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Individual cells in a population generally have different replicative capability, presumably due to the phenotypic variability of the cells. Iden-
tifying the latent states that rule the replicative capability and characterizing how the states are inherited over generations are crucial for
understanding how the self-replication of the cells is modulated and controlled for achieving higher fitness and resistance to different kinds
of perturbations. Even with technological development to monitor the proliferation of single cells over tens of generations and to trace the
lineages of cells, estimating the state of the cells is still hampered by the lack of statistical methods that can appropriately account for the
lineage specific problems. In this work, we develop a statistical method to infer the growth-related latent states of cells over a cellular lineage
tree concurrently with the switching dynamics of the states and the statistical law how the state determines the division time. An application
of our method to a lineage data of E.coli has identified a three dimensional effective state in the cells, one component of which seems to
capture slow fluctuation of cellular state over generations.
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1. Introduction 7

A population of cells is phenotypically heterogeneous even if they are genetically identical (1–3). 8

Such a phenotypic variability can work as the bet-hedging of the cells under an unpredictably 9

changing environment, the typical example of which is the bacterial persistence, the survival of 10

the slowly growing but resistant cells against challenges of antibiotics (4–8). More generally, the 11

heterogeneities in the self-replication speed and the death rate as well as their inheritance from a 12

mother to daughter cells constitute the Darwinian natural selection among the cells. The natural 13

selection at the cellular level is also highly relevant for drug-resistances of pathogens and cancers, 14

the establishment of immunological memories, and cell competitions in tissues (9–13). Therefore, 15

quantification of the replicative and survival capabilities, which are often identified with the fitness, 16

from data is crucial for predicting and controlling these phenomena ruled by the micro-evolution of 17

the cells (14, 15). 18

However, defining the replicative capabilities at the level of individual cells from data is by no 19

mean trivial in the face of the stochastic nature of the cellular replication, even if we can access to 20

the observations of the actual division times. The division times of cells in a presumably identical 21

phenotypic state can still vary stochastically, and thereby, the division times of a cell in an unknown 22

state cannot be used as the proxy of the capability of the cell. Observations of phenotypic states of 23

the cell, e.g., by bioimaging, may not always help to resolve this problem, because the replication is 24

a consequence of the tangled interplay among high dimensional metabolic and regulatory networks 25

in the cell (16–18). The observed low dimensional quantities may not be related sufficiently to the 26

replicative capability of the cell under a given situation. Even in the context of the evolutionary 27

biology, moreover, defining fitness to individual agents in a population is one of the central problems 28

SN, YS, and TJK designed and performed research; SN and TJK analyzed data; SN, YS, and TJK wrote the paper.

The authors declare no conflict of interest.

1 To whom correspondence should be addressed. E-mail: so_nakashima@mist.i.u-tokyo.ac.jp; tetsuya@mail.crmind.net

i

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 7, 2018. ; https://doi.org/10.1101/488981doi: bioRxiv preprint 

https://doi.org/10.1101/488981


that have not yet been solved (19, 20).29

We address this problem in this work by framing it as an inference of growth-related latent30

states of cells from data of cellular lineage trees. The determinant of discriminating the replicative31

capability of a cell from mere stochasticity in the division time is its inheritance to the descendants.32

The replicative capability of a mother cell should be somehow inherited to its daughter cells, whereas33

the stochasticity should be independent among the mother and the daughter cells. Such structure34

can be effectively captured by considering the inheritance of the latent state of the mother x to that35

of a daughter x′ and the stochastic determination of the division time τ conditioned by the state of36

the cell x (Fig. 1 (a)). While any latent state x of a cell is determined by the high dimensional37

dynamics of the intracellular metabolites and molecules, the state x supposed here is an effective38

low dimensional one that is relevant overall for the replication speed of the cell. We introduce a39

stochastic transition matrix, TF(x′|x), and a conditional distribution, πF(τ |x), to represent the40

inheritance of the states and the stochasticity of the division time, respectively (Fig. 1 (a)).41

