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Abstract

Background: The human epidermal growth factor 

receptor 2 (HER2) gene amplification status is 

crucial for developing a clinical strategy e.g. for 

evaluation of an anti-HER2-therapy in breast or 

stomach cancer. Therefore, the detection of 

HER2 gene amplification status is highly relevant 

in histopathological diagnostics. Recently, the 

application of convolutional neural networks 

(CNNs) has shown large progress in the 

automation of classification and object detection 

in medical image analysis. 

 

Methods: Here, we apply deep learning-based 

pipeline for the detection, localization and 

classification of interphase nuclei depending on 

their HER2 gene amplification state in 

Fluorescence in situ hybridization (FISH) 

images. Our pipeline combines two CNN 

architectures named RetinaNet which are trained 

on (1) the detection and classification of 

interphase nuclei into normal, low-grade and 

high-grade and on (2) the detection and 

classification of FISH signals into HER2 and into 

the centromere of chromosome 17 (CEN17). In 

the first step (RetinaNet-1) nuclei are localized 

image-wide and a first classification is applied.  

 

 

 

 

 

The nuclei classification conducted via 

RetinaNet-1 is controlled and supplemented by 

HER2/CEN17 FISH signal ratios for the same 

nucleus by RetinaNet-2. Finally, an image-wide 

decision on the HER2 gene amplification stage is 

performed. 

 

Results: We demonstrate that the accuracy of 

this deep learning-based pipeline is on par with 

that of a pathologist. The pipeline accurately 

classifies FISH images as demonstrated on set 

of 57 validation images containing hundreds of 

nuclei. Consequently, high quality FISH images 

can now be analyzed at once regarding their 

image-wide HER2 gene amplification status in 

our lab. 

 

Conclusions: The automatic pipeline is a first 

step towards assisting the pathologist in 

evaluating the HER2 status of tumors using 

FISH images, for analyzing FISH images in 

retrospective and for optimizing the 

documentation of each tumor sample by 

automatically annotating and reporting of the 

HER2 gene amplification specificities. 
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Background 

The human epidermal growth factor receptor 2 

(HER2) gene, also designated ERBB2 gene for 

the v-erb-b2 erythroblastic leukemia viral 

oncogene homolog 2, encodes a member of the 

epidermal growth factor receptor family of 

receptor tyrosine kinases. Amplification of the 

HER2 gene is the primary mechanism of HER2 

overexpression in tumors
1
. HER2 amplification 

occurs before HER2 protein overexpression and 

consequently, monitoring of the tumor HER2 

gene amplification status has become routine in 

breast cancer
2–4

 surveillance. A positive HER2 

status in around 25% of breast cancers is 

associated with poorer prognosis, more 

aggressive disease, and an increased risk of 

disease recurrence 
2,5–7

. Application of HER2-

directed therapies such as treatment with anti-

HER2 antibodies, e.g. trastuzumab, depends on 

the detection of the HER2 gene amplification and 

increases overall survival of individuals suffering 

from HER2 positive breast cancer 
2,6–10

. In 

addition to breast cancer, HER2 status testing is 

also applied in gastric cancers as trastuzumab is 

similarly effective in prolonging survival in HER2 

positive carcinoma of the stomach and of the 

gastroesophageal junction
2,11

. 

 

HER2 testing is commonly carried out by 

immunohistochemistry (IHC), chromogenic in 

situ hybridization (CISH), silver-enhanced in situ 

hybridization (SISH) or Fluorescence in situ 

hybridization (FISH). In interphase nuclei of 

investigated tumor material, HER2 gene 

amplification testing is preferentially conducted 

via FISH
12

. In FISH analysis a HER2 positive 

state is defined when a HER2/CEN17 ratio of 

more than 2.2 is detectable, whereas CEN17 is a 

centromeric probe for the centromere of 

chromosome 17 on which the HER2 gene 

resides. Negative HER2 FISH amplification is 

defined as HER2/CEN17 ratio of less than 1.8
12

. 

Without an internal control probe such as 

CEN17, HER2 positive FISH is defined when 

above six HER2 genes are detectable per 

interphase nucleus while the equivocal range is 

defined with an average copy number of four to 

six HER2 genes per nucleus. Normal nuclei 

harbor two or fewer HER2 genes
13

.  

