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ABSTRACT In designing experimental crosses of inbred strains of model organisms, researchers must make a number of
decisions. These include the selection of the appropriate strains, the cross design (eg. F2 intercross), and the number of
progeny to collect (sample size). These decisions strongly influence the potential for a successful quantitative trait locus (QTL)
mapping experiment; good design decisions will lead to efficient and effective science. Thus experimental design deserves
careful consideration and planning. Experimental outcomes can be quantified through utility functions using a Bayesian decision
theoretic approaches. For QTL mapping experiments, the power to map a QTL is an appealing utility function to maximize.
Using any utility function to aid in experimental design will be dependent on assumptions, such as the QTL effect size in the
case of power. Rather than arbitrarily selecting QTL effect size values, they can be estimated from pilot data using a Bayesian
hierarchical model. The information in the pilot data can be propagated to the utility function, using Markov Chain Monte Carlo
(MCMC) to sample from the posterior distribution. Key features of this approach include: 1) distributional summaries of utility,
which are preferable to point estimates, and 2) a comprehensive search of the experimental space of crosses of inbred lines for
well-designed experiments. We evaluate this Bayesian theoretic approach using diallel crosses as the pilot data. We present
results from simulations as well as present examples from both Mendelian and complex traits in the founder strains of the
mouse Collaborative Cross. All analyses were performed using our R package, DIDACT (Diallel-Informed Decision theoretic
Approach for Crosses Tool), developed to perform Bayesian cross selection based on diallel pilot data.

KEYWORDS BayesDiallel, F2 intercross, backcross, utility, complex trait

Introduction

Geneticists commonly conduct experiments with the goal of
identifying quantitative trait loci (QTL) using crosses of inbred
lines of model organisms. These experiments can be costly in
terms of resources, due to the organisms, their care, genotyping
or sequencing, as well as the time and energy required for the
experiment itself. In the face of these constraints, procedures
that explore the potential set of experimental cross designs and
allow researchers to select experiments with greater potential to
be successful are beneficial to the field of complex traits.
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Although the goals for a given experiment will be nuanced
and unique to each study, the mapping portion is successful if
a QTL is detected with a statistically significant signal, using
established methodologies (Lander and Botstein 1989; Haley
and Knott 1992; Dupuis and Siegmund 1999; Broman 2001). This
outcome is not guaranteed simply due to the presence of segre-
gating QTL in the mapping population: the experimental design
may not be sufficiently powered to identify them. The power
of an experiment, the probability that a non-zero effect will be
recognized given that it is present, is influenced by a number
of biological factors, some of which can be more easily manipu-
lated and optimized through experimental design choices. These
factors include genetic architecture, mode of action, and the vari-
ation in the population due to noise. If the genetic architecture
of the trait is highly polygenic with many loci of small effect,
power will be reduced compared to tests for QTL of larger effect.
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Figure 1 The potential bi-parental crosses considered within DIDACT: F2 [left], BC [middle], and RBCPO [right]. A single inbred genome is
represented as a colored chromosome. The parental (P) and F1 generations are replicable, whereas the mapping populations are not. All
three genotypes at a locus (A/A, A/B, and B/B) can be observed in the F2 population, allowing for the estimation of additive and dominance
effects for a putative QTL. With traditional BC, only the homozygote of the backcrossed parental allele is observed. By jointly analyzing
RBCPO, it is possible to detect effects from heterozygous sites in which the parent-of-origin differs for the backcrossed parental allele.

Similarly, mode of action (e.g. additive, dominant), for a QTL
will also influence power because certain experimental designs
will have differential ability to detect a given effect type. For
example, a backcross (BC) cannot identify a QTL with a fully
recessive effect when the homozygote of the recessive allele is
never observed. Finally, an increase in variation due to noise will
decrease power because the noise drowns out the true signal.
Ideally, investigators would select the experiment that can best
handle these factors in the given setting.

In the context of crosses of inbred organisms, one major com-
ponent of the experimental design is the founder or parental
lines. The selection of parental lines allows the investigator to
control the genetic background of the experimental population,
which can greatly influence the previously mentioned biological
factors, and ultimately influence the potential for mapping suc-
cess. For example, a trait could be highly polygenic and have
loci with complex modes of action within natural populations,
but much of the genetic and phenotypic variation becomes fixed
within two closely related inbred lines. The reduced genetic
variability can impact all of the biological factors: the complexity
or polygenic nature of the genetic architecture by fixing many of
the loci, the mode of action by limiting the potential for epistatic
effects through less segregating variants, and the variance at-
tributable to noise through the reduction in phenotypic variabil-
ity.

The ability to strongly influence the sources of variation in the
population is important to consider. If the QTL explains a large
proportion of the variance in the population, a simple cross will
be well-powered to identify the QTL, even if its effect is small.
The balance between the variance attributable to the QTL versus
how generalizable the experiment is to natural populations is
important to consider when making decisions about experimen-
tal design. Ultimately a finding that is characteristic of only a
very unnatural experimental population and does not generalize
well to more natural ones, will greatly reduce the impact of such
an experiment and even undermine the purpose of experiments
with model organism in general. The ideal experiment will be
well-powered to identify QTL, but also generalizable to natural
populations.

The power of an experiment cannot be directly assessed be-
cause it requires knowledge of the true effect, which is unknown.
Instead power calculations are performed for a range of plau-
sible parameters, usually over varying effect sizes or sample
sizes, given some type I error level and error variance, which
can then be represented as power curves. Analytical solutions

to power calculations have been specifically developed and re-
fined for simple cross designs such as F2 intercross, BC, and
recombinant inbred lines (RIL) panels, using an information per-
spective approach, which posits that the complete information
is composed of the unobserved information and the missing
information (Sen et al. 2005). These power estimates are still
dependent on assumed parameters, in this case QTL effect sizes
and error variances. As a result, meaningful and useful power
calculations still depend on the consideration of an appropriate
set of values for these unknown quantities, otherwise the power
estimates could be uninformative or even misleading.

Pilot data can provide information about the underlying ge-
netic signals present in potential experiments. One source of
pilot data is the inbred founder lines themselves as well as their
hybrid crosses (F1). Comparisons of F1 individuals to the inbred
strains can provide estimates of various genetic effects for given
lines, aggregated from causal variants across the entire genome.
These effects can include additive, inbred, and epistatic. An ad-
ditive effect for a given strain can be estimated from averages of
F1 that do not have the strain as a parent (0 copies), to averages
of F1 that do have the strain as a parent (1 copy), and finally
to the inbred line itself (2 copies). An inbred effect is estimated
from these same sets of crosses, but represent the average de-
partures observed from the expectation of the hybrid according
to the additive effect to its actual observed value. An epistatic
effect represents departures from expectation for a specific cross
of two strains, thus it is an interaction of the two strains.