Recent advancements in the microfluidic technology enable us to trace replicating cells over a42

hundred generations, which offer the data samples to be used for the inference (21–23). Among43

others, the most widely used device is the mother machine in which a replicating cell is trapped44

at the bottom of a narrow chamber (23). By flowing the daughter cells away, we can trace the45

founder cell at the bottom over tens of generation as long as it is alive, and can obtain samples46

of the division times over the lineages from multiple founders in parallel (24–26). Another devise47

is the dynamics cytometer, in which a population of cells are accommodated in a more spacious48

chamber (21, 27, 28) (Fig. 1 (b)). Tracking of the cells in the chamber reconstitutes the tree of49

lineages, which contains more detailed information on the parent-daughter relationship of the cells50

and on the actual competition among the cells (Fig. 1 (c,d)). The estimation of the latent states51

of the cells from the tree enables us to capture which cells with which states have survived in the52

population; that is an indispensable step towards understanding how natural selection works over53

the population.54

However, the inference of the states from a lineage tree is accompanied by two difficulties. First,55

the estimation with respect to a tree should be conducted by appropriately handling the branching56

relationship among the cells in the tree. This problem has been studied by using the kin-correlation57

(29, 30), an algebraic invariance of the lineage tree (31, 32), clustering algorithms (33, 34), Monte-58

Carlo algorithms (35), and model selection (36). While this problem seems to be addressed by59

combining these existing estimation techniques in the machine learning, this naïve anticipations is60

hampered by the second difficulty. In the cellular lineage tree, each edge has a different length that61

reflects the actual division time of the cell (Fig. 1 (c,d)). Therefore, clades of the cells replicating62

faster are represented more than the others in the tree, which inevitably introduces bias in the63

data sample. This is the so-called survivor (or survivorship) bias in statistics such that winners are64

overrepresented in a population whereas the losers are underrepresented (21, 27, 37, 38) (Fig. 1 (c)).65

Previous works circumvent this difficulty by pruning a lineage tree so that each leaf cell has the66

same number of branching points along the lineage up to the root cell. This process inevitably loses67

the information on the replicative capabilities. The construction of a correction method of this bias68

contributes not only to accurate inference but also to estimation of the selection pressure as the69

strength of the bias (28, 39). The survivor bias in a growing system with states has be analyzed70

only recently (40–43). Thus, this topic is still immature and an appropriate correction method is71

yet to be developed.72

To address these problems, we first clarify how the survivor bias distorts statistical estimations73

depending on the way to collect a sample of cells from the tree. By deriving explicit relations74
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between unbiased and biased estimates, we establish a correction method of the survivor bias under 75

the condition that the sates of the cells are known. Then, we propose an estimation algorithm of 76

the latent states from lineage trees based on an estimation-maximization (EM) algorithm, which we 77

call Lineage EM algorithm (LEM). We verify the effectiveness of LEM by using synthetic data. 78

Finally, we apply LEM to a lineage tree of E. coli, and identify a latent three-dimensional continuous 79

state, one component of which encodes the information on the inheritance of the states and the 80

replicative capabilities over generations. The inferred dynamics suggests that the homeostasis and 81

heterogeneity of the division times are controlled with multiple time scales. 82

2. Statistical modeling of state-switching and division 83

In this paper, we use a variant of the branching process as a model of a proliferating population 84

with the state switching. We consider the symmetric division upon which a mother cell always turns 85

into two daughters. Each cell is supposed to have its state x ∈ Ω where Ω is either discrete or 86

continuous. Upon the division of the mother cell, each daughter cell switches its state stochastically. 87

The state-switching of a daughter cell is assumed to be dependent on the state of the mother but 88

independent of the state switching of its sister cell. Then, the probability to change the state 89

from x to x′ is given by a transition matrix TF(x′|x), where ∑x′ TF(x′|x) = 1 (Fig. 1 (a)). For 90

notational simplicity, we use ∑x′∈Ω instead of
∫
x′∈Ω dx

′ even for Ω being a continuous state space. 91

The division time τ , the duration time between consecutive divisions, is dependent on the state x of 92

the cell, the probability distribution of which is denoted by πF(τ |x) (Fig. 1 (a)). By supposing the 93

generation of two daughter cells upon the division of a mother, TF(x′|x) and πF(τ |x) define a multi- 94

type age-dependent branching process(Fig. 1 (c)) (44), whereas they also constitute a continuous 95

semi-Markov process if one of the daughter cells is ignored (Fig. 1 (a)) (45). See Supplimentary 96

