Incubation Transferred Dried

2012-2013 11 2743 943 853 13-17/06/2013 25/06/2013 01/10/2013 04/02/2014
2013-2014 6 1433 438 312 16-17/06/2014 26/06/2014 20/09/2014 27/02/2015
2014-2015 6 3426 761 558 11-18/06/2015 26/06/2015 11/09/2015 28/01/2016
2015-2016 6 2299 398 371 06-10/06/2016 14/06/2016 29/09/2016 16/02/2017

All 29 9901 2540 2094
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Figures

Figure 1: Successive steps in the automated image processing pipelines to support high-throughput
epidemiological analyses.
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Figure 2: Fruiting bodies detection : a) model accuracies over the test set with or without curation,
b) correlation between the predicted and observed F/S with (black) or without curation (gray).
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Figure 3: Graphical examination of the processed fraction of fruiting bodies on oilseed rape stem. a)
shows the histogram of the all post-processed data set while b), c) and d) represent respectively how
the fraction F/S change among the different fields (labelled F1 to F27), severity before incubation
and year with boxplots.
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1

a)

2

b)

Figure 4: Illustrative example of a correct segmentation of fruiting bodies (b) (in white) from the
RGB acquired image (a) despite the presence of hole (red rectangle 1) and other fungi (red rectangle
2) on the original oilseed rape stem after incubation.
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a) b)

Figure 5: Illustrative example of an incorrect segmentation of fruiting bodies (b) (in white) from
the RGB acquired image (a) where the overestimation of fruiting bodies was probably caused by
the moisture-induced darkening of the oilseed rape stem (indicated by the red arrow on the RGB
image).
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Supplementary materials

S-1 Image acquisition process

Figure S-1: Illustrations of the process. A. Two 5 mm diameter holes were drilled in 10 cm long
stems cut at crown for canker severity assessment. B. Keeping track of disease severity, stems were
grouped by 5 on two wooden BBQ sticks painted in blue and labelled with a barcode. C. Stubble
was matured outside over summer. D. Stubble was transferred in experimental oilseed rape field to
further mature over autumn and winter . E. Standardized pictures of the washed and dried stubble
were taken on a glass plate over blue background with daylight bulbs. F. Resulting standardized
files contained the barcoded label and dry stubble.
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S-2 Image processing chain

Figure S-2: Illustrations of the picture processing chain. A. Pre-processing includes the segmen-
tation of individual stems, isolated into separate new files, renamed with the barecode read, and
cropped to the upper 5 cm. B. Curation includes the manual segmentation by an expert, both for
the training set (20 pictures) and the validation set (61 pictures). C. Segmentation by machine
learning on the training set followed by pixel classification according to ground truth enables to
extract features differential between pixels in the state S (stem) or F( fruiting bodies), respectively.
These differential features are then applied to the validation set. Quality assessment is performed
by comparing the segmented pictures with the corresponding ground truth, calculating accuracy.
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S-3 Assessment of climatic conditions during pseudothecial
maturation

Figure S-3: Weather and pseudothecial maturation data during the incubation of stubble of four
cropping seasons 2012-2013 (Inc. of 1213) to 2015-2016 (Inc. of 1516. A. Mean daily temperature
was cumulated over the course of each experiment. B. Cumulative rainfall. C. Cumulative numbers
of days favourable for the maturation of pseudothecia. A day was considered favourable if the
mean temperature was between 2 and 20C and if the cumulative rainfall over the previous 11 days
beforehand (including the day in question) exceeded 4 mm (Aubertot et al. 2006; L-Pelzer et al.
2009). Given these parameter values, 64 favourable days are required for 50% of pseudothecia to
reach maturation. Meteorological data were obtained from the INRA CLIMATIK database, for Le
Rheu weather station, on an hourly basis.
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S-4 Supplementary information on post-processing

