Using DNA from mothers and children to study parental investment in children's

educational attainment

Jasmin Wertz

Duke University, USA

Terrie E. Moffitt

Duke University, USA & King's College London, UK

Jessica Agnew-Blais and Louise Arseneault

King's College London, UK

Daniel W. Belsky

Columbia University, USA

David L. Corcoran and Renate Houts

Duke University, USA

Timothy Matthews

King's College London, UK

Joseph A. Prinz, Leah S. Richmond-Rakerd, Karen Sugden and Benjamin Williams

Duke University, USA

Avshalom Caspi

Duke University, USA & King's College London, UK

Correspondence concerning this article should be addressed to Jasmin Wertz, Department of

Psychology & Neuroscience, Duke University Box 104410, Durham, NC, 27708, USA

Email: jasmin.wertz@duke.edu

Running head: USING DNA TO STUDY PARENTAL INVESTMENT

ABSTRACT

This study tested implications of new genetic discoveries for understanding the association between parental investment and children's educational attainment. A novel design matched genetic data from 860 British mothers and their children with home-visit measures of parenting: the E-Risk Study. Three findings emerged. First, both mothers' and children's educationassociated genetics, summarized in a genome-wide polygenic score, predicted parenting -- a gene-environment correlation. Second, accounting for genetic influences slightly reduced associations between parenting and children's attainment -- indicating some genetic confounding. Third, mothers' genetics influenced children's attainment over and above genetic mother-to-child transmission, via cognitively-stimulating parenting -- an environmentallymediated effect. Findings imply that, when interpreting parents' effects on children, environmentalists must consider genetic transmission, but geneticists must also consider environmental transmission.

Running head: USING DNA TO STUDY PARENTAL INVESTMENT

Parents devote a great deal of time and effort to ensuring their children's educational success. They read to their children, buy educational toys, monitor their children's schoolwork and enrol them in enriching classes and extracurricular activities. Such parental investment is partly motivated by the belief that what parents do is crucial for children's educational success. However, this belief has not gone unchallenged. In popular books, pundits have questioned the importance of parental influence (Harris, 1998; Rowe, 1993) and lamented psychology's focus on nurture over nature in shaping developmental outcomes (Pinker, 2002). In scientific journals, discussions continue about the relevance of parenting for children's outcomes (Sherlock & Zietsch, 2018; Waldinger & Schulz, 2018). The debate about parental influences on children's attainments has been fuelled by three lines of evidence from behavioral genetics research. First, genetic influences have been documented for all traits and behaviors, including children's educational attainment (Asbury & Plomin, 2014; Polderman et al., 2015). Second, children's genetics influence the parenting they receive. This is most apparent in research reporting greater similarity in received parenting among genetically identical versus non-identical twin children (Avinun & Knafo, 2014; Neiderhiser et al., 2004; Riemann, Kandler, & Bleidorn, 2012). Influences of children's genetics on their received parenting come about because characteristics of children that are partly heritable elicit differences in parenting -- an 'evocative' geneenvironment correlation (Plomin & Bergeman, 1991). Third, parents' genetics influence the parenting they provide. This is most apparent in research documenting greater similarity in how identical versus non-identical adult twins parent their offspring (Klahr & Burt, 2014; Neiderhiser et al., 2004). Parents' genetics influence parenting because parenting partly reflects personal characteristics that are themselves heritable. Parents' genetic influence on their parenting creates an 'active' gene-environment correlation from the perspective of the parent (because parents'

Running head: USING DNA TO STUDY PARENTAL INVESTMENT

genes will be correlated with the parenting they provide) and a 'passive' gene-environment correlation from the perspective of the child (because children will inherit genes that are correlated with the parenting to which they are exposed) (Plomin, DeFries, & Loehlin, 1977).

Gene-environment correlations in child development complicate the interpretation of socialization research (Scarr & McCartney, 1983). In particular, they raise the possibility that genetic influences confound associations between parenting and children's educational attainment. This would be the case if genes that influence children's educational attainment also affect the kind of parenting that is linked with educational success. Confounding could occur if parents' education-associated genetics shape their parenting and are also passed on to their children in whom they influence children's educational attainment. Confounding could also occur if children's education-associated genetics influence both the parenting they receive and their educational attainment. In both of these scenarios, associations between parenting and children. Instead, parenting may merely be a marker of children's or parents' education-associated genetic predisposition; in theory, it is possible that parenting lacks any environmental effects on children's educational attainment of its own (Knafo & Jaffee, 2013; Moffitt, 2005). This possibility can be summarized as 'genetic confounding'.

However, gene-environment correlations do not necessarily lead to confounding. Another possibility is that the portion of parenting that is genetically influenced still affects children's educational attainment. This would be the case if parents' genetics influenced how they parent, and parenting subsequently affects children's educational attainment through environmental ways. Recent research has provided evidence supporting this possibility, showing that education-associated alleles of parents influence their children's educational success, even if those alleles

Running head: USING DNA TO STUDY PARENTAL INVESTMENT

are not passed on from parent to child (Bates et al., 2018; Kong et al., 2018). This research ruled out genetic confounding by isolating the effects of parents' education-associated alleles that were non-transmitted, i.e. not passed on to children. The findings suggest that parents' genetics influence children's educational outcomes via environments parents create. This possibility has been referred to as 'genetic nurture' (Kong et al., 2018). It implies that treating genetics as only a confounding influence on associations between parenting and child outcomes may leave behavioral scientists with an incomplete account of parenting effects on child development.

Here we used a novel design to test gene-environment correlations, genetic confounding and genetic nurture. Our design offers two innovative components. First, we computed genomewide polygenic scores for both mothers and their children using genotype data that we collected from both generations. These families are participating in the Environmental Risk (E-Risk) Longitudinal Twin Study, a UK-based cohort study. Polygenic scores are derived from genomewide association studies (GWAS; Visscher et al., 2017) and aggregate millions of genetic variants across the genome into a score that indicates part of a person's genetic disposition to a particular trait or behavior (Dudbridge, 2013). Because the focus of this study is on parenting in relation to the outcome of children's educational attainment, we calculated polygenic scores based on recent GWAS of educational attainment (Lee et al., 2018). The second design innovation was that we matched molecular-genetic data with extensive measures of mothers' parenting that we collected in four successive family home visits during the first 12 years of children's lives. Parenting measures were derived from multiple reporters: mothers, interview staff, and children themselves. We focused on aspects of parenting that have been shown to predict children's educational attainment: cognitive stimulation; warm, sensitive parenting; low household chaos; and a safe, tidy home (Davis-Kean, 2005; Garrett-Peters, Mokrova, Vernon-

Running head: USING DNA TO STUDY PARENTAL INVESTMENT

Feagans, Willoughby, & Pan, 2016; Spera, 2005). We measured children's educational attainment at age 18 years.