Informaion (Section 1 and 2). In general, the state x of a cell should be characterized as a point 97

or a trajectory in the high dimensional state space consisting of the abundance of intracellular 98

metabolites and molecules in the cell. However, the state to be inferred in this work can be its low 99

dimensional projection being relevant for the determination of the division time, because any two 100

states, x and x′, that give the same division statistics as πF(τ |x) = πF(τ |x′) cannot be distinguished 101

by the inference only from the data of τ . 102

3. Correction of the survivor bias in estimation of state-switching and division 103

dynamics 104

If the states of cells are known or experimentally observed, the division time statistics and the
state-switching probability, πF(τ |x) and TF(x′|x), may be empirically estimated by the histogram
of τ of the cells with x and by counting the number of the state-switching from x to x′ from a given
data set, respectively:

πDemp(τ |x) := 1
|Dx|

∑
i∈Dx

δ(τ − τi), [1]

TDemp(x′|x) := The number of the transitions from x to x′
The number of the transitions from x

, [2]

where the symbol |A| denotes the cardinality of a finite sample point set A, and τi is the division 105

time of the cell i. D is the set of all cells used for the estimation, i.e., a data sample, and Dx ⊂ D is 106

the subset of the cells with the state x. Temp and πemp may converge for a sufficient large number of 107
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cells in D. However, the converged distributions are dependent on the way how the cells in D were108

sampled (Fig. 2 (a,b,c)), and can be substantially biased thereby.109

A. Chronological sampling and forward process.Tracking a dividing single cell under a constant110

condition is the most straight forward way to obtain a data sample of the state-switching events111

and the division times. The popular measurement system is the mother machine with which we can112

trace a cell located at the bottom of a chamber (23). Because the cell to be observed is determined113

at the beginning of an experiment and its lineage is traced chronologically by ignoring one of the114

sibling cells at each division, the state-switching and the division dynamics obtained in this way is115

characterized by the semi-Markov stochastic process with πF and TF (Fig. 1 (a)). See Supplimentary116

Information (Section 1 and 2). Thereby, πemp and Temp converge to πF and TF, respectively, for117

a large sample size. We specifically call this type of sampling the chronological sampling and the118

dynamics generated by πF and TF the forward process (21, 28, 45). We can also effectively obtain a119

chronologically sampled lineage from the tree by using the weighting technique proposed in (39).120

Even with its straight forward interpretation, the chronological sampling has some drawbacks in121

terms of the estimation. First, the observation should be terminated by the death of the tracked cell122

(Fig. 2 (a)), which limits the size of the data sample and the length of the lineages especially when123

the cells are cultured in a harsh condition. Second, the tracked cells may be exposed to a disturbed124

environment, because the bottom of the chamber is far from the flowing fresh medium. Finally,125

the chronological sampling does not directly observe the selection process induced by the different126

replication speeds of the cells in the population.127

B. Retrospective sampling and retrospective process.These problems can be resolved by using128

the retrospective sampling of a cell lineage from a proliferating population observed by the dynamics129

cytometer (Fig. 2 (b)) (21). In the dynamics cytometer, a population of cells is cultured in a more130

spacious chamber that can accommodates hundreds of the cells, and a cellular lineage tree can be131

reconstituted from the observed movie. By sampling a cell from the survived cells in the tree, we can132

always obtain a cell lineage with the same length of the experiment so long as the cell population133

rather than a cell does not extinct (21, 27). However, the cells in a retrospective lineage are subject134

to the survivor bias, because the lineage is sampled from a survived cell. Thereby, πemp and Temp135

converge to πB and TB, which are different from those of the forward process, πF and TF.136

In order to correct the survivor bias, in this work, we have proved that πB(τ |x) is exponentially
biased from πF(τ |x) as

πB(τ |x) = 2πF(τ |x)e−λτ
Z(x) , [3]

where λ is the population growth rate of the cells, and Z(x) is a normalization factor (45). See
Supplementary Information for the proof (Section 3). This is an extension of Wakamoto et al. 2011
(27) in which the states of the cells were not considered. We also have derived that TB(x′|x) is
biased from TF(x′|x) as

TB(x′|x) = u(x′)TF(x′|x)Z(x)
u(x) , [4]

where u is the left eigenvector associated with the largest eigenvalue of the matrix