Additional information is contained in the reciprocal crosses
that compose the F1 hybrids, and can be characterized as parent-
of-origin effects (POE). Reciprocal F1 crosses have the same
parental lines, but the dam-sire identities are switched. Average
differences between reciprocal crosses can be used to estimate
POE, allowing QTL that underly these POE to be mapped using
a unique BC design that we will refer to as reciprocal parent-
of-origin (RBCPO) (Gonzalo et al. 2007). Traditional reciprocal
BC refer to related BC in which F1 are back-crossed to alter-
native parental lines, whereas RBCPO have the same F1 and
back-crossed parent, but the dam and sire strains are reversed
between reciprocal pairs; thus the parent-of-origin for each allele
is known at heterozygous sites, and differences in the trait that
correlate to genotype and parent-of-origin can be detected. The
estimation of POE through reciprocal crosses allows researchers
to add RBC to their collection of potential experiments. Though
RBCPO are not as frequently used as F2 and BC, interest in POE
has increased (Lawson et al. 2013; Bérénos et al. 2014; Connolly
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and Heron 2015; Harper et al. 2014; Zou et al. 2014). Pilot data
that distinguish between reciprocal F1s allow for an even larger
number of experiments to be explored and considered. These
potential bi-parental mapping populations, F2, BC, and RBCPO,
are depicted in Figure 1.

These experiments can best be explored with the full set of
potential founder lines and their F1 hybrids, which represent a
classic genetic experiment, the diallel cross. Diallels have been
used to study numerous traits in a diverse range of organisms,
including: mating speed, female receptivity, and temperature
preference in flies (Parsons 1964; Casares et al. 1992; Yamamoto
1994); immune function, polyandry, and genetic-environment
interactions in crickets (Rantala and Roff 2006; Ivy 2007; Nys-
trand et al. 2011); and heterosis and reciprocal effects in poultry
(Fairfull et al. 1983). Additionally, the diallel has a long history in
plant breeding (Gilbert 1958) and numerous recent applications
(Bahari et al. 2012; Ghareeb Zeinab and Helal 2014; Dos Santos
et al. 2016).

Since being described in the early 20th century, statistical
methodology for the diallel has seen steady advancements, from
estimating the general combining ability of related F2 popula-
tions (Griffing 1956) to random effect (Zhu and Weir 1996; Tsaih
et al. 2005) and Bayesian hierarchical modeling of sparse dial-
lel (Greenberg et al. 2010). Recently, Lenarcic et al. (2012) used
Bayesian hierarchical modeling of diallel data to allow for stable
estimation of a large number of strain-level genetic effects (such
as additive, inbred, epistatic, and maternal), and this method
has been used to analyze a number of phenotypes and organ-
isms, such as cranial shape (Gonzalez et al. 2016), response to
treatment and infection (Crowley et al. 2014; Maurizio et al. 2018),
and litter size (Shorter et al. 2018) in mice, and shoot growth in
carrots (Turner et al. 2018). Even incomplete or sparse diallel data
can be used for the characterization of some of the underlying
strain-level genetic signals, which can then be used to evaluate
the potential space of experiments, and potentially allow for
the selection of a favorable one. A simplified representation
of a diallel, in the founders of the Collaborative Cross (CC), a
multiparental recombinant inbred panel in laboratory mouse, is
depicted in Figure 2.

A number QTL mapping approaches have been developed
within the context of jointly modeling related populations, in-
cluding daughter populations of a diallel cross (Rebaï and
Goffinet 1993, 2000; Liu and Zeng 2000; Li et al. 2013), as well as
QTL allele effect estimation for these related populations (Jan-
nink and Wu 2003). More recently, Verhoeven et al. (2006) investi-
gated jointly modeling diallel data with the related downstream
F2 populations, and found that it allowed for the simultaneous
dissection of the trait across all the populations, or character-
ization of strain-level effects, as well as generalization of the
QTL findings from the mapping populations in terms of the
multiparental diallel population. We focus on the situation in
which none of the F2 populations, or any such downstream cross
populations, are observed, and attempt to evaluate the utility
of potential crosses in terms of QTL mapping. Herein we bring
together three lines of research:

1. The estimation of the power to map putative QTL of given
effect sizes.

2. The characterization of strain-level genetic effects from di-
allel pilot data.

3. The selection of optimal experiments through a decision
theoretic approach.
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Figure 2 A diallel of the CC founders. Each unique strain
genome is represented as a colored chromosome. Genomes
along the diagonal represent the inbred founders. Off-
diagonal genomes represent the F1 hybrids of a pair of
founders. Reciprocal F1 genomes possess the same genome,
ignoring mitochondria and sex chromosomes for males, but
parent-of-origin for each chromosome will be reversed. All
the genomes of an inbred diallel cross are replicable, and thus
replicate observations can be measured per genome. Some
cells of the diallel may not be observed, reducing the ability to
accurately estimate certain strain-level effects.

We use the BayesDiallel model (Lenarcic et al. 2012), a Bayesian
hierarchical model for characterizing the genetic information
contained in diallel data as aggregate strain effects. Bayesian
approaches can stably estimate a large number of genetic effects
through the sharing of information across strains, as well as as-
sess the uncertainty around these effects. These strain effects are
next propagated to utility functions, including power to map a
putative QTL underlying the strain effects, for an array of poten-
tial experimental crosses. Our approach will allow researchers
to select better experiments with greater potential based on pilot
data over ineffective or inefficient options. These opportunities
include not only favorable experiments for mapping additive
traits, which have commonly been studied, but also for mapping
the QTL responsible for less well-understood effects such as
POE.

Statistical Models and Methods

Our approach builds on three separate areas of research. Firstly
we consider the calculation of power to map QTL given that the
QTL effect q is known. This will require the review of general
concepts in quantitative genetics and statistics in the context of
crosses of two inbred lines. Because in reality q is never actually
observed, we next consider the characterization of q from pilot
data. Finally we discuss the selection of optimal experimental
crosses through the maximization of a chosen utility function.