We used these data to test three hypotheses, as illustrated in Figure 1. First, we tested for the presence of gene-environment correlations. We did this by testing whether mothers' education polygenic scores predicted the parenting they provided (Figure 1, Path a) and whether children's polygenic scores predicted the parenting they received (Figure 1, Path b). Because mothers share genetics with their children (Figure 1, Path c), genetic associations with parenting could either reflect active gene-environment correlations between mothers' genetics and parenting or evocative gene-environment correlations between children's genetics and parenting. To disentangle active from evocative gene-environment correlation, we tested whether mothers' polygenic scores predicted parenting after adjusting for children's polygenic scores (indicating active gene-environment correlation) and whether whether children's polygenic scores predicted parenting after adjusting for mothers' polygenic scores (indicating evocative gene-environment correlation). A finding of positive gene-environment correlations would indicate that educationassociated genetics shape the parenting mothers provide and children receive.

Second, we tested for the presence of genetic confounding. We did this by testing whether associations between parenting and children's educational attainment (Figure 1, Path d) reduce when controlling for children's education polygenic scores. Genetic confounding as measured using the education polygenic score is possible (a) if mothers' polygenic scores influence their parenting (Figure 1, path a) and the same genetics are passed on to children (Figure 1, path c) in whom they influence educational attainment (Figure 1, path f), or (b) if children's polygenic scores both evoke the parenting they receive (Figure 1, path b) and also influence their educational attainment (Figure 1, path f). We therefore controlled for children's

Running head: USING DNA TO STUDY PARENTAL INVESTMENT

polygenic scores to (a) control for education-associated genetics that influence parenting in the parent generation and that are passed on to children and (b) control for education-associated genetics in the child generation that evoke parenting (we did not additionally control for mothers' education polygenic scores because confounding from mothers' genetics can only arise if these genetics are passed on to children). Controlling for children's polygenic scores does not entirely rule out genetic confounding, because the education polygenic score measures only a portion of all genetic influences on education. However, a finding that the association between parenting and children's education reduces after controlling for children's education polygenic score would support the hypothesis of genetic confounding, i.e. that parenting and children's educational attainment are partly influenced by the same underlying genetic disposition.

Third, we tested for the presence of genetic nurture. We did this by testing whether mothers' polygenic scores predicted their children's educational attainment (Figure 1, path e). We tested this association controlling for children's own polygenic scores, because mothers' polygenic scores may predict children's attainment simply due to mothers passing on genes to their children (Figure 1, path c*f). We previously reported in the E-Risk cohort that mothers' polygenic scores predicted their children's attainment over and above children's own polygenic scores (Belsky et al., 2018). Here we directly tested the hypothesis that the parenting provided by mothers could explain this link between mothers' polygenic scores and their children's educational attainment (Figure 1, paths a*d). A finding that parenting explains the association would indicate that parental genetics affect children's attainment independently of genetic transmission, via creating environments that influence children's educational outcomes.

Running head: USING DNA TO STUDY PARENTAL INVESTMENT

In summary, the goal of this article is to integrate new genetic discoveries into

developmental psychology in order to test how genetics of both mothers and children influence

the socialization context and children's attainments.

Running head: USING DNA TO STUDY PARENTAL INVESTMENT

METHODS

Participants

Participants were members of the Environmental Risk (E-Risk) Longitudinal Twin Study, which tracks the development of a birth cohort of 2.232 British children (Moffitt & E-Risk Study Team, 2002). Briefly, the E-Risk sample was constructed in 1999-2000, when 1,116 families (93% of those eligible) with same-sex 5-year-old twins participated in home-visit assessments. This sample comprised 56% monozygotic (MZ) and 44% dizygotic (DZ) twin pairs; sex was evenly distributed within zygosity (49% male). The study sample represents the full range of socioeconomic conditions in Great Britain, as reflected in the families' distribution on a neighborhood-level socioeconomic index (ACORN [A Classification of Residential Neighborhoods], developed by CACI, Inc., for commercial use) (Odgers, Caspi, Russell, et al., 2012; Odgers, Caspi, Bates, Sampson, & Moffitt, 2012): 25.6% of E-Risk families live in "wealthy achiever" neighborhoods, compared with 25.3% nationwide; 5.3% compared with 11.6% in "urban prosperity" neighborhoods; 29.6% compared with 26.9% in "comfortably off" neighborhoods; 13.4% compared with 13.9% in "moderate means" neighborhoods; and 26.1% compared with 20.7% in "hard-pressed" neighborhoods. "Urban prosperity" families are underrepresented in E-Risk because such households are often childless.

Home visits were subsequently conducted when the children were aged 7 (98% participation), 10 (96%), 12 (96%), and at 18 years (93%). At age 18, 2,066 participants were assessed, each twin by a different interviewer. There were no differences between those who did and did not take part at age 18 in terms of socioeconomic status (SES) assessed when the cohort was initially defined (χ 2=0.86, p=0.65), age-5 IQ scores (t=0.98, p=0.33), age-5 behavioral or emotional problems (t=0.40, p=0.69 and t=0.41, p=0.68, respectively). The Joint South London and Maudsley and the Institute of Psychiatry Research Ethics Committee approved each phase of

Running head: USING DNA TO STUDY PARENTAL INVESTMENT

the study. Parents gave informed consent and twins gave assent between 5-12 years and then informed consent at age 18.

Parenting

We measured aspects of parenting that have previously been shown to predict children's educational attainment: cognitive stimulation; warmth and sensitivity, household chaos (reverse-coded to indicate low household chaos), and safety and tidiness of the family home (Table 1). These aspects of parenting were assessed during home visits conducted at 4 time periods (when the children were aged 5, 7, 10, and 12 years of age) and drew on reports averaged across multiple informants - mothers, children and interview staff – to obtain comprehensive descriptions of the parenting children experienced during the first 12 years of their lives (Table 1). Parenting measures were positively correlated with each other (mean correlation r=.60, range .45-.70, all statistically significant at p<.01).

Children's educational attainment

Children's educational attainment was assessed in the age-18 interview, when children were asked to report their highest educational achievement. Educational attainment was classed following the Qualification and Credit Framework (QCF), a credit-based system used in the UK to assign educational qualifications to a set of ranked levels

(http://www.accreditedqualifications.org.uk/qualifications-and-credit-framework-qcf.html). 18year olds were classed as level 0 if they had no educational qualifications (3.4%); as level 1 if they scored a grade of D-G on their General Certificate of Secondary Education (GCSE) (18.5%); as level 2 if they scored a grade of A*-C (29.3%); and as level 3 if they had achieved or were currently working towards university entrance level qualifications (or equivalent) (48.9%).