M(x′|x) := TF(x′|x)Z(x), [5]
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See (45) for the derivation. This is also an extension of our previous work (46) in which the division 137

time was not considered. TB(x′|x) and πB together define a semi-Markov process of x, which, by 138

construction, asymptotically generates the retrospective cell lineage. Thus, we call this process the 139

retrospective process. See Supplementary Information (Section 3) for the details on the retrospective 140

process. 141

Equation [3] shows that the correction of the bias in πB(τ |x) requires the population growth rate 142

λ, which is easily estimated in the dynamics cytometer experiment. On the other hand, Eq. [4] 143

indicates that the correction of TB(x′|x) necessitates u(x′), which can be neither directly observed 144

nor easily estimated. This fact limits the use of the retrospective sampling for estimating the cellular 145

state x and the related dynamics. In addition to this limitation, another problem shared by both 146

chronological and retrospective samplings is that only a lineage of the tracked cell is used for the 147

estimation, which requires quite a long-term tracking to obtain a sufficiently large number of sample 148

points, i.e., the cell divisions and the state-switching events. In the case of the dynamics cytometer, 149

especially, it seems a huge waste of the data points to abandon the information of the cells being in 150

the tree but out of the tracked lineage. 151

C. Tree sampling: estimation from the whole cells in the lineage tree.These problems can be 152

resolved by the tree sampling in which we use all the cells but the leaves in the lineage tree for 153

estimation (Fig. 2 (c)). Here, the leaves correspond to the cells in the tree, the division times of 154

which were not observed, e.g., by the termination of the experiment or flown out from the chamber. 155

Yet to be clarified is the bias in the estimation introduced by using the sample obtained in this way. 156

By employing the many-to-one formulae of the branching process(37, 40), we have proven in this 157

work that πemp converges to πB, whereas Temp does to TF. See Supplementary information for the 158

proof (Section 4 and 5). 159

Owing to the direct convergence of Temp to TF in this tree sampling, we can circumvent the 160

difficulty of reconstructing TF from TB, while enjoying the large number of the sample points in the 161

tree. Thus, the tree sampling is more efficient than the other samplings. The converged distributions 162

of the chronological, retrospective, and tree sampling are summarized in Tab. 1. 163

Table 1. Comparison of the converged distributions obtained by the chronological, the retrospective,
and the tree samplings.

chronological retrospective tree
Division time πF πB πB

State switching TF TB TF

4. Estimation of latent states from a lineage tree 164

In the preceding section, we have clarified the converged distributions for different samplings under 165

the assumption that the states of the cells as well as the division times are experimentally observed. 166

However, the information of the states of the cells may not always be accessible. Even when we 167

observe the expression of a couple of genes over lineages, such genes may not be sufficiently relevant 168

for the determination of the division times, because the division time is generally a consequence 169

of the complicated interactions of intracellular genetic and metabolic networks. Moreover, even if 170

we could observe the high dimensional state over a lineage, we would have to make it interpretable 171

by finding the low dimensional relevant representation of the states to the division times; which 172

generally requires a huge computational cost. 173
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Such problems can be handled by inferring the effective states of the cells based only on the174

division time observations. By extending the EM algorithm for the hidden Markov models (47)175

to a branching tree with hidden states, we construct an algorithm, Lineage EM algorithm176

(LEM), for estimating the latent states of the cells in a lineage tree. To this end, we introduce the177

following parametric models with discrete or continuous state-spaces, which enable us to employ178

well-established statistical methods, e.g. maximum likelihood estimation (MLE), for the estimation.179

A. A parametric discrete state-space model.For a discrete state-space model, we assume that πF
belongs to an exponential family (47). The exponential family includes a broad range of probability
distributions such as the gamma-distribution and the log-normal distribution, which have been
commonly used for fitting the division time distributions of microbes (27, 48). By assuming a
parametric model, the estimation of πF(τ |x) is reduced to that of the parameter set of the model.
The gamma distribution is a common choice of the parametric model of the division time distribution:

PG(τ ;θ) = ba

Γ(a)τ
a−1e−bτ , [6]

where Γ(a) is the gamma function and θ := (a, b), a and b of which are the shape and rate parameters,180

respectively.181

Then, the division time distribution for the forward process πF(τ |x) is represented by a x-dependent
parameter set θFx = (ax, bx) as

πF(τ |x) = PG(τ |θFx ). [7]

When πF(τ |x) is a gamma distribution, so is πB with a different parameter set, θBx , as

πB(τ |x) = PG(τ |θBx ). [8]