 

In clinical practice, the analysis is determined by 

the pathologist by observation of the FISH slide 

using the fluorescence microscope. The decision 

making relies on the individual expert knowledge 

of the pathologist and is dependent on 

standardization of the methodology, lab-

dependent routines and finally on the quality of 

the FISH images (background signals, artifacts, 

tissue quality, and fluorescence microscope-

dependent parameters). Pathologists analyze 

the HER2 gene amplification status of a tumor 

sample via evaluation in comparison to control 

samples. Testing criteria define HER2 positive 

status when (on observing within an area of 

tumor that amounts to > 10% of contiguous and 

homogeneous tumor nuclei) there is evidence of 

HER2 gene amplification based on counting at 

least 20 nuclei within this area
14

. By counting 

and classification of at least 20 interphase nuclei 

from different areas of the FISH slides a 

diagnostic decision is possible regarding a 

positive or negative state of HER2 gene 

amplification and its HER2 grade (low or high). 

The diagnostic relies on ratios of HER2 to 

CEN17 signals per nuclei on which the 

subsequent classification of the corresponding 

tumor sample is conducted.  

 

While there are already automation methods for 

extracting features from microscopic images 

such as spot detection and counting
15,16

, during 

the last years a notable increase in deep 

learning applications for classification tasks of 

pathological microscopic images were developed 

and successfully conducted on a wide field of 

applications
17

. Image classification tasks are 

commonly applied via Convolutional Neural 

Networks (CNNs) which rely on convolutional 

and non-linear transformations of the input data 

for a high-level abstraction classification
18

. Deep 

learning approaches such as CNNs have been 

already performed on pathology image 

classification, tumor classification, on imaging 

mass spectrometry data
16

, in the identification of 
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metastatic cancer areas
17

 or annotation of 

pathological images
19

. Recently, CNNs were 

applied for signal detection and counting in 

nuclei from FISH images (SpotLearn)
20

 and 

segmentation of chromosomes in multicolor 

FISH images
21

. SpotLearn includes two 

supervised machine learning-based analysis 

workflows for the high-throughput segmentation 

and classification of large and diverse sets of 

FISH signals. FISH signals are detected with 

high accuracy in three separate fluorescence 

microscopy channels
20

.  We aimed to develop a 

pipeline based on CNNs that works in one only 

channel because in our certified routine 

diagnostic workflow FISH signals are captured 

using a graded filter recording the different HER2 

gene and CEN17 signals in one step which 

cannot be differentiated by SpotLearn. 

Furthermore, we targeted the localization of 

nuclei and FISH signals using fast one-stage-

detectors rather than applying a segmentation 

algorithm workflow as applied in SpotLearn.  

 

Therefore, we generated a lab-specific pipeline 

for automatic classification of FISH images 

comprising of many interphase nuclei into 

normal, low and high-grade on the basis of 

CNNs to be specifically used at our institute. The 

pipeline consists of two trained RetinaNet
22

 steps 

for an image-wide classification of the HER2 

gene amplification status. While the first 

RetinaNet (RetinaNet-1) detects and pre-

classifies the nuclei, in the second RetinaNet 

step (RetinaNet-2) the HER2 and CEN17 signals 

are counted for each nucleus providing detailed 

information on each pre-classified nucleus. 

RetinaNet is a state-of-the-art, real time object 

detection and classification network with the aim 

of fast, accurate recognition of a wide variety of 

objects
22

. It relies on a Feature Pyramid 

Network
14

 backbone on top of a feed-forward 

ResNet
23

 architecture. To this backbone, 

RetinaNet attaches two subnetworks: one for 

classifying anchor boxes and one for regressing 

from anchor boxes to ground-truth object 

boxes
22

. Together with this architecture the new 

loss function, focal loss, is used that acts as a 

more effective alternative to previous 

approaches for dealing with class imbalance. 

RetinaNet is potentially more efficient than other 

state-of-the-art one-stage detectors because of 

the focal loss of RetinaNet, which applies a 

modulating term to the cross entropy loss in 

order to focus learning on hard negative 

examples, achieving state-of-the-art accuracy 

and speed of two-stage detectors
24

. To use 

these advantages for the detection on 

pathological samples, we applied RetinaNet in 

our deep learning-based system targeting the 

automation of FISH image evaluation regarding 

the HER2 grade detection at high accuracy and 

compared the performance of our system with 

the pathological assessment.   