Genotyping and imputation

Running head: USING DNA TO STUDY PARENTAL INVESTMENT

We used Illumina HumanOmni Express 24 BeadChip arrays (Versions 1.1 and 1.2; Illumina, Hayward, CA) to assay common single-nucleotide polymorphism (SNP) variation in the genomes of E-Risk participants and their mothers. We imputed additional SNPs using the IMPUTE2 software (Version 2.3.1, https://mathgen.stats.ox.ac.uk/impute/impute_v2.html; Howie, Donnelly, & Marchini, 2009) and the 1000 Genomes Phase 3 reference panel (Abecasis et al., 2012). Imputation was conducted on SNPs appearing in dbSNP (Version 140; http://www.ncbi.nlm.nih.gov/SNP/; Sherry et al., 2001) that were "called" in more than 98% of the samples. Invariant SNPs were excluded. The E-Risk cohort contains monozygotic twins, who are genetically identical; we therefore empirically measured genotypes of one randomly-selected twin per pair and assigned these data to their monozygotic co-twin. Prephasing and imputation were conducted using a 50-million-base-pair sliding window. The resulting genotype databases included genotyped SNPs and SNPs imputed with 90% probability of a specific genotype among European-descent members of the E-Risk cohort. We analyzed SNPs in Hardy- Weinberg equilibrium (p > .01). We restricted our analyses to European-descent study participants because allele frequencies, linkage disequilibrium patterns, and environmental moderators of associations may vary across populations (Martin et al., 2017). Of the N=1,116 E-Risk families, there were n=860 families for whom family members' genetic data could be analyzed, based on mothers and at least one child having genetic data. In families with versus without genetic data there were no differences in parenting, but children's educational attainment tended to be lower among those for whom genetic data was analyzed (p=.05).

Polygenic scoring

Polygenic scoring was conducted following the method described by Dudbridge (Dudbridge, 2013) using PRSice (Euesden, Lewis, & O'Reilly, 2015). Briefly, SNPs reported in

Running head: USING DNA TO STUDY PARENTAL INVESTMENT

the most recent GWAS results released by the Social Science Genetic Association Consortium (Lee et al., 2018) were matched with SNPs in the E-Risk database. For each SNP, the count of education-associated alleles was weighted according to the effect estimated in the GWAS. Weighted counts were averaged across SNPs to compute polygenic scores. We used all matched SNPs to compute polygenic scores irrespective of nominal significance for their association with educational attainment and linkage disequilibrium between SNPs. To control for possible population stratification, we conducted a principal components analysis of our genome-wide SNP database using PLINK v1.9 (Chang et al., 2015). We residualized polygenic scores for the first ten principal components estimated from the genome-wide SNP data. The residualized score was normally distributed and standardized to M=0, SD=1.

Statistical analysis

We used structural equation models for dyads with indistinguishable members (Kenny, Kashy, & Cook, 2006) to test gene-environment correlation, genetic confounding and genetic nurture. In these models, analyses are conducted at the family level while constraining means and corresponding paths for twins to be equal. To test gene-environment correlation, we fitted a model predicting parenting from mothers' and children's education polygenic scores, first each separately, then all together in the same model. To test genetic confounding, we fitted a model predicting children's educational attainment from parenting, and tested whether associations between parenting and educational attainment reduced when accounting for children's polygenic scores. To test genetic nurture, we fitted a model predicting children's educational attainment from mothers' educational attainment from solutions between barentic nurture, we fitted a model predicting children's educational attainment reduced when accounting for children's polygenic scores. To test genetic nurture, we fitted a model predicting children's educational attainment from mothers' educational attainment for predicting children's educational attainment to test effects of mothers' polygenic scores over and above children's own scores. We then added the parenting variables to this genetic-nurture model as mediators. Each parenting variables was

Running head: USING DNA TO STUDY PARENTAL INVESTMENT

initially tested separately, and then all significant mediators were entered together into the same

model. We adjusted for children's sex in all analyses. All measures were standardized to M=0,

SD=1. All analyses were conducted using Mplus version 8.2 (Muthén & Muthén, 1998-2017).

Running head: USING DNA TO STUDY PARENTAL INVESTMENT

RESULTS

Both nature and nurture predict children's educational attainment. As expected, children's education polygenic scores predicted their educational attainment: children with higher polygenic scores completed higher levels of education (β =.24 [95%CI .19, .30], p<.01). Also as expected, parenting predicted children's educational attainment: children exposed to greater cognitive stimulation, more warm, sensitive parenting, less household chaos and a safer, tidier home environment went on to complete more education (estimates ranged from β =.33 for safe, tidy home environment to β =.52 for cognitive stimulation; Figure 2).

Testing gene-environment correlation: Do mothers' and children's education polygenic scores predict parenting? Our results provided evidence for gene-environment correlation. Mothers with higher education polygenic scores provided greater cognitive stimulation and more warm, sensitive parenting, and raised their children in less chaotic and safer, tidier homes (estimates ranged from β =.14 for warm, sensitive parenting to β =.25 for cognitive stimulation; Figure 3). Children with higher polygenic scores also received more cognitive stimulation and more warm, sensitive parenting, and were raised in less chaotic and safer, tidier homes (estimates ranged from β =.12 for safe, tidy home to β =.21 for cognitive stimulation; Figure 3). As would be expected, mothers' and children's education polygenic scores were correlated (β =.51 [95%CI .46, .56], p<.01), due to mothers passing on genes to their children. We therefore included mothers' and children's education polygenic scores in the same models in order to predict each of the parenting behaviours. In these models, mothers' education polygenic scores predicted all aspects of parenting independently of their children's polygenic scores, indicating active geneenvironment correlations between mothers' genetics and parenting (Figure 3). In addition, children's polygenic scores predicted cognitive stimulation and warm, sensitive parenting

Running head: USING DNA TO STUDY PARENTAL INVESTMENT

independently of their mothers' polygenic scores, indicating evocative gene-environment correlations between children's genetics and these aspects of parenting. Children's polygenic scores did not predict household chaos or the safety and tidiness of the home independently of their mothers' polygenic scores, indicating that these aspects of parenting are shaped more by mothers' than children's education-associated genetics (Figure 3).

Testing genetic confounding: Do genetic influences confound associations between parenting and children's education? Our results provided modest evidence for genetic confounding. Without controlling for genetics, children exposed to greater cognitive stimulation, more warm, sensitive parenting, less household chaos and a safer, tidier home environment went on to complete more education (estimates ranged from β =.33 for safe, tidy home environment to β =.52 for cognitive stimulation; Figure 2). Controlling for genetics led to a significant reduction of these associations, by approximately 7%, but the attenuations were small and parenting continued to be a statistically significant predictor of educational attainment. These findings indicate that genetic influences, as captured by the education polygenic score, account for only a small part of the reason for why parenting predicts children's educational attainment.

Testing genetic nurture: How do maternal genetics and parenting combine to influence children's education? Our findings provided evidence for genetic nurture. We first tested whether mothers' education polygenic scores predicted their children's educational attainment; this was the case (β =.23 [95%CI .17, .29], p<.01). The association was not simply due to mothers passing on education-associated genetics to their children; mothers' education polygenic scores predicted their children's own polygenic scores (β =.12 [95%CI .05, .19], p<.01). This finding suggests the hypothesis that mothers' education-associated genetics that affect children's attainments independently

Running head: USING DNA TO STUDY PARENTAL INVESTMENT

of mother-child genetic transmission. We tested this hypothesis by adding measures of parenting to the analysis model. Of the four parenting measures, three (cognitive stimulation, household chaos, and a safe, tidy home) emerged as statistically significant mediators (Table 2). Cognitive stimulation on its own accounted for approximately 75% of the association between maternal genetics and children's educational attainment. Low household chaos and a safe, tidy home each mediated approximately 42% and 25% of the association, respectively, but in a model containing cognitive stimulation, only low household chaos accounted for a small portion of additional covariance beyond cognitive stimulation. These findings indicate that mothers' education polygenic scores influence their children's attainment via mothers' parenting, particularly the extent of cognitive stimulation mothers provided to their children.