Power to map QTL

Single QTL model. Here we review the general concepts in quan-
titative genetics and statistics that support the method used by
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Sen et al. (2005) for power calculations of traditional crosses such
as the F2 and BC. Consider this model:

yi = QTLi + Gi + Ei + ei (1)

where yi is the phenotype of individual i, QTLi is the effect of the
QTL for individual i, Gi is the effect of other genetic elements
for individual i, Ei is the effect of environmental factors for
individual i, and ei is the random noise for individual i. Gi and
Ei are un-modeled, and can thus be collapsed with ei into a
single error term #i.

yi = QTLi + #i (2)

where #i ⇠ N(0, s2) with s2 representing the error variance in
the data. The QTL effect is a vector, traditionally parameterized
as additive and dominant effects (Lynch and Walsh 1998). This
can be formulated in a traditional regression framework:

y = Xb + # (3)

= X

2

6664

µ

a

d

3

7775
+ #,

where y is the phenotype vector, X is the design matrix that we
will define further, b is the vector of effects composed of µ, the
overall phenotypic mean, a, the additive effect of the QTL, and
d, the dominance effect for the QTL, and # is the vector of errors.
Consider an F2 or BC of strains A and B, with the genotype of
an individual represented in terms of strain identity, denoted in
the subscript. a is the midpoint of the difference between the
homozygotes:

a =
E(yAA) � E(yBB)

2
(4)

d is the deviation of the heterozygote from the average of the
homozygotes:

d = E(yAB) � E(yAA) + E(yBB)
2

(5)

Table S1 lists Eq 3 parameterized in terms of these QTL effects.
This parameterization maintains the identifiability of all the
effects, though it may not be as intuitive to researchers accus-
tomed to more traditional regression models used commonly in
genome-wide association studies.

Returning to the formulation of the model in Eq 6, the vari-
ance of the model can be characterized as follows with the as-
sumption that there is no covariance between the QTL effect and
the error,

Var(y) = Var(QTL) + s2 (6)

The background genetic and environmental variation are cap-
tured in s2; here we focus on the variability due to the QTL. E(y)
will vary depending on the genotype, which will vary proba-
bilistically according to the type of cross, as described in Table
S1. As example, for an F2 cross, the Pr(AA) = 1

4 , Pr(AB) = 1
2 ,

and Pr(BB) = 1
4 . The variance of a random variable X is de-

fined as Var(X) = E(X � E(X))2. The variable X in this setting
is QTL, which is the categorical genetic state at the QTL. The
expectation of X is E(X) = Âx2X xPr(X = x). Based on the
genotype probability for a given cross, the variances due to the
QTL in terms of the QTL effects are presented in Table S2.

The mode of action of the locus impacts the variability in
phenotype due to QTL within a cross type, as seen in Table

S2. This is particularly noticeable in the BC experiments, where
certain modes of action produce no variance. If the locus is
recessive (or conversely dominant), the genotype with differing
phenotype will not be observed, and nor will variation due to
QTL. Finally, cross type also impacts the QTL variance, which is
also clear in Table S2. Increasing the variance attributable to the
QTL will increase power to map the QTL; in contrast, increasing
the overall variance that is attributable to noise (un-modeled
background genetic factors or environmental factors) will reduce
the significance of statistical tests, and thus decrease the power.

Power calculations. Analytical power calculations are the prob-
ability mass above some threshold for the distribution of a statis-
tic of interest under the alternative hypothesis. This requires
that the alternative distribution be reasonably characterized.
Consider q, some function of the QTL effects a and d, as the
parameter of interest. We wish to calculate the probability of
mapping the QTL that results in q. In terms of the associa-
tion modeling, a natural null hypothesis is H0 : q = q0 with
q0 = 0, that there is no QTL effect. The alternative hypothesis
is HA : q 6= q0. By specifying a model for the data, or more
precisely the distribution of the error term of the model, the
likelihood L(q) can be evaluated. The likelihood ratio test (LRT)
statistic, T = �2 log L(q=0)

L(q=bq)
, where bq is a proposed estimate of q,

can be used to perform power calculations.
To use the LRT statistic for power calculations, a significance

threshold and corresponding statistic distribution for T are nec-
essary. The traditional scale of significance used in the linkage
and QTL fields is the log10 likelihood ratio or LOD (logarithm
of odds) score. Historically a LOD score of 3 (2 log(10) ⇥ 3
on the likelihood ratio scale) has been used as a significance
threshold, meaning approximately that the data support the
alternative model over the null model 1000 to 1. A more strin-
gent significance threshold than 3 can be used to further reduce
the risk of false positives or possibly account for a multitude
of tests (though it is worth noting these tests will not be fully
independent). Given some significance threshold C is chosen to
determine genome-wide significance; if T � C for some locus,
the null hypothesis is rejected. The threshold C will affect the
the true positive and false positive rates, and more important to
our topic, the power.

Statistically, power is the probability that the null hypothesis
is rejected given that alternative hypothesis is true. The LRT T

is the statistic upon which the power calculations are drawn,
thus the power will be Pr(T � t|q 6= q0) where t is the observed
statistic produced by the data. With the LRT statistic, when the
models are nested and the maximum likelihood estimate (MLE)
is used (HA : q = bqMLE), as they are in this case, and the null
model is true, T is asymptotically c2

k
distributed, where k is the

degrees of freedom, the difference in number of parameters be-
tween the models. A power calculation from this distribution
would not be useful because it would represent the probability
that the null hypothesis is rejected when there is no genetic ef-
fect, or the false positive probability. The power is rather based
on the alternative hypothesis being true, q 6= q0, and thus c2

k

distribution is inappropriate. When the alternative hypothesis
is true rather than the null, that q = bqMLE, T is proportional
to the noncentral c2 distribution with noncentrality parameter
(q � q0)TI(q)(q � q0) where I(q) is the expected Fisher infor-
mation matrix. We model the data with a Gaussian mixture
distribution with a shared residual variance, which naturally
extends from the two line cross statistical model. A key feature
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of this model is that the LRT reduces to the variance attributable
to the QTL as a function of effects that we presented in table 1.
This variance parameter is scaled by s2, which sets the variance
of each Gaussian component to 1. Thus the power calculations
are intuitively a function of the effect size, the proportion of
the variance explained by the QTL (effect size combined with
residual error variance), and the sample size.

It is important to note that the actual bqMLE cannot be calcu-
lated because no actual cross data for QTL mapping is observed,
but the underlying theory of the method assumes that the alter-
native q is the MLE estimator. s2 is also never actually known,
but we estimate it from the information present in the pilot data.
The final interpretation of this power calculation is the probabil-
ity that a significant result is found (T � t) given that there is
some QTL effect specified in the proposed MLE estimator bqMLE
with an error variance of s2.

Sen et al. (2005) develop the theory further to account for the
fact that the information is generally never complete in QTL
studies. The true QTL variant is most likely not observed (geno-
typed), but rather loci in linkage disequilibrium are, and thus
contain some of the information from the QTL. They develop the
theory to take into account the missing information from sparse
markers (as previously described), as well as selective genotyp-
ing (genotyping study individuals on the tails of the phenotype
distribution). As a result of this, power can be reduced by not
only greater error variance, but also missing information. The
advancement in genotyping technology is generally leading to
denser markers in QTL studies, leading us to make the assump-
tion of complete information. We directly incorporate the R
package qtlDesign (Sen et al. 2007) into our method, so missing
information can be specified in the power calculations. See Sen
et al. (2005) for a description of the missing information theory
used.