S-4.1 Description of the data ranked as correct (grey)or incorrect (black)
depending on a) field; b) year; c) disease severity. d) ranking
depending on the proportion of fruiting bodies pixels
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Figure S-4: Graphical examination of the post-processed data.
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Table S-1: Summary statistics of post-processed data and related covariates
Year Field Severity Number of pixels S Number of pixels F F/S × 100 Post-processed state
2012-2013:943 F12 : 178 S1:708 Min. :141760 Min. : 0 Min. : 0.0000 Incorrect: 446
2013-2014:438 F19 : 164 S2:667 1st Qu.:260122 1st Qu.: 530 1st Qu.: 0.1875 Correct :2094
2014-2015:761 F18 : 156 S3:527 Median :297408 Median : 1756 Median : 0.5900
2015-2016:398 F3 : 153 S4:354 Mean :302215 Mean : 3662 Mean : 1.1700

F24 : 126 S5:202 3rd Qu.:337670 3rd Qu.: 4798 3rd Qu.: 1.5800
F11 : 111 S6: 82 Max. :577404 Max. :69123 Max. :13.3400
(Other):1652
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S-4.2 Statistical analysis

Table S-2: Analysis of deviance and Wald-tests for the analysis of post-processed data
Variable Df p-value Explained deviance

Year 3 0.03 6.6 %
Plot 24 < 6× 106 3.2 %

Severity 5 0.15 0.5 %

S-5 Supplementary information on the analysis of fruiting
bodies data

S-5.1 Description of post-processed data

Table S-3: Summary statistics of processed data and related covariates
Year Field Severity Number of pixels S Number of pixels F F/S × 100
2012-2013:853 F12 : 160 S1:602 Min. :148765 Min. : 0.0 Min. : 0.0000
2013-2014:312 F18 : 120 S2:537 1st Qu.:257861 1st Qu.: 401.2 1st Qu.: 0.1400
2014-2015:558 F24 : 118 S3:434 Median :293004 Median : 1240.5 Median : 0.4400
2015-2016:371 F3 : 115 S4:291 Mean :298762 Mean : 3050.5 Mean : 0.9951

F19 : 105 S5:172 3rd Qu.:334562 3rd Qu.: 3884.0 3rd Qu.: 1.2800
F11 : 104 S6: 58 Max. :518991 Max. :43321.0 Max. :11.0600
(Other):1372

Table S-4: Contingency table for variables Field and Year
2012-2013 2013-2014 2014-2015 2015-2016

F1 0 0 93 0
F2 0 0 0 94
F3 0 0 153 0
F4 0 41 0 0
F5 0 42 0 0
F6 109 0 0 0
F7 90 0 0 0
F8 35 0 0 0
F9 0 0 0 39

F10 69 0 0 0
F11 40 0 0 71
F12 105 0 0 73
F13 0 0 0 45
F14 0 83 0 0
F15 85 0 0 0
F16 0 0 110 0
F17 0 0 85 0
F18 0 0 156 0
F19 0 0 164 0
F20 109 0 0 0
F21 65 0 0 0
F22 0 78 0 0
F23 0 101 0 0
F24 126 0 0 0
F25 110 0 0 0
F26 0 0 0 76
F27 0 93 0 0

27

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 7, 2018. ; https://doi.org/10.1101/488890doi: bioRxiv preprint 

https://doi.org/10.1101/488890
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table S-5: Contingency table for variables Field and Severity before incubation
S1 S2 S3 S4 S5 S6

F1 30 27 28 5 3 0
F2 28 24 27 12 3 0
F3 25 27 27 27 23 24
F4 23 18 0 0 0 0
F5 24 13 5 0 0 0
F6 9 27 27 19 27 0
F7 12 22 22 22 10 2
F8 28 7 0 0 0 0
F9 27 12 0 0 0 0

F10 24 27 18 0 0 0
F11 52 39 18 2 0 0
F12 47 41 38 31 21 0
F13 25 20 0 0 0 0
F14 24 29 15 15 0 0
F15 17 26 28 10 4 0
F16 27 23 20 11 19 10
F17 29 28 18 7 3 0
F18 29 26 25 28 25 23
F19 25 29 28 30 29 23
F20 25 28 26 26 4 0
F21 25 24 12 4 0 0
F22 21 25 24 8 0 0
F23 20 26 26 26 3 0
F24 29 23 27 30 17 0
F25 25 25 27 22 11 0
F26 30 26 12 8 0 0
F27 28 25 29 11 0 0

Table S-6: Contingency table for variables Year and Severity before incubation
S1 S2 S3 S4 S5 S6

2012-2013 242 239 210 160 90 2
2013-2014 140 136 99 60 3 0
2014-2015 165 160 146 108 102 80
2015-2016 161 132 72 26 7 0

S-5.2 Statistical analyses

Table S-7: Analysis of deviance and Wald-tests for the analysis of post-processed data (white) and
non post-processed data (grey).