Running head: USING DNA TO STUDY PARENTAL INVESTMENT

DISCUSSION

The investments parents make to raise their offspring are thought to be a major contributor to children's educational success, making parental investment a cornerstone of psychological, sociological, and economic models that seek to explain how educational inequalities are created and perpetuated (Cheng, Johnson, & Goodman, 2016; Feinstein, Duckworth, & Sabates, 2004; Kalil, 2015). However, findings from behavior-genetic studies have challenged causal interpretations of parental influence by showing genetic influences on parenting; a gene-environment correlation. Here we tested implications of gene-environment correlations for parental investment in children's educational attainment using a novel design: In a prospective-longitudinal study, we collected genotype data from both mothers and children and matched these genetic data with home-visit measures of parenting behavior. We report three main findings.

First, we found evidence for gene-environment correlations. Both mothers' and children's education-associated genetics, summarized in genome-wide polygenic scores, predicted the kind of parenting that is known to be linked with children's later educational success. By collecting genetic data from both mothers and their offspring we were able to show that different forms of gene-environment correlations operate in the same family, at the same time. Active- and evocative gene-environment correlations were both implicated in the cognitive stimulation and the warm, sensitive parenting that children experienced. In addition, active gene-environment correlations were also implicated in the kinds of households (chaotic, safe, tidy) in which children grew up. Second, we found evidence for slight genetic confounding. The estimated effects of mothers' parenting on children's educational attainment were significantly reduced after accounting for education-associated genetics, consistent with a view of genes as

Running head: USING DNA TO STUDY PARENTAL INVESTMENT

confounding part of the link between parenting and child attainment. However, the magnitude of the confounding was small. Third, we found evidence for genetic nurture. Parenting behavior -- particularly mothers' cognitive stimulation of their children -- explained why mothers' genetics influenced their children's educational attainment (over and above genetic transmission from mother to child). This finding extends recent reports of associations between parental genetics and children's educational attainment (Bates et al., 2018; Belsky et al., 2018; Kong et al., 2018; Liu, 2018) by showing, for the first time, that parents' education-associated genetics actively shape features of the family environment that influence the next generation's educational success.

Our findings need to be interpreted in light of several limitations. First, our approach to estimating genetic nurture relies on the assumption that mothers' and children's polygenic scores are measured with identical error (Belsky et al., 2018). To the extent that this assumption is violated, our estimates of genetic nurture could be upwardly or downwardly biased, depending on whether error is greater in mothers' versus children's polygenic scores. However, the assumption is probably defensible, because mothers' and children's polygenic scores are identical measurements, i.e. sums of the same genotypes transformed using the same weights. Second, although the education polygenic score that we used is based on the largest-ever social-science GWAS, a limitation of this GWAS is that it still reflects only a portion of all genetic influences on educational attainment (approximately one third) (Lee et al., 2018). To the extent that the polygenic score is an underestimate of the total genetic influence on educational attainment, our estimates of gene-environment correlations, genetic confounding, and possibly genetic nurture are likely to be underestimates of the true effects. At this point, our findings provide 'proof-of-principle' of these processes, and the implications they raise can continue to be

Running head: USING DNA TO STUDY PARENTAL INVESTMENT

tested as refined polygenic scores become available. Third, we tested genetic confounding and genetic nurture only for children's educational attainment, not for other child outcomes. We focused on educational attainment because it is a central determinant of future health, wealth and wellbeing (Cutler & Lleras-Muney, 2010; Hout, 2012; Oreopoulos & Salvanes, 2011), and because the polygenic score for educational attainment is based on the largest GWAS of a socialbehavior phenotype (Lee et al., 2018). To the extent that other developmental outcomes are both genetically-influenced and associated with parenting, processes of genetic confounding and genetic nurture will likely be present as well. As increasingly-larger GWAS are conducted for more developmental outcomes, the same design we present here can be used to test genetic confounding and genetic nurture for these outcomes. Fourth, we did not have genetic data from fathers, which means that we were unable to control for fathers' education polygenic scores when estimating associations between mothers' and children's education polygenic scores and parenting. To the extent that fathers' genes are correlated with parenting, the associations we observed in our study may therefore partly reflect effects of fathers' genetics, because fathers' and children's genes are correlated (due to genetic inheritance) and because mothers and fathers' genetics may be correlated (due to assortative mating, i.e. the tendency to select partners with characteristics similar to one's own). Against this background, we conclude by discussing the implications of our findings about (a) gene-environment correlations, (b) genetic confounding, and (c) genetic nurture for a more thorough understanding of the developmental processes that shape children's attainment.

Our findings of gene-environment correlation replicate and extend our prior work on genetic associations with parenting (Wertz et al., submitted). We replicated findings from a previous analysis in a New Zealand cohort, in which we showed that parents' education-

Running head: USING DNA TO STUDY PARENTAL INVESTMENT

associated genetics shape the warm, sensitive, stimulating parenting they provide to their children (Wertz et al., submitted). Here we report the same pattern of results in an independent cohort of British mothers, indicating that genetic correlations with parenting are robust against differences in context and measurements of parenting. We extend this prior work by incorporating children's polygenic scores in our analyses, finding that children's education-associated genetics shape the parenting they receive. Together with other recent studies (Dobewall et al., 2018; Krapohl et al., 2017; Selzam et al., 2018), these findings provide molecular-genetic evidence for a bidirectional model of parent-child relations, in which parenting is partly a response to children's characteristics (Bell, 1968; Crouter & Booth, 2003; Pardini, 2008; Sameroff, 2010).

Findings of gene-environment correlations with parenting imply that family environments children experience while growing up are partly a function of their own and their parents' genetics. For example, we found that children of parents who carried a high number of education-associated variants were exposed to greater cognitive stimulation in the home compared to children of parents who carried fewer of these variants. Because parents and children share genes, family environments shaped by parents' genes will tend to match and reinforce children's genetic dispositions (Knafo & Jaffee, 2013; Scarr & McCartney, 1983; Tucker-Drob & Harden, 2012). Such a match can positively influence children's development; for example, when a child with a high education polygenic score is born into a family that provides cognitive stimulation. However, the same match also implies that a child genetically atrisk for poor educational outcomes will tend not to experience exactly the kind of stimulating and supportive parenting that could make a difference for his or her attainment. Thus, for better and for worse, correlations between genes and environments reduce the availability of

Running head: USING DNA TO STUDY PARENTAL INVESTMENT

experiences that can alter individuals' developmental trajectories. This also applies to the reproduction of educational success across generations. To the extent that educational outcomes are influenced by genetics, genes will tend to be a force for intergenerational stability in educational attainment, both via direct genetic transmission and via indirect effects of genes on caregiving environments that shape future generations' behaviors. This tendency means that is it important to improve children's access to interventions that may be able to break reinforcing links between genes and environments, such as high-quality early learning programs (Heckman, 2006).