Strain-level genetic effects

The power calculations described above are dependent on
known QTL effects q, but in reality, q is not observed. How-
ever, information about q is contained in pilot data, which can
be exploited to characterize plausible distributions for q.

Bayesian modeling of diallel data. One potential convenient
source of pilot data are the parental lines and some subset of
their F1 hybrids. Direct estimation of q is not possible because no
recombinations occur between the parental haplotypes within
F1 individuals, but rather strain effects that represent the accu-
mulated effect of the segregating variants within each inbred
strain can be estimated. Denote these strain effects, the vector
of effects that will be defined in Eq 7, as f to distinguish them
from q, the effect of a single QTL.

The strain-level vector f can encompass effects of different
modes of actions based on the strain identities of the dam and
sire of an individual. These strain-level effects include additive,
inbred, epistatic, and maternal. The additive effects characterize
the average effect of a strain constrained to a dosage-like model.
Such a simple model is not always sufficient to accurately model
data, such as the situation that an F1 hybrid is not approximately
the midpoint between the parental strain phenotypes. We ac-
count for this potential deviation from additivity with an inbred
effect, which is in contrast to the more traditional view of non-
additivity as dominance. This parameterization of the model is
appropriate for our pilot data because, considering J parental
strains, there will be J(J � 1) possible F1 hybrids, and only J

inbreds. When J is greater than 2, which is likely, the number of
possible hybrid F1 will outnumber the J lines. Thus modeling
the state of being outbred as the default state more intuitively
matches the structure of our data.

Epistatic and maternal effects represent other potential
sources of deviation from strict additivity. Epistatic effects are es-
sentially an interaction between strains, thus allowing a specific
F1 hybrid to deviate from its additive expectations. Maternal ef-
fects can capture strain-specific POEs where there is an average
difference between reciprocal F1. As demonstrated in Lenarcic
et al. (2012), consider pilot data that are some subset of the J

inbred strains and their F1. The strain identities of dam, sire,
and dam-sire pair for individual i are indexed as j[i], k[i], and
(j, k)[i], respectively. We model the pilot data as

yi = µ + aj[i] + ak[i]| {z }
additive

+ I{j=k}(bj + binbred)
| {z }

inbred

(7)

+ I{j 6=k}(v(j,k)[i] + w(j,k)[i])| {z }
epistatic

+ mj[i] � mk[i]| {z }
maternal

+#i,

where y is the continuous phenotype value, µ is the intercept,
a is a strain-specific additive or dose effect, binbred and b are
respectively a general inbred effect and a strain-specific inbred
effect that are included only if individual i is inbred, v and
w are respectively symmetric and asymmetric strain-by-strain
interaction effects that we will refer to as epistatic effects and are
only included if individual i is a hybrid, m is a strain-specific
maternal effect, and #i is the individual-specific noise (deviation
from the model expectation) and is distributed: #i ⇠ N(0, s2).
The model can also include important covariates, such as sex,
that need to be adjusted for as fixed effects. The complete set of
founder strains and all their reciprocal F1 hybrids represent what
is called a diallel, which would allow for the estimation of the
full set of strain effects described. Although an incomplete diallel
cannot estimate all the strain effects, it still provides information
that can be used to estimate f. See Appendix A for descriptions
of prior specifications used.

Connecting strain-level effects to QTL effects. Transitioning
from strain-level genetic effects f to the effect of a single QTL q
requires some strong assumptions. Pilot data consisting solely
of F1 individuals cannot provide information about specific loci
or the number of loci contributing to a strain effect; there are
an infinite number of genetic architectures that can explain a
given strain effect. It is possible that conducting a small set of
F2 crosses and investigating the variability in phenotype for the
resulting population could provide information about the trait
genetic architecture, such as distinguishing between highly poly-
genic and oligogenic traits, but here we focus on using only the
F1 generation. We make the assumption that the strain effects
represent the effect of a single QTL, which is biologically unlikely
but provides an informed approach to connect information in
the pilot data to the power calculations. Eq 7 provides expected
phenotype values for a given cross of two strains, assuming the
trait is controlled by a single QTL. Consider comparing strains
A and B. Eq 7 can be used to estimate E(yAA), E(yAB), and
E(yBB). From these predicted values, traditional single QTL
additive (a) and dominant effects d can be estimated from Eq 4
and Eq 5. These estimates along with estimates of s2 can then
be used with the power calculation machinery described before.
Different QTL effects will be estimated from the model in Eq 7
for different potential crosses of inbred lines.
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Generalizing single QTL effect for complex traits. The QTL ef-
fects defined in Eq 4 and Eq 5 make the assumption of a single
underlying QTL; however, from the perspective of the strain-
level model in Eq 7, these parameters can be interpreted as
strain-level predicted phenotype contrasts. The corresponding
variance expressions in Table S2 then become simplifying func-
tions of contrasts. Generally speaking, all of these quantities
can be viewed as point summaries of predicted contrasts from
a strain-level model, and thus have a meaningful and poten-
tially useful interpretation outside of the single QTL Mendelian
context.

Decision theoretic approach

Different inbred lines will possess differing segregating vari-
ants to potentially identify. We use our model of pilot data to
make predictions for some set of possible experiments, which
can be viewed in the context of a decision theoretic space (Raiffa
and Schlaifer 2000). Define A as the set potential experimen-
tal crosses. Considering n inbred lines, A could contain all of
or some subset of the (n

2) potential F2 crosses and 3n(n � 1)
potential BC.

Power as utility function. Let an element of A, a represent a
specific action, in this setting, a cross experiment that has corre-
sponding single QTL effect composed of a and d. If we define
Q to be a binary variable that the QTL that causes q (a and d) is
successfully mapped:

Q :

(
q = 1 QTL is mapped
q = 0 QTL is not mapped

Pr(Q = 1|a) represents the power that the QTL is successfully
mapped, and can be calculated using the noncentral c2 distri-
bution described previously. We next define C to be the conse-
quence or experiment outcome space for a QTL mapping ex-
periment, where c = {q1, . . . qp} is the specific joint mapping
outcome of the p QTL that underly the strain effects. Along with
using posterior contrasts as the utility function, this approach al-
lows for the assumption of a single QTL causing the strain-level
effects to be reduced.