 

 

Material and Methods 

Preparation of slides, Fluorescence in situ 

hybridization (FISH) and image capturing 

Formalin-fixed Paraffin-embedded (FFPE) 

cancer tissue is delivered from clinical 

institutions from all over Germany (up to 20 

patients per week). FFPE tissue is cut into small 

pieces (2µm) on a slide and dehydrated using 

first a xylene washing step subsequent flowed by 

a series of ethanol steps (100%, 96%, 70%). 

After drying the slide at room temperature slides 

are incubated with sodium thiocyanate followed 

by a wash step using distilled water. 

Subsequently, slides are incubated with pepsin 

and hydrochloric acid, washed using distilled 

water and dried at room temperature. Probes 

(PathVysion HER-2 DNA Probe Kit II, Abbott 

Inc.) are hybridized at 37°C in a wet chamber 

overnight. Washing of slides occurs in 2x saline-

sodium citrate (SSC) buffer and DAPI 

counterstaining is conducted. Images are taken 

using fluorescence microscope (Axioskop 2, 

Zeiss Inc.) using a graded filter (Filter Set 23 

(488023-0000-000), emission: 515-530 nm + 

580-630 nm, Zeiss Inc.), recording HER2 gene 
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signals, CEN17 signals and a small subset of 

DAPI signals at once. 

 

Image-wide nuclei detection and classification 

FISH images 

Our pipeline consists of two RetinaNets
24

 for 

detection and classification of nuclei occurring in 

a single FISH image. The pipeline was applied in 

Keras
28

 with TensorFlow
29

 backend in a Python 

environment. A Keras implementation of 

RetinaNet was used which is available on 

GitHub
25

. Initial labeling of training data was 

manually performed using labelIMG
30

. Training 

FISH images of high quality (minor background, 

minor number of artifacts, minor signal blurring, 

minor number of overlapping nuclei) were 

randomly chosen from documented high quality 

images of breast cancer FISH diagnostics on the 

HER2 gene amplification status from the years 

2015-2018 harbored at the Institute of Pathology 

at the clinical campus of Carl Gustav Carus 

Hospital of TU Dresden. Training and validation 

(randomly chosen 10% of all images) was 

performed on each RetinaNet step, respectively. 

An overview about the training data set is given 

in Table 1 for the RetinaNet-1 and in Table 2 for 

the RetinaNet-2. The nuclei images used as 

training data for the RetinaNet-2 was randomly 

chosen from the FISH images used for training 

the RetinaNet-1. The RetinaNet-1 detects and 

classifies nuclei in a FISH image. A potential 

nuclei (or artifact) is marked via a bounding box 

and is additionally extracted and stored as an 

individual image file. A report text file containing 

the number of detected nuclei and their 

classification as well as the number of uncertain 

cases and artifacts is generated. The number of 

normal, low-grade and high-grade nuclei per 

FISH image is used for calculation of two ratios 

(ratio-1 and ratio-2): ratio-1 is low-grade 

nuclei/number of all detected nuclei and ratio-2 is  

high-grade nuclei/number of all detected nuclei. 

A FISH image is defined to be low-grade when 

ratio-1 is at least 0.2 while a FISH image is 

classified to be high-grade when ratio-2 is at 

least 0.4. These thresholds can be modified by 

the pathologist according to individual 

specificities and criteria. On top of the RetinaNet-

1, the RetinaNet-2 detects and classifies the 

FISH signals in a single nucleus. Detected FISH 

signals were classified into HER2 signal, HER2 

cluster (representing many not differentiable 

single HER2 signals) and CEN17 signals. All 

signals were counted respectively and for each 

nucleus the HER/CEN17 ratio is calculated. As 

soon as a HER cluster is detected the 

HER2/CEN17 ratio is automatically set to 10. If 

no HER2 signals are detected, the HER2/CEN17 

ratio is automatically set to 1. In case no CEN17 

signal is detected the nucleus is classified as 

artifact. For each FISH image the average 

HER2/CEN17 ratio is calculated on the basis of 

all HER2/CEN17 ratios from all detected nuclei 

from this FISH image. A HER2/CEN17 ratio 

greater than 1.5 and lower than 6.0 indicates a 

low-grade status of the FISH image. A value 

greater than 6.0 indicates a high-grade status of 

the FISH image. The RetinaNet-2 works 

automatically on top of the RetinaNet-1 and 

reports its detections in a second report text file. 