Given how much attention critics of parenting effects devote to the possibility of genetic confounding (Harris, 1998; Rowe, 1993; Sherlock & Zietsch, 2018), it may seem surprising that our estimates of genetic confounding were so small. There are two possible explanations for this finding: either genetics do little to confound associations between parenting and children's educational attainment, or we have underestimated the true magnitude of genetic confounding. The observation that polygenic-score associations with educational attainment are substantially lower than heritability estimates of educational attainment (Branigan, McCallum, & Freese, 2013) suggests that our findings most likely underestimate genetic confounding. Currently, even the best and biggest efforts to capture the genetic variants influencing educational attainment are still missing a substantial part of its heritability (Manolio et al., 2009; National Human Genome Research Institute, 2018). Until more of this 'missing heritability' can be accounted for at the molecular genetic level, the safest way to rule out genetic confounding is to continue to use family-based designs such as the discordant-twin design (McGue, Osler, & Christensen, 2010; Vitaro, Brendgen, & Arseneault, 2009), parent-child adoption design (Leve et al., 2013) or children-of-twin design (D'Onofrio et al., 2003), that can estimate associations between

Running head: USING DNA TO STUDY PARENTAL INVESTMENT

parenting and children's educational attainment free from genetic influences shared between parents and children (Turkheimer & Harden, 2014).

Debates about parental influences on children's development tend to contrast the effects of parents' genes -- assumed to influence children via genetic transmission -- with the effects of parenting -- assumed to influence children via environmental ways. Our finding of genetic nurture draws a more nuanced picture, showing that mothers' genes affect children's attainment over and above genetic transmission, via parenting. This finding has three implications. First, over and above a person's own genetics, their development will be shaped by the genomes of significant others. We demonstrate this here for effects of a parents' genetics on children's outcomes, but this observation likely extends beyond parents to everyone who creates environments inhabited by people – family members; individuals residing outside the family context, such as peers and partners (Conley et al., 2016; Domingue et al., 2018); even people a child may be exposed to only indirectly, such as the grandparents who raised a child's parents (Hällsten & Pfeffer, 2017; Kong et al., 2018; Liu, 2018). The existence of a 'social genome' broadens the scope of the study of genetics, from an individual's genes and their effects on an individual's phenotype, to the genome of an individual's social context (Domingue & Belsky, 2017). Second, much has been written about the need to integrate genetics into parenting research and socialization theory, but there is also a need to integrate environments into how to think about and collect genetic data. Correlations between genes and environments are a challenge not only for socialization research, but also for genetics research: Although DNA sequence cannot be modified by the environment, our findings show that environments still pose a threat to causal inference, because associations between a person's DNA and developmental outcomes may partly reflect effects of environments created through genes of other individuals

Running head: USING DNA TO STUDY PARENTAL INVESTMENT

(Kong et al., 2018)). As much as genetic confounding needs to be considered when estimating environmental effects, 'environmental confounding' needs to be taken into account when estimating genetic effects (Krapohl et al., 2017; Young et al., 2018). Third, our findings show that environments are part of the pathway from genotype to phenotype (Kandler & Zapko-Willmes, 2017; Scarr & McCartney, 1983). Specifically, we found that genetic influences on children's educational attainment partly manifested through parenting; an environmentally mediated genetic effect. Combining genetic data with measures of individuals' social environments is key to tracing how genetics affect life outcomes. By joining forces in this way, genetics and socialization researchers will be able to strengthen causal estimates and obtain a more complete understanding of the processes shaping children's attainments.

Running head: USING DNA TO STUDY PARENTAL INVESTMENT

ACKNOWLEDGEMENTS

The Environmental Risk (E-Risk) Longitudinal Twin Study is funded by U.K. Medical Research Council (UKMRC grant G1002190). Additional support was provided by the U.S. National Institute of Child Health and Development (NICHD) grant HD077482 and by the Jacobs Foundation. L. Arseneault is the Mental Health Leadership Fellow for the UK Economic and Social Research Council (ESRC). J. Agnew-Blais is a UK Medical Research Council Skills Development Fellow. D.W. Belsky is supported by an Early-Career Research Fellowships from the Jacobs Foundation. L.S. Richmond-Rakerd is a postdoctoral fellow with the Carolina Consortium on Human Development and the Center for Developmental Science at the University of North Carolina-Chapel Hill. We are grateful to the study mothers and fathers, the twins and the twins' teachers for their participation. Our thanks to members of the E-Risk team for their dedication, hard work and insights.

Running head: USING DNA TO STUDY PARENTAL INVESTMENT

REFERENCES

- Abecasis, G. R., Auton, A., Brooks, L. D., DePristo, M. A., Durbin, R. M., Handsaker, R. E., ... McVean, G. A. (2012). An integrated map of genetic variation from 1,092 human genomes. *Nature*, 491, 56–65. https://doi.org/10.1038/nature11632
- Asbury, K., & Plomin, R. (2014). G is for Genes. Chichester, UK: Wiley-Blackwell.
- Avinun, R., & Knafo, A. (2014). Parenting as a reaction evoked by children's genotype: A metaanalysis of children-as-twins studies. *Personality and Social Psychology Review*, 18, 87– 102. https://doi.org/10.1177/1088868313498308
- Bates, T. C., Maher, B. S., Medland, S. E., McAloney, K., Wright, M. J., Hansell, N. K., ... Gillespie, N. A. (2018). The nature of nurture: Using a virtual-parent design to test parenting effects on children's educational attainment in genotyped families. *Twin Research* and Human Genetics, 21, 73–83. https://doi.org/10.1017/thg.2018.11
- Bell, R. (1968). A reinterpretation of the direction of effects in studies of socialization. *Psychological Review*, 75, 81–95. https://doi.org/10.1037/h0025583
- Belsky, D. W., Domingue, B. W., Wedow, R., Arseneault, L., Boardman, J. D., Caspi, A., ... Harris, K. M. (2018). Genetic analysis of social-class mobility in five longitudinal studies. *Proceedings of the National Academy of Sciences*, 115, E7275–E7284. https://doi.org/10.1073/pnas.1801238115
- Branigan, A. R., McCallum, K. J., & Freese, J. (2013). Variation in the heritability of educational attainment: An international meta-analysis. *Social Forces*, 92, 109–140. https://doi.org/10.2383/28771
- Caldwell, B. M., & Bradley, R. H. (1984). *Home observation for measurement of the environment*. Little Rock, AR: University of Arkansas at Little Rock.
- Caspi, A., Moffitt, T. E., Morgan, J., Rutter, M., Taylor, A., Arseneault, L., ... Polo-Tomas, M. (2004). Maternal expressed emotion predicts children's antisocial behavior problems: using monozygotic-twin differences to identify environmental effects on behavioral development. *Developmental Psychology*, 40, 149–161. https://doi.org/10.1037/0012-1649.40.2.149

Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2015).