Thereby, we can covert θBx to θFx via Eq. [3] after estimating θBx . On the other hand, the state-182

switching can be straight-forwardly represented by the components of the matrix, TF.183

B. A parametric continuous state-space model. Suppose that the continuous state space Ω is
k-dimensional Euclidian as Ω ⊆ Rk. Because the estimation by considering all the possible dynamics
in a continuous state-space is unfeasible, we here adopt a linear diffusion dynamics for the state-
switching, TF, which is characterized by a k × k matrix A as

x′ = Ax+w, [9]

where x and x′ are the states of a mother and its daughter cells, respectively. w is a multidimensional184

Gaussian random variable with a mean vector 0 and a diagonal covariance matrix Σw.185

The retrospective distribution of the division time, πB, is also assumed to follow a log-normal
distribution:

log τ = C x+ v, [10]

where C is a 1 × k matrix and v is a Gaussian random variable with mean 0 and variance Σv.186

In this model, the estimation problem is reduced to estimating parameters A, C, Σw, and Σv,187

simultaneously. This setting can be interpreted as a linear approximation of a general continuous-state188

model of x.189
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C. Lineage EM algorithm.To obtain LEM, we extend the Baum-Welch algorithm (BW algorithm)
to the estimation of θBx and TF from a lineage tree. LEM algorithm iterates two steps, the E-step
and the M-step, and updates the parameters until convergence. Let Θ(n) denote the estimate of the
parameters (TF, {θBx }) after the nth iteration. In the E-step, we compute the posterior probabilities
of the states for all the pairs of the mother and daughter cells, ξi,j(x,x′), conditioned on the currently
estimated parameters Θ(n) and observation. x and x′ in ξi,j(x,x′) are the states of the cell i and its
one of the daughter labeled as the cell j, respectively. γi(x) is the posterior probability of the state
of the cell i, which is obtained by marginalization as γi(x) = ∑

x′ ξi,j(x,x′). ξi,j(x,x′) and γi(x) are
computed via the belief propagation (47). The belief propagation recursively computes the posterior
distributions efficiently for a graphical model without loops. LEM belongs to this class, because a
tree is loopless. See Supplementary Information for the detail (Section 6 and 8). For the continuous
state-space model, we can employ the well-established estimation technique of the Kalman filter
(47). In the M-step, the parameters Θ(n) = (TF, {θBx }) is updated so that πB(·|x) and TF are fitted
to the following modification of the empirical distributions, respectively (1):

πBW
emp(τ |x) := 1∑

i∈Tx
γi(x)

∑
i∈Tx

γi(x)δ(τ − τi), [11]

TBW
emp(x′|x) :=

∑
i,j ξi,j(x,x′)∑
i,j,x′ ξi,j(x,x′)

, [12]

where Tx is the set of all non-leaf cells with state x in the lineage tree, and (i, j) in the second 190

equation runs over all the mother-daughter pairs. These are empirical distributions weighted by 191

the posterior distributions γi(x) and ξi,j(x,x′). For the details on the fitting process by MLE, see 192

Supplementary Information (Section 7). It is known that each update always increases the likelihood 193

(47). In the continuous case, we update A,C,Σw, and Σv in the same way, that is, update the 194

parameters so that πB(·|x) and TF are fitted to πBW
emp(·|x) and TBW

emp(x′|x), respectively. 195

5. Applications 196

A. Validation of LEM with synthetic data sets.We tested the validity of LEM by numerical ex- 197

periments of the discrete-state model. We consider the situation that each cell has two states: a 198

fast-growing (x = f) and slow-growing (x = s) states as depicted in Fig. 3 (a) and obtained a 199

synthetic lineage tree as shown in Fig. 3 (b). By applying LEM to the lineage tree in Fig. 3 (b), we 200

could recover the states of the cells from the tree as in Fig. 3 (c) without using any state information 201

of the cells. The states are reliably inferred from the tree containing an experimentally reasonable 202

number of cells, e.g., 500 cells. See Supplementary Information for the details (Section 9 and 10). 203

The states of the leaf cells cannot be inferred in Fig. 3 (c), because the division times of the leaf 204

cells were not observed. If the state information of the leaves is supplemented for the inference, the 205

accuracy of the estimation is further improved as in Fig. 3 (d). Such information on the states of the 206

leaves may be obtained by conducting single-cell staining or scFISH (49), or scRNA sequencing at 207

the end of the experiment, as assumed in the previous attempts of the state inference from lineage 208

trees (29, 30). The convergence of the log-likelihoods was also checked for both situations (Figs. 3 209