Variable Df p-value Explained deviance
Year 3 < 2.2× 10−16 6.4 %
Field 26 < 2.2× 10−16 15.9 %

Severity 5 < 2.2× 10−16 22.1 %
Year 3 < 2.2× 10−16 8.5 %
Field 26 < 2.2× 10−16 16.3 %

Severity 5 < 2.2× 10−16 19.4 %

Table S-8: Pairwise comparisons of least-square means for the explanatory variable Year (R output)
Year prob SE asymp.LCL asymp.UCL Group
2015-2016 0.0050 6.9673e-06 0.0050 0.0050 1
2012-2013 0.0094 5.9778e-06 0.0094 0.0094 2
2014-2015 0.0122 8.5705e-06 0.0122 0.0122 3
2013-2014 0.0145 1.2055e-05 0.0144 0.0145 4
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Table S-9: Pairwise comparisons of least-square means for the explanatory variable Severity before
incubation (R output)

Severity prob SE asymp.LCL asymp.UCL Group
S1 0.0030 4.1218e-06 0.0030 0.0030 1
S2 0.0089 7.3926e-06 0.0089 0.0089 2
S3 0.0141 1.0174e-05 0.0141 0.0141 3
S4 0.0158 1.3411e-05 0.0158 0.0159 4
S6 0.0168 3.1428e-05 0.0168 0.0169 5
S5 0.0174 1.8293e-05 0.0174 0.0174 6

Table S-10: Pairwise comparisons of least-square means for the explanatory variable Field (R
output)

Year prob SE asymp.LCL asymp.UCL Group
F13 0.0013 1.0708e-05 0.0013 0.0013 1
F5 0.0015 1.4337e-05 0.0015 0.0016 2
F8 0.0016 1.2334e-05 0.0016 0.0017 3
F9 0.0027 1.5980e-05 0.0026 0.0027 4
F4 0.0032 2.1142e-05 0.0032 0.0033 5
F2 0.0049 1.4015e-05 0.0048 0.0049 6
F11 0.0049 1.2886e-05 0.0049 0.0049 6
F21 0.0058 1.7369e-05 0.0058 0.0058 7
F26 0.0059 1.6805e-05 0.0059 0.0060 8
F15 0.0065 1.6019e-05 0.0065 0.0065 9
F1 0.0067 2.0215e-05 0.0067 0.0068 0
F17 0.0076 1.9340e-05 0.0075 0.0076 A
F10 0.0082 2.0717e-05 0.0082 0.0083 B
F20 0.0091 1.6794e-05 0.0090 0.0091 C
F23 0.0100 1.9785e-05 0.0100 0.0101 D
F7 0.0102 2.1642e-05 0.0102 0.0103 E
F25 0.0103 1.8795e-05 0.0103 0.0103 EF
F12 0.0103 1.4373e-05 0.0103 0.0103 F
F6 0.0123 2.2326e-05 0.0122 0.0123 G
F18 0.0126 1.9298e-05 0.0126 0.0127 H
F24 0.0128 1.8592e-05 0.0128 0.0129 I
F19 0.0132 2.0736e-05 0.0132 0.0132 J
F16 0.0141 2.2025e-05 0.0141 0.0142 K
F3 0.0146 2.0203e-05 0.0146 0.0146 L
F27 0.0172 2.7622e-05 0.0172 0.0173 M
F14 0.0207 3.2969e-05 0.0207 0.0208 N
F22 0.0209 3.4443e-05 0.0209 0.0210 O
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