Running head: USING DNA TO STUDY PARENTAL INVESTMENT

Second-generation PLINK: Rising to the challenge of larger and richer datasets. *GigaScience*, *4*, 7. https://doi.org/10.1186/s13742-015-0047-8

- Cheng, T. L., Johnson, S. B., & Goodman, E. (2016). Breaking the intergenerational cycle of disadvantage: The three generation approach. *Pediatrics*, 137, e20152467. https://doi.org/10.1542/peds.2015-2467
- Conley, D., Laidley, T., Belsky, D. W., Fletcher, J. M., Boardman, J. D., & Domingue, B. W. (2016). Assortative mating and differential fertility by phenotype and genotype across the 20th century. *Proceedings of the National Academy of Sciences*, *113*, 6647–6652. https://doi.org/10.1073/pnas.1523592113
- Crouter, A. C., & Booth, A. (2003). *Children's influence on family dynamics: The neglected side of family relationships*. Mahway, NJ: Lawrence Erlbaum Associates.
- Cutler, D. M., & Lleras-Muney, A. (2010). Understanding differences in health behaviors by education. *Journal of Health Economics*, 29, 1–28. https://doi.org/10.1016/J.JHEALECO.2009.10.003
- D'Onofrio, B. M., Turkheimer, E. N., Eaves, L. J., Corey, L. A., Berg, K., Solaas, M. H., & Emery, R. E. (2003). The role of the children of twins design in elucidating causal relations between parent characteristics and child outcomes. *Journal of Child Psychology and Psychiatry and Allied Disciplines*, 44, 1130–1144. https://doi.org/10.1111/1469-7610.00196
- Davis-Kean, P. E. (2005). The influence of parent education and family income on child achievement: The indirect role of parental expectations and the home environment. *Journal* of Family Psychology, 19, 294–304. https://doi.org/10.1037/0893-3200.19.2.294
- Dobewall, H., Savelieva, K., Seppälä, I., Knafo-Noam, A., Hakulinen, C., Elovainio, M., ... Hintsanen, M. (2018). Gene-environment correlations in parental emotional warmth and intolerance: genome-wide analysis over two generations of the Young Finns Study. *Journal* of Child Psychology and Psychiatry. https://doi.org/10.1111/jcpp.12995
- Domingue, B. W., & Belsky, D. W. (2017). The social genome: Current findings and implications for the study of human genetics. *PLoS Genetics*, 13, e1006615. https://doi.org/10.1371/journal.pgen.1006615

Domingue, B. W., Belsky, D. W., Fletcher, J. M., Conley, D., Boardman, J. D., & Harris, K. M.

Running head: USING DNA TO STUDY PARENTAL INVESTMENT

(2018). The social genome of friends and schoolmates in the National Longitudinal Study of Adolescent to Adult Health. *Proceedings of the National Academy of Sciences*, *115*, 201711803. https://doi.org/10.1073/pnas.1711803115

- Dudbridge, F. (2013). Power and predictive accuracy of polygenic risk scores. *PLoS Genetics*, *9*, e1003348. https://doi.org/10.1371/journal.pgen.1003348
- Euesden, J., Lewis, C. M., & O'Reilly, P. F. (2015). PRSice: Polygenic Risk Score software. *Bioinformatics*, 31, 1466–1468. https://doi.org/10.1093/bioinformatics/btu848
- Feinstein, L., Duckworth, K., & Sabates, R. (2004). A model of the inter-generational transmission of educational success. London: Centre for Research on the Wider Benefits of Learning.
- Garrett-Peters, P. T., Mokrova, I., Vernon-Feagans, L., Willoughby, M., & Pan, Y. (2016). The role of household chaos in understanding relations between early poverty and children's academic achievement. *Early Childhood Research Quarterly*, 37, 16–25. https://doi.org/10.1016/j.ecresq.2016.02.004
- Hällsten, M., & Pfeffer, F. T. (2017). Grand Advantage: Family wealth and grandchildren's educational achievement in Sweden. *American Sociological Review*, 82, 328–360. https://doi.org/10.1177/0003122417695791
- Harris, J. R. (1998). *The nurture assumption: Why children turn out the way they do*. New York, NY, US: Free Press.
- Heckman, J. J. (2006). Skill formation and the economics of investing in disadvantaged children. *Science*, 312, 1900–1902. https://doi.org/10.1126/science.1128898
- Hout, M. (2012). Social and economic returns to college education in the United States. *Annual Review of Sociology*, *38*, 379–400. https://doi.org/10.1146/annurev.soc.012809.102503
- Howie, B. N., Donnelly, P., & Marchini, J. (2009). A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. *Plos Genetics*, 5, e1000529. https://doi.org/10.1371/journal.pgen.1000529
- Kalil, A. (2015). Inequality begins at home: The role of parenting in the diverging destinies of rich and poor children. In *Families in an Era of Increasing Inequality* (pp. 63–82). Springer,

Running head: USING DNA TO STUDY PARENTAL INVESTMENT

Cham. https://doi.org/10.1007/978-3-319-08308-7 5

- Kandler, C., & Zapko-Willmes, A. (2017). Theoretical perspectives on the interplay of nature and nurture in personality development. In *Personality Development Across the Lifespan* (pp. 101–115). Academic Press. https://doi.org/10.1016/B978-0-12-804674-6.00008-9
- Kenny, D. A., Kashy, D. A., & Cook, W. L. (2006). *Dyadic data analysis*. New York, NY: Guildford.
- Klahr, A. M., & Burt, S. A. (2014). Elucidating the etiology of individual differences in parenting: A meta-analysis of behavioral genetic research. *Psychological Bulletin*, 140, 544–586. https://doi.org/10.1037/a0034205
- Knafo, A., & Jaffee, S. R. (2013). Gene-environment correlation in developmental psychopathology. *Development and Psychopathology*, 25, 1–6. https://doi.org/10.1017/S0954579412000855
- Kong, A., Thorleifsson, G., Frigge, M. L., Vilhjalmsson, B. J., Young, A. I., Thorgeirsson, T. E.,
 ... Stefansson, K. (2018). The nature of nurture: Effects of parental genotypes. *Science*,
 359, 424–428. https://doi.org/10.1126/science.aan6877
- Krapohl, E., Hannigan, L. J., Pingault, J.-B., Patel, H., Kadeva, N., Curtis, C., ... Plomin, R. (2017). Widespread covariation of early environmental exposures and trait-associated polygenic variation. *Proceedings of the National Academy of Sciences*, *114*, 201707178. https://doi.org/10.1073/pnas.1707178114
- Lee, J. J., Wedow, R., Okbay, A., Kong, E., Maghzian, O., Zacher, M., ... Cesarini, D. (2018). Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. *Nature Genetics*, 50, 1112–1121. https://doi.org/10.1038/s41588-018-0147-3
- Leve, L. D., Neiderhiser, J. M., Shaw, D. S., Ganiban, J., Natsuaki, M. N., & Reiss, D. (2013). The early growth and development study: A prospective adoption study from birth through middle childhood. *Twin Research and Human Genetics*, *16*, 412–423. https://doi.org/10.1017/thg.2012.126
- Liu, H. (2018). Social and genetic pathways in multigenerational transmission of educational attainment. *American Sociological Review*, *83*, 278–304.