(e) and (f)). We have further compared the empirical and estimated retrospective distributions of 210

the division times (Figs 3 (g) and (h)) to verify good coincidences between the empirical and the 211

estimated distributions. Finally, we estimated TF and πF of the model in Fig. 3 (a) and another 212

with a different parameter set for 1000 times each to evaluate the accuracy of our estimation. See 213

Supplementary Information (Section 9 and 10). We observed that the estimation is consistent with 214
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the true parameter in total by virtue of the correction of the survivor bias. Similarly, we have215

also tested LEM for the continuous-model to confirm that LEM also works for that situation. See216

Supplementary Information (Section 11).217

B. Deciphering the latent states of E. coli cells from lineage trees.We next inferred the latent218

states of the E. coli cells in the lineage trees observed by using the dynamics cytometer in Hashimoto219

et al. (21) (Fig. 1 (d)). The population of E. coli (F3 rpsL-gfp strain) was observed every one220

minute in the M9 minimum medium supplemented with 0.2% glucose at 37◦C. We first applied221

LEM for the discrete model and determined the number of the latent states by Akaike Information222

Criteria (AIC) (50). The best number of the discrete states was estimated to be 1, which means223

that the discrete model with no latent state fits the data the best (data not shown). However,224

this result cannot explain the non-zero correlation (r = 0.2082) between the division times of the225

mother-daughter pair observed in our data set. A potential reason why the discrete model could not226

capture this correlation and the associated latent states may be because the latent states are not227

distinct enough to be detected by the discrete-state model, suggesting that the latent state is better228

represented by the continuous rather than the discrete model.229

To validate this hypothesis, we applied LEM of the continuous-state model, in which the dimension
k of the state space Ω = Rk was again determined by AIC. Then, we found k = 3 to be the dimension
of the best continuous model. We also obtained the inferred dynamics of the latent state x over the
lineage tree as in Fig. 4 and its parameter values as follows:

A =

−0.731 0.438 0.032
−2.51 1.124 0.062
−0.262 0.0068 1.007

 , C =
(
1 1 1

)
,

Σw =

0.055 0 0
0 0.038 0
0 0 0.016

 , Σv = 0.04.

[13]

For the details of the analysis, see Supplementary Information (Section 12). Of the three components230

of the inferred latent state, the first one has the fastest time-scale of approximately one generation,231

whereas the third one changes slowly over generations (Fig. 4).232

As shown in Fig. 5 (a), the likelihood increases monotonically in terms of k, and k = 3 is the233

dimension above which the likelihood starts saturating, indicating that LEM convergences and234

the inference is achieved appropriately. In order to validate the significance of k = 3, we firstly235

simulated the continuous-state model without latent state (k = 0) for two parameter sets to obtain236

synthetically lineage tree data, and then applied LEM to infer the dimensionality from the synthetic237

data. For all 100 independent simulations and the subsequent inferences, we have obtained k = 0238

as the inferred dimensionality (data not shown), demonstrating that LEM rarely detect a wrong239

latent state if it does not exist. To check the validity further, we also conducted a bootstrap analysis240

in which we generated surrogate trees by randomly swapping the division times of the cells in the241

E. coli lineage tree (Fig. 1 (d)) and applied LEM to the surrogates. Because the division times242

of the cells in the surrogate trees can be approximated to be mutually independent due to the243

random swapping, the surrogate trees can effectively work as the data from the null hypothesis of244

no latent state. Of 100 trials, k = 0 was inferred in most of cases (Fig. 5 (b)). In the rest of the245

trials, k = 1 and k = 4 were obtained. All the trials with k = 4 inferred are accompanied by much246

higher likelihoods than the case of k = 0 ((Fig. 5 (a)) and irregularly large variances for the latent247

state w (Fig. 5 (d)). Such large variances effectively allow the latent state to arbitrarily fit to the248
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observations. Therefore, k = 4 is probably due to an inappropriate convergence of the EM algorithm, 249

which has also been reported to occur when it is applied to the MLE of models with latent states 250