Each annotated nucleus is automatically stored 

as image file. Details on the training process for 

both RetinaNets, respectively, were as follows. 

We used a focal loss function22 for 

classification, and a smooth L1 loss function for 

bounding box regression together with the Adam 

optimizer25 with a fixed learning rate of 10-4. A 

batch size of 1 was used due to GPU memory 

limitations. The network was trained for 50 

epochs on a single NVIDIA GPU (GeForce GTX 

1080Ti) and took approximately 48 hours. 
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Table 1. Details on training FISH images 

 # nuclei 

# images normal low-grade high-grade # uncertain # artifact 

299 626 782 1,760 2,037 1,050 

 

 

 

 
Table 2. Details on training interphase nuclei 

 # FISH signals 

# images CEN17 HER2 HER2 cluster 

301 512 1,552 441 

 

 

 

 

Results 

The certified FISH protocol is used routinely on 

the daily diagnostics for breast and stomach 

cancer patients and implements a standard 

procedure, which has been in use since 16 

years. To enable an automated, in-house 

detection service we trained our pipeline on 

breast cancer FISH image samples originating 

from this routine diagnostics to enable 

applicability of the pipeline at our Institute. Image 

capture of FISH microscope images were taken 

using a graded filter recording HER2 and CEN17 

signals in one step. The pipeline was trained for 

the detection of the HER2 gene amplification 

status into normal, low- and high-grade stage of 

routine FISH images from breast cancer 

samples. It relies on the implementation of two 

RetinaNets
22

 trained on individual tasks 

respectively: The RetinaNet-1 with Resnet-50
23

 

backend was trained on  up to 300 FISH images 

containing thousands of nuclei for nucleus 

detection and classification into high-grade, low- 

 

grade and normal nuclei (as well as artifacts and 

uncertain cases). The RetinaNet-2 with Resnet-

50 backend was trained on up to 300 single 

nuclei images containing thousands of FISH 

signals for detection, classification and counting 

of FISH signals in each nucleus (HER2 single 

signals, HER2 cluster and CEN17 single 

signals). On the basis of the predictions of the 

RetinaNet-1 and the RetinaNet-2 on all nuclei of 

a FISH image a final decision is possible on the 

image-wide HER2 gene amplification status of 

the FISH image. This decision-making process is 

comparable to pathological assessment as in a 

first step nuclei are image-wide localized and 

classified and secondly a confirmation of the 

classification is applied on the basis of 

HER2/CEN17 ratios for each nucleus. The two 

major steps of our pipeline are explained in detail 

in the following sections. The training and 

prediction is illustrated in Figure 1. 
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Figure 1. Overview of the detection pipeline of the HER2 gene amplification stage in FISH images from breast 
cancer samples.

Acquisition and manual labelling of the training 

data sets 

FISH slides were prepared from FFPE tumor 

samples as described in the methods section. 

Probes against the HER2 gene and against the 

centromere of chromosome 17 were performed 

using the PathVysion HER-2 DNA Probe Kit II 

(Abbott Inc). Images were taken using the 

fluorescence microscope Axioskop 2 (Zeiss Inc.) 

using a graded filter (Filter Set 23 (488023-0000-

000), emission: 515-530 nm + 580-630 nm, 

Zeiss Inc.), recording HER2 gene signals, 

CEN17 signals and a small subset of DAPI 

signals at once at a magnification of 100x. 

Images were captured using the Image –Pro MC 

6.0 software and saved in JPEG file format with 

a size of 1200 x 1600 pixel. Our pipeline is 

optimized on these FISH images generated. We 

used up to 300 routine FISH images of high 

quality (minor or no background noise, minimal 

number of artifacts, no overlapping nuclei) from 

breast cancer samples (see detailed 

characterization of images in material and 

methods section). These FISH images represent 

a randomly selection of all FISH images of high 

quality routinely stored for training and 

documentation purposes from routine 

diagnostics of all analyzed breast cancer tumor 

samples which have been processed during the 

last three years at our institute. The manual 

annotation was conducted by a pathologist via 

labelling (bounding boxes) high-grade,  

 

low-grade, normal nuclei as well as artifacts and 

uncertain nuclei for validation and test FISH 

images. HER2 and CEN17 FISH signals as well 

as cluster of HER2 signals were manually 

labelled (bounding boxes) by a pathologist in up  
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to 300 nuclei randomly chosen from all nuclei 

occurring within the ~300 previously mentioned 

FISH images. 