A utility function is an important concept in decision theory.
It provides a common scale to compare potential experimental
outcomes, and select optimal experiments. Alternative utility
functions can be devised and easily swapped to place value on
differing aspects that investigator want to prioritize. We define a
utility function, u(.), to map from C to the reduced utility space,
U , which we pose as a function of power, a natural quantity to
prioritize. Consider the probability of a specific consequence,
which will be a product of a function of the individual power
for each QTL: Pr(c = {q1, . . . , qp}|a) = ’p

i=1 Pr(Qi = qi|a).
We define u(.) to be the count of p QTL that were successfully
mapped: u(c) = Âp

i=1 qi. The probability of a utility u can be
calculated from subsets of C:

Pr(u|a) = Â
c2C :u=u(c)

Pr(c|a) (8)

= Â
c2C

I{u=u(c)}Pr(c|a)

Strictly speaking, the probability of a utility is also depen-
dent on QTL effect q: Pr(u|a, q) = Âc2C I{u=u(c)}Pr(c|a, q).
q can be marginalized out through integration: Pr(u|a) =R

q Pr(u|a, q)Pr(q|D)dq, where D represents the pilot data.The

probability of this utility function provides an evaluation of the
uncertainty of mapping QTL of a given effect size, but does
not take into account the uncertainty of a, d, and s2, which are
produced from the Bayesian model. Through Gibbs sampling
or some other Markov Chain Monte Carlo (MCMC) method, a
Bayesian model can produce S draws from the posterior distri-
bution of these parameters. Monte Carlo (MC) averaging allows
us to take into account this extra source of variability, resulting
in the posterior expected utility for cross a:

PEU(a) =
Z

q

Z

u
uPr(u|a, q)dudq (9)

=
Z

q
Â

u2U
u Â

c2C
I{u=u(c)}Pr(c|a, q)dq

where q is the vector function of a, d, and s2. The quantity
Âu2U uPr(u|a, q) within the PEU(a) is the expected utility for a
single draw s from the Bayesian model. This quantity is then
averaged over the QTL effect space of the posterior distribution,
traversed through the MC samples. This can be summarized as
a point estimate such as the posterior mean or median, or the
posterior distribution of expected utilities can be plotted for a
given cross a. Interpretations of the PEU(a) will vary amongst
utility functions, but we will focus our discussions on power as
the utility being maximized.

If it is assumed that all p QTL have the same effect size, the
utility function u(c), the number of p QTL that were successfully
mapped, follows a binomial distribution. Consider simple case
of a single QTL (p = 1), in which the binomial reduces to the
Bernoulli distribution. In this setting, the PEU(a) reduces to the
posterior probability of mapping the QTL. When p is greater
than one, as with a binomial variable, PEU(a) now represents the
expected number of QTL to be mapped. Our approach should
be flexible to any reasonable utility function investigators can
define, but we emphasize power because its PEU(a) are easy to
interpret, as well as posterior contrasts, which have require less
assumptions and better extend to highly complex phenotypes.

Simulation of diallel data

Diallel data were simulated from Eq 7 based on a number of
different strain-level effect settings to assess how well DIDACT
performs in a variety of genetic architectures according to vari-
ous quantities, such as the estimation of the strain-level effects,
and more importantly, utility. Specifically 100 realizations were
simulated of a full and balanced diallel of eight strains with
five individuals per diallel cell, resulting in a total of 320 ob-
servations, for each specification of strain-level effects. The
strain-level effects were scaled so that the proportion of total
variance was controlled such that:

var(a) + var(b) + var(v) + var(w) + var(m) + var(#) = 1

The proportion of variance from strain-level effects was set to
50 evenly spaced values between 0.01 to 0.99. The following
strain-level effect specifications were used:

1. biallelic_add: The inbred, maternal, and both epistatic ef-
fects are all set to 0. Two alleles are simulated for the ad-
ditive effects and distributed evenly amongst the parental
strains.

2. rnorm_add: The inbred, maternal, and both epistatic effects
are all set to 0. The eight additive alleles are simulated such
that aj ⇠ N(0, 1).
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Table 1 Summary of data-generating models for simulations

Simulation model Description Non-zero parameters Number of non-zero parame-
ters

biallelic_add Additive only with two alleles µ, binbred, (a1, a2) 4

rnorm_add Additive only with a ⇠ N(0, t2
a ) µ, binbred, (a1, . . . , a8) 10

complex Includes all strain-level effects µ, binbred, 82

additive: ai ⇠ N(0, t2
a ) (a1, . . . , a8),

inbred: bi ⇠ N(0, t2
b
) (b1, . . . , b8),

maternal: mi ⇠ N(0, t2
m) (m1, . . . , m8),

symmetric epistasis: vij ⇠ N(0, t2
v ) (v1, . . . , v28),

asymmetric epistasis: wij ⇠ N(0, t2
w) (w1, . . . , w28)

3. complex: The additive, inbred, maternal, and both epistatic
effects are all simulated such that aj, bj, mj, vjk, wjk ⇠
N(0, 1). The proportional of total variance is evenly split
between the five strain-level effect types.

Table 1 describes these three diallel data-generating models,
including the type and number of non-zero effects.

Availability of data and software

All analyses were conducted in the statistical programming lan-
guage R (?). The R package DIDACT (Diallel Informed Decision
theoretic Approach for Crosses Tool), available on GitHub at
https://github.com/gkeele/DIDACT, can estimate strain-level effects
from diallel data using a Bayesian hierarchical model, and then
perform the posterior utility analysis. The R package BayesDial-
lel can alternatively be used to estimate the strain-level effects,
and potentially used as inputs to DIDACT.

DIDACT includes three diallel data sets, each with a number
of phenotypes, of the CC founders (Churchill et al. 2004; Collab-
orative Cross Consortium 2012; Srivastava et al. 2017), described
in great detail in Lenarcic et al. (2012). Specifically, results shown
here are from a hemoglobin trait measured in 626 mice. The
CC founders represent the following inbred strains of mouse
(abbreviated names in parentheses): A/J (AJ), C57BL/6J (B6),
129S1/SvImJ (129), NOD/ShiLtJ (NOD), NZO/H1LtJ (NZO),
CAST/EiJ (CAST), PWK/PhJ (PWK), and WSB/EiJ (WSB).

An additional diallel data set of the CC founders of response
to Influenza A virus (IAV) infection phenotypes is used here
and included in the DIDACT package, with the original data
available at https://github.com/mauriziopaul/flu-diallel. In previous
work (Maurizio et al. 2018), we investigated strain-level effects
in day four post-infection (D4 p.i. ) body weight loss percentage
in a diallel of the CC founders. The phenotype of interest is
a response to infection, in which three infected animals were
compared to a single mock-infected animals. Occasionally three
infected animals were not observed at later time points, which
was accounted for through a multiple imputation procedure
that imputed unobserved animals from the posterior predictive
distributions of the BayesDiallel model (Lenarcic et al. 2012).
Here only a singly imputed data set of 131 outcomes is used,
as this example is a proof of principle for DIDACT, and not a
rigorous investigation of strain-level effects.