Running head: USING DNA TO STUDY PARENTAL INVESTMENT

https://doi.org/10.1177/0003122418759651

- Magaña, A. B., Goldstein, M. J., Karno, M., Miklowitz, D. J., Jenkins, J., & Falloon, I. R. H.
 (1986). A brief method for assessing expressed emotion in relatives of psychiatric patients. *Psychiatry Research*, 17, 203–212. https://doi.org/10.1016/0165-1781(86)90049-1
- Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., ... Visscher, P. M. (2009). Finding the missing heritability of complex diseases. *Nature*, 461, 747–753. https://doi.org/10.1038/nature08494
- Martin, A. R., Gignoux, C. R., Walters, R. K., Wojcik, G. L., Neale, B. M., Gravel, S., ... Kenny, E. E. (2017). Human demographic history impacts genetic risk prediction across diverse populations. *American Journal of Human Genetics*, 100, 635–649. https://doi.org/10.1016/j.ajhg.2017.03.004
- McGue, M., Osler, M., & Christensen, K. (2010). Causal inference and observational research: The utility of twins. *Perspectives on Psychological Science*, 5, 546–556. https://doi.org/10.1177/1745691610383511
- Moffitt, T. E. (2005). The new look of behavioral genetics in developmental psychopathology: Gene-environment interplay in antisocial behaviors. *Psychological Bulletin*, *131*, 533–554. https://doi.org/10.1037/0033-2909.131.4.533
- Moffitt, T. E., & E-Risk Study Team. (2002). Teen-aged mothers in contemporary Britain. *Journal of Child Psychology and Psychiatry*, 43, 727–742.
- Muthén, L. K., & Muthén, B. O. (n.d.). *Mplus User's Guide. Eighth Edition*. Los Angeles, CA: Muthén & Muthén.
- National Human Genome Research Institute. (2018). *Revisiting the missing heritability of complex diseases, ten years on*. Silver Spring, Maryland.
- Neiderhiser, J. M., Reiss, D., Pedersen, N. L., Lichtenstein, P., Spotts, E. L., Hansson, K., ...
 Ellhammer, O. (2004). Genetic and environmental influences on mothering of adolescents:
 A comparison of two samples. *Developmental Psychology*, 40, 335–351.
 https://doi.org/10.1037/0012-1649.40.3.335

Odgers, C. L., Caspi, A., Bates, C. J., Sampson, R. J., & Moffitt, T. E. (2012). Systematic social

Running head: USING DNA TO STUDY PARENTAL INVESTMENT

observation of children's neighborhoods using Google Street View: A reliable and costeffective method. *Journal of Child Psychology and Psychiatry, and Allied Disciplines*, *53*, 1009–1017. https://doi.org/10.1111/j.1469-7610.2012.02565.x

- Odgers, C. L., Caspi, A., Russell, M. A., Sampson, R. J., Arseneault, L., & Moffitt, T. E. (2012). Supportive parenting mediates neighborhood socioeconomic disparities in children's antisocial behavior from ages 5 to 12. *Development and Psychopathology*, 24, 705–721. https://doi.org/10.1017/S0954579412000326
- Oreopoulos, P., & Salvanes, K. G. (2011). Priceless: The nonpecuniary benefits of schooling. *Journal of Economic Perspectives*, 25, 159–184. https://doi.org/10.1257/jep.25.1.159
- Pardini, D. A. (2008). Novel insights into longstanding theories of bidirectional parent-child influences: introduction to the special section. *Journal of Abnormal Child Psychology*, 36, 627–631. https://doi.org/10.1007/s10802-008-9231-y
- Pinker, S. (2002). *The blank slate: The modern denial of human nature*. New York City, NY: Penguin Books.
- Plomin, R., & Bergeman, C. S. (1991). The nature of nurture: Genetic influence on environmental measures. *Behavioral and Brain Sciences*, 14, 373–386. https://doi.org/10.1017/S0140525X00070278
- Plomin, R., DeFries, J. C., & Loehlin, J. C. (1977). Genotype-environment interaction and correlation in the analysis of human behavior. *Psychological Bulletin*, 84, 309–322. https://doi.org/http://dx.doi.org/10.1037/0033-2909.84.2.309
- Polderman, T. J. C., Benyamin, B., de Leeuw, C. A., Sullivan, P. F., van Bochoven, A., Visscher,
 P. M., & Posthuma, D. (2015). Meta-analysis of the heritability of human traits based on
 fifty years of twin studies. *Nature Genetics*, 47, 702–709. https://doi.org/10.1038/ng.3285
- Riemann, R., Kandler, C., & Bleidorn, W. (2012). Behavioral genetic analyses of parent twin relationship quality. *Personality and Individual Differences*, 53, 398–404. https://doi.org/10.1016/j.paid.2012.02.022
- Rowe, D. C. (1993). *The limits of family influence: Genes, experience, and behavior*. New York City, NY: The Guildford Press.

Running head: USING DNA TO STUDY PARENTAL INVESTMENT

- Sameroff, A. (2010). A unified theory of development: A dialectic integration of nature and nurture. *Child Development*, *81*, 6–22. https://doi.org/10.1111/j.1467-8624.2009.01378.x
- Scarr, S., & McCartney, K. (1983). How people make their own environments : A theory of genotype → environment effects. *Child Development*, *54*, 424–435.
- Selzam, S., McAdams, T. A., Coleman, J. R. I., Carnell, S., O'Reilly, P. F., Plomin, R., & Llewellyn, C. H. (2018). Evidence for gene-environment correlation in child feeding: Links between common genetic variation for BMI in children and parental feeding practices. *BioRxiv*, 407221. https://doi.org/10.1101/407221
- Sherlock, J. M., & Zietsch, B. P. (2018). Longitudinal relationships between parents' and children's behavior need not implicate the influence of parental behavior and may reflect genetics: Comment on Waldinger and Schulz (2016). *Psychological Science*, 29, 154–157. https://doi.org/10.1177/0956797617717041
- Sherry, S. T. (2001). dbSNP: The NCBI database of genetic variation. *Nucleic Acids Research*, 29, 308–311. https://doi.org/10.1093/nar/29.1.308
- Spera, C. (2005). A review of the relationship among parenting practices, parenting styles, and adolescent school achievement. *Educational Psychology Review*, 17, 125–146. https://doi.org/10.1007/s10648-005-3950-1
- Tucker-Drob, E. M., & Harden, K. P. (2012). Early childhood cognitive development and parental cognitive stimulation: Evidence for reciprocal gene-environment transactions. *Developmental Science*, 15, 250–259. https://doi.org/10.1111/j.1467-7687.2011.01121.x
- Turkheimer, E., & Harden, K. P. (2014). Behavior genetic research methods. In H. T. Reiss & C.
 M. Judd (Eds.), *Handbook of Research Methods in Social and Personality Psychology* (pp. 159–187). New York, NY: Cambridge University Press.
- Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I., Brown, M. A., & Yang, J. (2017). 10 years of GWAS discovery: Biology, function, and translation. *American Journal* of Human Genetics, 101, 5–22. https://doi.org/10.1016/j.ajhg.2017.06.005
- Vitaro, F., Brendgen, M., & Arseneault, L. (2009). The discordant MZ-twin method: One step closer to the holy grail of causality. *International Journal of Behavioral Development*, 33, 376–382. https://doi.org/10.1177/0165025409340805