(47). In contrast, the results of k = 1 show the likelihood and the variance, comparable to those 251

of k = 0. This suggests that the model with k = 0 sometime generates samples being similar to 252

those from k = 1. However, the lack of k = 2 indicates that the probability to obtain k > 1 from 253

the model of k = 0 by chance is much less than 1/100. Lastly, we also applied LEM to another E. 254

coli tree and obtained k = 3 for this data set (data not shown). Therefore, k = 3 inferred from Fig. 255

1 (d) should have a high statistical significance. 256

Next, we investigated how the latent state represents the stochastic behavior of the division times.
From the assumption of the continuous model, the posterior average of the division time of the cell i
in the tree is obtained as

〈log τi〉 = Cxi = x1
i + x2

i + x3
i . [14]

The comparison of 〈log τi〉 with the actual observation of the division time log τi shows that the 257

intercellular variation of the division times is mainly accounted by the fluctuation of the latent state 258

(Fig. 6 (a)), which is also reflected in the small value of the state-independent fluctuation Σv (Eq. 259

(13)). The dissection of 〈log τi〉 into each component of the latent state also indicates that x1 and x2
260

mainly represent the fluctuation of the division time whereas x3 encodes its average value (Fig. 6 261

(a)). 262

Then, we also analyzed how the latent state conveys the information on the division statistics
over generations. By using A and x inferred, we can predict the division time of the daughter cells
from the latent states of their mothers as

〈log τi+1〉 = CAxi. [15]

where we abuse the notation i+ 1 to mean the label of a daughter cell of the cell i. Similarly, we 263

can predict the division times of the grand daughter cells. As shown in Fig. 6 (c), the latent state 264

effectively captures the relationship of the division times over generation, and thereby, the posterior 265

averages of the division times, 〈log τi〉 and 〈log τi+1〉, also reproduce the correlation between the 266

mother-daughter pairs as r = 0.2034 (Fig. 6 (b)). 267

Finally, we clarify how the inter-generation information is encoded in the latent state and its 268

dynamics by plotting the phase space dynamics of the latent state (Fig. 6 (d)). The latent dynamics 269

had fast and slow components: the fast one is basically the projective dynamics to an one-dimensional 270

sub-manifold in the x1-x2 plane(Fig. 6 (e)), whereas the slow one is a dynamics formed in the 271

the sub-manifold and x3(Fig. 6 (d)). This result demonstrates that x3 is not only encoding the 272

average value of the division time, but also the information of the division times of its descendants. 273

Moreover, the slow dynamics suggests an existence of a slow regulatory factor underlying the noisy 274

behavior of the division times and being inherited over generations. 275

6. Summary and Discussion 276

In this study, we have derived and proposed LEM, a statistical method to infer the latent states of the 277

cells and the associated state-switching and division dynamics from lineage tree data, which combines 278

the correction method of the survivor bias with the EM algorithm for trees. The accuracy and 279

consistency of the method were verified by using the synthetic tree data with two distinct states. By 280

applying the method to the lineage tree of E. coli, we have identified the latent low-dimensional states 281

of the cells, which are inherited over a couple of generations at least. The inferred states successfully 282
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capture the underlying effective inheritance dynamics of the division times over generations even283

though the correlation of the observed division times between the mother-daughter pairs is subtle284

presumably because of the stochastic nature of the cellular replication.285

Such correlation between generations can also be modeled more directly without the latent286

state by assuming the conditional dependence of the division time of a daughter τ ′ on that of the287

mother τ as πF(τ ′|τ) (51, 52). However, the latent states can offer a way to link the identified288

states with intracellular physical quantities such as the expressions of candidate proteins. This link289

may substantially facilitate our understanding how the reproductive capabilities of the cells are290

determined, regulated, and inherited as the consequences of the intracellular networks.291

Moreover, LEM provides a data-driven way to identify and to characterize individual cells in292

apparently similar yet latently distinct states in a growing population. Cells in the distinctive modes293

of the growth, e.g., vegetative and dormant ones, have been identified manually and shown to have294

different susceptibility to stresses (5, 53). Recent experimental investigations have further suggested295

that more subtle differences are still ruling the fates of the cells under the challenge of antibiotics296