Results

We provide results from simulations and example analyses from
diallel data of the CC founders to demonstrate the decision the-
oretic procedure used in the DIDACT approach. The use of
QTL mapping power as a utility function depends on assump-
tions about the effect of a single putative QTL in a bi-parental
cross (described in Table S1) given strain-level effects estimated
from diallel data based on the parameterization described in
Eq 7. This assumption is most straightforward in the case of
a largely Mendelian phenotype, in which a single locus modu-
lates the variation observed in a relatively deterministic manner,
and as such, the QTL effect q can draw from the strain-level
effect f wholly. When the genetic architecture of the phenotype
is complex, as is likely with many traits, the use of predicted
phenotype contrasts requires less assumptions, as the nominal
interpretation of power is no longer valid.

Simulations

100 simulations per 50 levels of strain-level effect sizes (evenly
spaced between 0.01 and 0.99) for three different model types
were used to evaluate strain-level effect estimation accuracy,
and more importantly, DIDACT’s utility estimation. For effect
estimation accuracy, the averaged mean squared error (MSE) of
the additive strain-level effects (a) was used, calculated as:

MSEa =
J

Â
i=1

(bai � ai)
2 (10)

where J is the number of founders (8 in the CC) and ba is the
posterior mean of a. For utility estimation accuracy, the rank
correlation of posterior contrasts was used.

DIDACT can effectively estimate strain-level effects, but more
importantly, is consistently accurate at ranking posterior utili-
ties (Figure 3). The simulations show that DIDACT can both
accurately estimate the additive strain-level effects when those
are the only non-zero effects in the data (Figures 3 A and B).
When many non-zero and non-additive strain-level effects are
present, the accuracy of the effect estimation is reduced (Figure
3 C). Despite this reduction in effect estimation accuracy for the
BayesDiallel model in a complex setting, DIDACT still estimates
and ranks utilities effectively (Figure 3 F) in comparison to the
simpler additive settings (Figures 3 D and E).
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Figure 3 The BayesDiallel model’s estimates of the additive strain-level effects improve with decreasing proportion noise variance (A-B).
When the underlying strain-level effects are complex, the BayesDiallel model struggles to accurately estimate the additive effects, even
with decreasing variation due to noise (C). DIDACT’s ranking of posterior contrasts for simulated diallel crosses of varying complexity
improves as proportion noise variation decreases (D-F), suggesting that even though effect estimation is challenging in the presence
of complex strain effects, DIDACT’s posterior utility is robust to this complexity. 100 diallel crosses were simulated per level of variance
explained (50 values evenly spaced from 0 to 1) per model type. biallelic_add is a Mendelian QTL with two alleles distributed evenly
amongst the founder strains. rnorm_add is also an additive-only model but with a ⇠ N(0, t2), where t2 is one minus the proportion of vari-
ance determined by noise. complex has a complex set of non-zero strain-level effects for additive, inbred, maternal, and both symmetric
and asymmetric epistatis, each contributing equally to the overall variance. Gray dots represent single simulations, and black circles the
mean over the 100 simulations. The red dashed line in D marks the max rank correlation (< 1) for biallelic_add due to the true utilities at
a Mendelian locus containing ties whereas the estimated ones will be continuous.

Mendelian phenotype

To demonstrate a straightforward application of DIDACT to a
phenotype largely driven by a single locus, we use resistance
to IAV infection and the Mx1 gene. As described in greater
detail in the Methods, the phenotype of interest is day four post-
infection (D4 p.i. ) body weight loss percentage in a diallel of
the CC founders.

Mx1 is a critical host-resistance factor in mice. It has previ-
ously been shown that Mx1 largely drives IAV-resistance in
the CC founders, and has three major functional classes corre-
sponding to the three subspecies of Mus musculus: domesticus

(hereafter dom; CC founders with dom allele are AJ, B6, 129, NOD,
and WSB), castaneus (cast; CAST), and musculus (mus; PWK and
NZO) (Ferris et al. 2013). The dom allele of Mx1 was found to
be functionally null and those individuals susceptible to IAV
infection, whereas mus and cast confer degrees of resistance.

Though IAV-resistance is largely driven by Mx1, the genetic
variation at the gene in the diallel of CC founders is more com-
plicated than a bi-allelic locus. Instead, Mx1 has multiple func-

tional alleles, mus and cast contrasting the null allele dom. mus

has a dominant mode of action, conferring approximately the
same level of resistance to IAV in dom/mus individuals as in
mus/mus, whereas cast is additive with cast/dom being interme-
diate between dom/dom (low resistance) and either mus carriers
or cast/cast (highest resistance).

The increased IAV-resistance of mus and cast is apparent in
the raw data as darker horizontal and vertical bands for NZO
and PWK, and to a lesser extent for CAST (Figure 4A). The raw
data also suggests that WSB may posses additional modifiers
of resistance with some hybrids displaying high resistance for
individuals with homozygous dom. The resistance conferred by
variation at Mx1 is further confirmed in the strain-level effects
estimated through BayesDiallel, highlighted in Figure 4B.

DIDACT favors crosses with segregating Mx1 variants. For a
Mendelian phenotype, DIDACT should prefer crosses that main-
tain segregating alleles at the locus, in this case Mx1. In par-
ticular, it should prioritize crosses that match dom with mus or
cast. Crosses with no segregating functional variants of Mx1 will
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Figure 4 Mx1 is as a driver of IAV-resistance. This is manifested in the raw data of D4 p.i. body weight loss % in a diallel of the CC
founders and their hybrids (381 mice) as relatively dark vertical and horizontal bands at the NZO, CAST, and PWK founders, representing
low percent weight loss. (A). Squares with a black "X" represent crosses that produce no viable offspring (NZO⇡⇥ PWK⇢and NZO⇡⇥
CAST⇢). The subspecies allele at Mx1 for each CC founder strain is indicated by colored bars below and to the right of the phenotype
grid, with orange representing dom, blue mus, and green cast. The mus and cast alleles are functional, whereas the dom is functionally
null. Moreover, the mus allele is dominant in comparison to cast. The strain-level additive effects estimated from the BayesDiallel model
correspond to the subspecies lineages at the Mx1 locus, with mus (NZO and PWK) conferring more resistance than cast (CAST) (B). The
highest posterior density (HPD) intervals from the BayesDiallel strain-level additive effects are shown with 95% HPD as thin lines and 50%
HPD as thick lines. The posterior means and medians are indicated as colored and white ticks, respectively. The effects closely match
those estimated in Maurizio et al. (2018), which used a more complex BayesDiallel model, and summarized over multiply imputed data
sets.

have greatly reduced phenotypic variation, and ultimately not
be able to detect the largely Mendelian locus.