Running head: USING DNA TO STUDY PARENTAL INVESTMENT

- Waldinger, R., & Schulz, M. (2018). The Blind Psychological Scientists and the Elephant: Reply to Sherlock and Zietsch. *Psychological Science*, 29, 158–160. https://doi.org/10.1177/0956797617740686
- Young, A. I., Frigge, M. L., Gudbjartsson, D. F., Thorleifsson, G., Bjornsdottir, G., Sulem, P., ... Kong, A. (2018). Relatedness disequilibrium regression estimates heritability without environmental bias. *Nature Genetics*, 50, 1304–1310. https://doi.org/10.1038/s41588-018-0178-9

Measure	Age	Informant	Format	Example items/statements
Cognitive stimulation				
Activities with mother	5	Mother	12 items with 'yes'/'no' responses, reliability ¹ α =.59	'Have you and the children visited a zoo?' 'been to a park?'
Child stimulation	7, 10, 12	Interviewer	6 items from the HOME ² , with 'yes'/'a little''/no' responses, mean reliability α =.77	'Do the children have toys and puzzles?' 'Do the children have books?'
Warm, sensitive parenting	<u>r</u>			
Parental warmth	5, 10	Mother	5-minute speech sample ³ , interrater agreement κ =.90	"She is a delight, she is so happy, I love taking her out, she is my ray of sunshine"
Parental dissatisfaction	5, 10	Mother	5-minute speech sample ³ , interrater agreement κ =.84	"I wish I had never had her she's a cow, I hate her."
Positive parenting	7, 10	Interviewer	5 items from the HOME ² , with 'yes'/'a little''/no' responses, mean reliability $\alpha = .82$	'Is the parent affectionate to the child?' 'Does the parent display warmth toward the child?'
Negative parenting	7, 10	Interviewer	7 items from the HOME ² , with 'yes'/'a little''/no' responses, mean reliability α =.77	'Is the parenting of the child overly strict?' 'Is the parent controlling towards the child?'
Household chaos (reverse	-coded)			
Interviewer report	7, 10, 12	Interviewer	3 items from the HOME ² , with 'yes'/'a little'/no' responses, reliability α =.56	"Is the house chaotic or overly noisy?"
Mother and child report	12	Mother, child	12 items with 'not'/'somewhat'/'very often or often true' responses, mean reliability $\alpha = .77$	"You can hardly hear yourself think in our home" "We are always losing things at home"
Safe, tidy home			2	C
	5, 7, 10, 12	Interviewer	2-4 items (depending on age) with 'yes'/'a little'/no' responses, mean reliability α =.79	'Did the home or flat appear safe?' 'Are visible rooms of the house clean?'

Table 1. Description of parenting measures.

¹ Internal consistency reliability (Cronbach's alpha). ² Home Observation for Measurement of the Environment (HOME) (Caldwell & Bradley, 1984). ³ Using procedures adapted from the Five Minute Speech Sample method (Magaña et al., 1986) as described previously (Caspi et al., 2004).

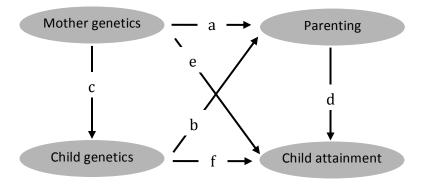

	Parenting						
	Cognitive	Warm, sensitive	Low household	Safe, tidy home	All significant ²		
	stimulation	parenting	chaos		mediators together		
	Estimate $(95\% \text{ CI})^1$	Estimate (95% CI)	Estimate (95% CI)	Estimate (95% CI)	Estimate (95% CI)		
Total effect	.12 (.05, .19)	.12 (.05, .19)	.12 (.05, .19)	.12 (.05, .19)	.12 (.05, .19)		
Direct effect	.03 (03, .09)	.10 (.03, .16)	.07 (.01, .14)	.09 (.03, .16)	.03 (03, .09)		
Total indirect effect	.09 (.05, .13)	.02 (.00, .04)	.05 (.01, .08)	.03 (.01, .06)	.09 (.05, .13)		
% Mediation	75%	17%	42%	25%	75%		

Table 2. Genetic nurture: Parenting mediates associations between mothers' education polygenic scores and their children's educational attainment independently of children's polygenic scores.

¹ Indicates standardized estimates of total, direct and indirect effects in mediation models. CI=confidence intervals. Bolded estimates indicate statistically significant effects.

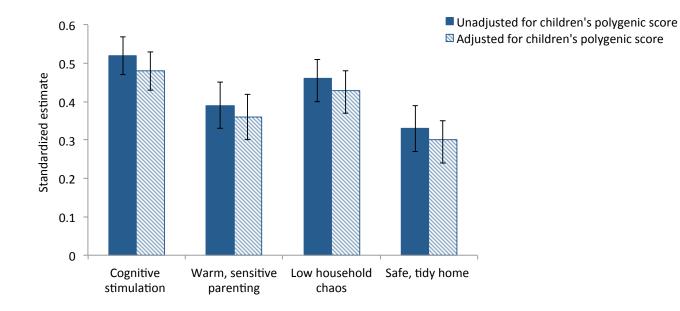

² Model includes cognitive stimulation, low household chaos and safe, tidy home.

Figure 1. How do mothers' and children's education-associated genetics influence parenting and child attainment? Testing gene environment correlation, genetic confounding and genetic nurture.

Note: Gene-environment correlations would be indicated by a prediction from mothers' education-associated genetics to the parenting they provide (path a), or from children's education-associated genetics to the parenting they receive (path b). Genetic confounding would be indicated by a reduction of the link between parenting and child attainment (path d) once child genetics are controlled for. Genetic nurture would be indicated by a prediction from mothers' education-associated genetics to child attainment (path e) over and above genetic transmission of genetics that affect child attainment (paths c*f). Some of this effect may be mediated through the parenting parents provide (paths a*d).

Figure 2. Genetic confounding: Controlling for children's polygenic scores slightly reduces the prediction from parenting to children's educational attainment.

Note: The bars indicate the estimate (expressed as standardized regression coefficients) of predicting children's educational attainment from parenting. Error bars indicate 95% Confidence intervals. All analyses are adjusted for children's sex.

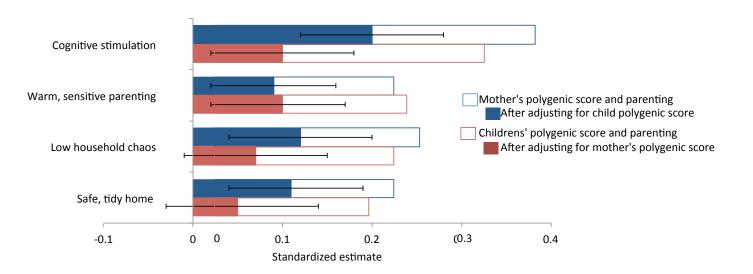


Figure 3. Gene-environment correlation: Mothers' and children's education polygenic scores predict parenting.

Note: The bars indicate the estimates (expressed as standardized regression coefficients) of predicting parenting from mothers' and children's education polygenic scores. Error bars indicate 95% Confidence intervals. All analyses are adjusted for children's sex.