 

RetinaNet-1: Detection and classification of 

interphase nuclei in FISH images 

Training was performed on the manually labelled 

FISH images (n = 299) containing in total 

thousands of high-grade, low-grade and normal 

nuclei, as well as uncertain cases and artifacts 

(Tab. 1). The data was augmented using 

rotations, translations, shearing, scaling and 

horizontal and vertical flip. We used a focal loss 

function
22

 for classification, and a smooth L1 loss 

function for bounding box regression, and the 

Adam optimizer
25

 with a fixed learning rate 

of 10
-4

. A batch size of 1 was used due to GPU 

memory limitations. The network was trained for 

50 epochs on a single NVIDIA GPU (GeForce 

1080Ti) and took approximately 48 hours.  

 

The trained RetinaNet-1 automatically detects, 

localizes (via bounding boxes) and counts the 

number of normal, low-grade and high-grade 

nuclei as well as unidentifiable objects (uncertain 

cases and artifacts) image-wide. Each detected 

nuclei was stored as an individual image file 

using the detected bounding box and used in the 

RetinaNet-2 for FISH signals detection (see 

section below) as well as for potential manual re-

evaluation and documentation purposes. Per 

FISH image, two ratios were calculated which 

allow conclusion about whether the image 

represents a positive (low or high grade) or 

normal state. The low-grade ratio (= ratio-1) 

indicates whether the FISH image is classified as 

HER2 low-grade and the high-grade ratio (= 

ratio-2) reports how likely it is that the FISH 

image is classified as high-grade. These ratios 

were calculated as follows: number of low-grade 

nuclei or high-grade nuclei divided by the sum of 

all detected and classified nuclei, respectively. 

As threshold we used values greater or equal to 

0.2 for a nucleus to be a low-grade nucleus and 

0.4 for a nucleus to be a high-grade nucleus. 

However, these thresholds are manually 

customizable according to the pathologist’s 

definitions on specific ratios of the classified 

nuclei. Finally, the absolute occurrence of each 

class and the ratio-1 and ratio-2 were denoted in 

a report text file. Two exemplarily FISH images 

(low-grade and high-grade) complemented with 

the visualization of RetinaNet-1 object detection 

and classification results are shown in Figure 2. 
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Figure 2. Application of RetinaNet pipeline on two Fluorescence in situ hybridization (FISH) images for 

interphase nuclei detection and classification. 

(A) A high-grade stage was detected due to numerous high-grade nuclei. Only one nucleus was low-grade because it 

comprises four HER2 gene signals. One nucleus that was not detected is marked with a red arrow. 

(B) A low-grade stage was detected due to five low-grade nuclei. Many nuclei were only classified as uncertain due to 

missing information on HER2 signals.  
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To validate the applicability and reliability of the 

first RetinaNet approach in routine diagnostics, 

57 test high quality FISH images, containing 

1,175 nuclei, were subject to image-wide nuclei 

detection and classification and compared to the 

annotation by a pathologist, considered as 

ground truth. The number of normal, high-grade, 

low-grade and unidentifiable nuclei (including 

artifacts and uncertain cases) were 

independently determined by the pathologist and 

by the RetinaNet-1 for each of the 57 FISH 

images. Table 3 shows the results of the 

classification of the 1,175 nuclei as a confusion 

matrix. The classification performance is 

summarized using Cohen’s kappa κ, a statistic 

measuring the degree of agreement between the 

predicted and the ground truth classification 

compared to a classification by chance. This 

results in κ=0.64, representing substantial 

agreement
26

 over the whole validation set of 

nuclei (n=1,175). However, differentiation 

between normal from low-grade nuclei appears 

difficult, as shown by the prediction accuracy 

(acc) and reliability (rel) in Table 3, whereas 

high-grade nuclei were classified with high 

accuracy (acc=0.82) and reliability (rel=0.92). In 

addition, the accuracy of detection and 

classification of nuclei differed per image, 

ranging from poor accuracy (acc<0.5, 5 images) 

to near perfect classification (acc>0.85, 10 

images) (Suppl. Table 1), with a mean accuracy 

of 0.73.  