As expected, DIDACT largely estimates high QTL mapping
power for crosses that possess multiple segregating Mx1 alle-
les, either dom with mus or cast. Mean posterior power from
DIDACT for F2 experiments are shown in Figure 5A and for
BC experiments in Figure 5B. For F2, PWK ⇥ WSB and NZO
⇥ WSB are ranked 1st and 2nd in posterior power, respectively.
CAST ⇥ PWK is ranked 3rd, which matches the expectations that
mus ⇥ dom are preferable to cast ⇥ dom. WSB is likely preferred
as the dom carrier because of its relatively unique phenotype. In
general, other crosses that maintain multiple segregating alle-
les of Mx1 are preferred in comparison to crosses that fix the
variability at the locus.

For BC, similar patterns are observed. Though subtle, DI-
DACT generally favors BC for crosses of dom and mus in which
the backcrossed parent strain (A) has dom, thus reflecting the
dominance of mus. In the case of a completely dominant QTL,
there would be no power to map the QTL in a cross of A ⇥ B,
given that A is the backcrossed parent and possesses the dom-
inant allele. For example with Mx1, WSB (A) ⇥ PWK (B) is
ranked 1st whereas PWK (A) ⇥ WSB (B) is 5th. Though not
perfect, reflecting the complexities of real data and a phenotype
with potentially additional genetic modifiers, DIDACT largely

favors crosses of dom (A) ⇥ mus (B), given a specific pairing of
strains.

As with the F2, DIDACT prefers crosses of WSB (dom) with
strains that possess mus or cast, likely reflecting strain-level WSB
effects that are independent of Mx1 (Maurizio et al. 2018). It is
also important to reiterate that this analysis of Mx1 represents
a single imputation of multiply imputed data, representing an
additional source of noise.

Complex trait: calculated hemoglobin

Many phenotypes are the not Mendelian, but rather the product
of potentially many loci across the genome and complicated
genetic architectures. Such traits violate the assumption of at-
tributing the strain-level effects to a single QTL. DIDACT can
still be used to analyzed these complex traits. Though the power
utility function is still meaningful in selecting crosses of phe-
notypically distinct strains, the single QTL assumption can be
relaxed by using the phenotypic contrasts directly as the utility
function. Here, contrasts are used for calculated hemoglobin
(cHGB), which is likely not Mendelian.

As reported in Lenarcic et al. (2012), blood phenotypes were
measured on 626 mice from a diallel of the CC founders, which
included cHGB (g/dl), an estimate of the quantity of hemoglobin
in the blood (Figure 6A). The raw data do not suggest obvious
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Figure 5 For IAV resistance measured as D4 p.i. weight loss %, DIDACT ranks F2 and BC experiments that maintain genetic variability at
Mx1 higher. Posterior mean utility as power to map a single QTL in 60 mice, for the 28 possible F2 crosses (A) and the 56 possible BC (B)
of the CC founder strains. The red number in the top right corner of a cross square represents the posterior power rank for a given cross
type (F2 or BC). Subspecies allele at Mx1 is indicated by colored bars below and to the right of the grids, with orange representing dom,
blue mus, and green cast. For F2, the solid red squares enclose crosses that pair functional alleles (mus and cast) of Mx1 with dom. For
BC, the solid red squares enclose crosses that pair strains with functional alleles with strains with dom and the backcrossed parent has
dom. The red dashed squares also pair functional with nonfunctional alleles of Mx1, but the backcrossed parent has the functional allele
instead. Backcrossing strains with mus are expected to have reduced power due to the dominance of the allele.

additive strain-level effects as seen with D4 p.i. weight loss %
(Figure 6A), though great phenotypic variability is observed,
and patterns that reflect complex strain-level effects. CAST in-
dividuals have a notably lower trait-value. Additionally, PWK
hybrids with AJ, B6, and 129 have unusually high trait-values.

These patterns are reflected in the BayesDiallel estimates
of non-zero strain-level effects (Figure 6B). CAST has a non-
zero negative inbred effect. For symmetric epistatis, PWK has
positive non-zero effects with AJ and 129, and a suggestive
positive effect with B6. CAST also has a non-zero positive effect
with AJ, which is also consistent with the raw data. Stable effects
are based on observations across multiple crosses and replicates
of each pairing, thus likely representing heritable factors.

The posterior contrasts for possible F2 and BC mapping
crosses are shown in Figures 6C and 6D, respectively. DIDACT’s
ranking of contrasts largely prefers crosses with CAST, corre-
sponding to its non-zero strain-level effects. Notably For BC, the
strongly negative CAST inbred effect is manifested in DIDACT
estimating higher posterior power for BC in which CAST is the
backcrossed parent (A). If only CAST hybrids are observed, the
mapping cross will not produce as much phenotypic variation,
which stems from the CAST homozygotes in this trait. DIDACT
can dynamically take into account complex strain-level effects,
and rank crosses accordingly.

Additional DIDACT summaries

DIDACT can provide more detailed descriptions of the predicted
bi-parental crosses than shown in Figures 5 and 6. At its core,

DIDACT is an extension of the BayesDiallel model, in which
the strain-level effects from the Bayesian hierarchical model
are propagated to predetermined utility functions, and as such,
posterior intervals can be produced in addition to the point
estimates for any function of the model parameters.

Three potential F2 crosses were selected from the full panel
from cHGB (Figure 6C), and are presented in Figure S2. Ad-
ditional summaries include a histogram of the posterior distri-
bution of the utility function, in this case contrasts, the median
utility represented as a vertical dashed line on the histogram,
predicted phenotypes for each QTL genotype (based on a single
QTL assumption) as bar plots, and the phenotypic variation
attributable to the strain-level effects as a pie chart, all overlayed
on the square with posterior mean determining the background
color. CAST ⇥ WSB has higher mean posterior contrast com-
pared to NZO ⇥ WSB and AJ ⇥ B6. This is reflected in phe-
notype predictions that vary more greatly (bar plots) and an
estimated higher proportion of phenotypic variance explained
by the strain-level effects (63%).

Parent-of-origin effects and RBC
PO

There is not currently a satisfactory approach and solution for
parameterizing QTL effects that contain a POE mode of action,
such as exists for additivity and dominance as described in
Eq 4 and 5 as well as in Tables S1 and S2, which ultimately
limits the ability of DIDACT to make power calculations for
RBCPO as described in Figure 1C. However, it is possible for
DIDACT to characterize the utility in terms of predicted BC, but
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with the maternal and paternal identities fixed as in the RBCPO.
Though the power calculation will not correspond to the design
specified in Figure 1C, in which three genetic states are observed
in comparison to two for BC, differences in QTL mapping power
for BC that are equivalent except for the maternal and paternal
statuses of the backcrossed parental strain and F1 are potentially
interesting, shown in Figure S3 for cHGB.