(6). LEM combined with the dynamics cytometer may play the indispensable roles to investigate297

the more complicated processes of the cellular natural selections occurring in the populations of298

bacteria, pathgens, immune cells, and cancer cells (14).299

LEM still leaves room for further improvements that extend its applicability to various problems,300

some of which may be addressed by using existing techniques of the hidden Markov models. For301

instance, we may relax the assumption of the independence of the state-switching between the302

daughter cells (34, 54). This generalization may be useful when we include the size of a cell as a303

state, which naturally correlates between the daughters (25, 55). We may also extend LEM either304

to include other experimentally observed quantities than the division times for the estimation of305

the latent states or to combine the observed quantities as the visible state with the latent states.306

The assumption of the linear dynamics in the continuous model or that of the exponential families307

for the division time distribution can be generalized to incorporate realistic nonlinear dynamics308

or non-parametric distributions by using Monte-Carlo or ensemble methods at the cost of heavy309

computational loads (36, 56).310

On the other hand, we still have biologically important but theoretically challenging problems: One311

of the problem is the state-dependent death rate of the cells. We anticipate that the analysis of the312

survivor bias still be carried over to such situation and conjectures that if a cell dies with a rate γ(x),313

then the empirical distributions of the generation time converges to πB(τ | x) = πF(τ | x)e−(λ+γ(x))τ .314

This πB may be again characterized as the ancestral path from a uniformly chosen cell at the end of315

an infinitely large lineage. A proof of this conjecture is indispensable for addressing the impact of316

the antibiotics. Another is that the feedback from the division time to the latent state transition,317

which naturally occurs when the latent state is affected how long the next division occurs. The318

feedback inevitably destroys the prerequisite of the BW algorithm that there is no feedback. All319

these problems together with the potential applicability of LEM may open up a new target of the320

machine learning and the statistics, which will provide quantitative and data-drive ways to address321

the problems of evolutionary and systems biology.322
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Fig. 1. (a) A schematic diagram of the stochastic state-switching and fluctuating division time of a cell traced by ignoring its sister cells. xi represents the state of the cell
i and τi is its division time. (b) The outline of the dynamics cytometer (21). (c) A schematic representation of a lineage tree obtained by the dynamics cytometer, and an
illustration of the survivor bias. The dynamics of individual cells follows the state-switching and the division time statistics described in (a). The lineage tree is composed of
two kinds of information: parent-daughter relationship of the cells and the division times how long each cell took until divides. In this panel, the green state is assumed to
divide faster than the blue and red ones. Thereby, the cells with the green state are overrepresented more in the clade of the winner than in that of the losers. (d) A lineage
tree of E. coli (F3 rpsL-gfp strain) cells grown with M9 minimum medium supplemented with 0.2% glucose at 37◦C. (lower panel) and a time series plot of the division times
(upper panel). The data is adopted from (21) and replotted.
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Fig. 3. A performance evaluation of LEM by comparing a simulated lineage tree of the discrete model and the corresponding inferred states of the cells with and without using
the information of the states of the leaves. (a) A schematic diagram of the state-switching dynamics and their division time distributions used for the evaluation. Each cell is
supposed to have either slowly growing (red) or quickly growing (blue) state, and the transitions between them occur with the probability 0.3. (b) A synthetic linage tree of
the model in (a) obtained by simulating the corresponding branching process. (c, d) The lineage trees with the latent states inferred from the tree in (b) without (c) and with
(d) the information of the actual states of the leaf cells. The color on a segment indicates the probability that the state of the cell corresponding to the segment is in the red
state. Red (blue) means that the cell is estimated to be in the red (blue) state with a high probability, whereas black means that the estimated state is ambiguous. (e, f) The
convergence of the log-likelihoods when the states of the cells at the leaves are not available (e) and are available (f). (g, h) The empirical and the inferred distributions of the
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of the division time of the red and blue states, and the black one is their mixture. The histogram is the empirical distribution of the division times of the cells on the tree .
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predicted values 〈log τi+1〉 and 〈log τi+2〉 obtained from the latent states of the corresponding mother cells xi. (d) State-space representation of the dynamics of the
latent state. Each blue point represents the latent state of each cell xi, and the corresponding red point connected by the gray arrow is its mapped state Axi. The green
plane is an instance of the surface satisfying x1 + x2 + x3 = const.. A subset of cells that are on the same x1 + x2 + x3 = const. plane generates the same predicted
value of the division time. The green plane in the plot is obtained for const. = τav where τav is the sample average of the division times. (e) The same 3D plot as (d) but
rendered from the top-view.
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