RBCPO that have markedly different posterior contrasts can
identify pairings of strains with interesting combinations strain-
level maternal effects in Figure 6B. The BayesDiallel model esti-
mates several suggestive strain-level maternal effects, primarily
AJ and B6, suggesting that different RBCPO may have varying
posterior contrasts. For example B6 (A⇡) ⇥ PWK (B⇢) is ranked
50th compared to 13th for B6 (A⇢) ⇥ PWK (B⇡) (Figure S3).
More work is needed to formally extend analytical expressions
of QTL mapping power to RBCPO, but posterior utility can still
be used to highlight interesting crosses based on the diallel data.

Discussion

DIDACT represents an approach to selecting experiments us-
ing the information contained within diallel crosses. In this
approach, the diallel cross is used as pilot data to characterize
strain-level genetic effects within a Bayesian hierarchical model,
which are then applied to utility functions for the purposes
of identifying promising bi-parental crosses for mapping QTL.
Herein, we define utility to be QTL mapping power, though
other functions could be used, such as phenotype contrasts, so
long as the strain-level effects are their inputs.

Violation of assumptions connecting strain-level effect to QTL

effect

DIDACT requires assumptions to connect the strain-level diallel
effects to experimental design-relevant utility functions. How
easily these spaces are connected will vary with the complexity
of the phenotype. DIDACT performs well in a mostly Mendelian
phenotype in which the strain-level effects can be correctly at-
tributed to a single putative QTL. However, phenotypes that are
highly heritable can be modulated through many loci, often with
few to none exhibiting large effects, height in humans being a
clear example (Wood et al. 2014). In the vast majority of complex
traits, the assumption of a single QTL absorbing all or most of
the strain-level effects is wildly optimistic. However, we posit
that though the assumption is unlikely, its use as a utility func-
tion can still produce a useful analysis of potential bi-parental
crosses.

The power utility function used in DIDACT favors QTL that
explain a large proportion of the variability in the phenotype. In
fact, the power function corresponds closely to the variability
explained by the putative QTL, which will relate to the variabil-
ity explained by strain identity in the diallel in the context of
complex but heritable phenotypes. Alternatively, the phenotype
contrasts could be used as the utility function instead. Though
the interpretation of the posterior utility as an accurate power
is unrealistic, it will still select pairings that are phenotypically
distinct, which is a common criterion for selecting crosses. And,
it will do so in a highly principled approach that intuitively
accounts for uncertainty.

Genetic similarity of strains

DIDACT, in its current form, does not make use of any infor-
mation regarding the similarity of the parental strains included
in the diallel cross, which could further inform how appealing

an experimental cross is for fine-mapping detected QTL. The
reduced complexity cross (RCC) is a developing approach in
systems genetics (Williams and Williams 2017) in which strains
that are phenotypically divergent but genetically similar are
crossed, such as C57BL/6J and C57BL/6N sub-strains (Khisti
et al. 2006; Mulligan et al. 2008; Kumar et al. 2013; Simon et al.

2013; Kirkpatrick and Bryant 2014). RCC provide a powerful tool
for fine-mapping causal variants because the genetic variability
between strains is greatly reduced.

There are a number of ways that DIDACT could be modi-
fied to incorporate genetic similarity information, probably most
simply through the utility function. The utility function could
be expanded to flexibly weight potential experimental crosses
by the genetic similarity, resulting in posterior utilities that are
informed by both phenotype and genetic similarity. We believe
this highlights the potential of DIDACT, and its underlying con-
cept in general, to be flexible to the context of the experimental
system, at the hierarchical model, but particularly at the utility
function.

Extension to multiparental populations

The DIDACT analyses presented here are from diallel crosses of
the CC founders, which naturally poses the question of design-
ing experiments of the CC strains based on their related diallel
data. The CC population represents a multiparental population
(MPP), in which each individual is descended from all of the
founder strains. Extending DIDACT to experiments of an MPP
RI panel is challenging because the analytical power calculations
(Sen et al. 2005, 2007) are based on bi-parental populations with
two founder alleles. Though these could be generalized to pop-
ulations with multiple alleles, the CC strains also differ from
traditional mapping crosses in that the recombination events
that randomize segments of the genome to allow for QTL map-
ping have already occurred in the breeding scheme that derived
the inbred strains.

Maybe a more natural approach to extending DIDACT to
an MPP RI panel would be to consider the MPP RI panel as a
large sparse diallel, with off-diagonal cells representing the F1
hybrids, in the case of the CC, these would be CC-RIX (Bogue
et al. 2015). DIDACT could then be adapted to select potentially
interesting but unobserved CC-RIX based on the CC-specific
strain-level effects. Effectively adapting DIDACT for design of
MPP experiments is an area of interest for future research.

Summary

DIDACT is a novel approach to using prior collected diallel data
from a panel of inbred strains to inform the selection of potential
downstream experiments according to a user-specified utility
function, in our case, power to map QTL in bi-parental cross
experiments, consisting of F2, BC, and RBCPO. The core of this
approach is to propagate the uncertainty present in the Bayesian
hierarchical model through to the utility functions, which can be
customized to the needs and constraints of the system at hand.

As proof of principle, we evaluated DIDACT in a phenotype
known to be Mendelian: resistance to IAV-infection, which is
largely modulated by the Mx1 gene with a null (susceptible)
and two non-null (resistant) alleles. DIDACT largely evaluated
bi-parental crosses of null with non-null Mx1 strains as having
higher posterior power to map the QTL. For the non-Mendelian
calculated hemoglobin, DIDACT favors crosses that pair strains
with contrasting phenotypes. Though the posterior power as
utility, in the sense of its nominal interpretation as power, is
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highly optimistic, still provides a reasonable metric for compar-
ing potential experiments, given the available pilot data. This
approach has many potential applications, in terms of both the
utility functions that are being evaluated and the model organ-
ism systems, many which have sparse diallel data available in
the form of strain surveys. DIDACT represents a philosophical
advancement in terms of good experimental design and efficient
use of available resources.
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Appendix A: Prior specification

Following the lead of (Lenarcic et al. 2012), conjugate priors were
used for the parameters in the BayesDiallel model. For example,
the strain-level additive effects are distributed following a ⇠
N(0, t2

a ). For fixed effect terms, such as binbred, t2 is set to 103.
For the variance parameters, consider s2 which is distributed
following s2 ⇠ IG(n/2, y/2). For the hyper parameters n and
y 0.02 and 2 were used, respectively. These represent diffuse
priors, with the intention of allowing the information in the data
to inform the estimates. The hyper parameter values can be
adjusted within DIDACT R package.
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