Nuclei in FISH images from our routine 

diagnostics might be of reduced quality 

compared to up-to-date fluorescence images as 

they have to be prepared under time limitation 

and a standardization procedure. High 

background noise, an increased number of 

artifacts and large differences in the number and 

shape of nuclei as well as overlapping nuclei all 

together influences the image quality of the 

captured nuclei. In addition, the quality depends 

on the input tumor material and available tissue 

type for analysis. To test the robustness of 

RetinaNet-1, we manually subdivided the nuclei 

from our investigated FISH images into the two 

groups “high quality” and “low quality” nuclei. 

Nuclei in the “high quality” group are 

characterized by clearly differentiable HER2 and 

CEN17 signals and by a uniform and regular 

nucleus shape without overlapping by further 

nuclei. In contrast, nuclei in the “low quality” 

group showed blurring of FISH signals, 

overlapping by further nuclei, very weak FISH 

signals or signal artifacts which made it difficult 

to adequately detect the signals. As shown in 

Table 3, Cohen kappa is reduced from 

substantial agreement (κ=0.64) for high quality 

nuclei to moderate agreement (κ=0.54) in the 

case of low quality nuclei. In particular, the 

accuracy of classification for high-grade nuclei is 

reduced between the high- and low quality nuclei 

(acc=0.93 vs. acc=0.55).  
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Table 3. Classification performance of RetinaNet-1 on validation images (n=57)  

 

RetinaNet-2: Counting the HER2 and CEN17 

FISH signals per nucleus and detection of the 

image-wide HER2/CEN17 ratio 

In order to increase the classification accuracy 

and to validate and control the nucleus-based 

classification performed by RetinaNet-1, we 

trained a second RetinaNet (RetinaNet-2) to 

localize and classify the individual HER2 and 

CEN17 signals in each nucleus detected by 

RetinaNet-1. It acts as a control mechanism 

(comparable to a second opinion) and provides 

additional detailed source of information on the 

number of HER2 and CEN17 signals per 

nucleus.  

 

HER2 FISH signal detection was split into two 

classes: HER2 single signals and HER2 clusters. 

A HER2 cluster represents a region of the 

nucleus which is characterized by a high density 

of adjacent HER2 signals which often cannot be 

well distinguished into the underlying single 

signals and hence appeared as an accumulation. 

Training was performed on in total thousands of 

HER2 and CEN17 signals from the ~300 

randomly selected nuclei from the ~300 training   

FISH images. Apart from the different input 

images, where we used images containing a 

single nucleus instead of a complete FISH 

image, the training process was identical to that 

described above for RetinaNet-1. 

 

The nucleus-specific FISH signal detection and 

classification via the RetinaNet-2 automatically 

works on top of the initial nuclei detection and 

normal low high unid. REL

normal 57 40 1 43 0,40

low 29 85 27 19 0,53

high 0 5 277 18 0,92

unid. 55 14 31 474 0,83

ACC 0,40 0,59 0,82 0,86 κ = 0.64

normal low high unid. REL

normal 41 26 0 34 0,41

low 24 66 11 13 0,58

high 0 3 224 8 0,95

unid. 29 6 5 151 0,79

ACC 0,44 0,65 0,93 0,73 κ = 0.65

normal low high unid. REL

normal 16 14 1 9 0,40

low 5 19 16 6 0,41

high 0 2 53 10 0,82

unid. 26 8 26 323 0,84

ACC 0,34 0,44 0,55 0,93 κ = 0.54

RetinaNet-1 on nuclei - low quality nuclei

Pathologist

R
e
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n
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1

RetinaNet-1 on nuclei - high quality nuclei

Pathologist

R
e
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n
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e

t-
1

RetinaNet-1 on nuclei - all nuclei

Pathologist
R

e
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n
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e
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1

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 7, 2018. ; https://doi.org/10.1101/490052doi: bioRxiv preprint 

https://doi.org/10.1101/490052


11 
 

classification performed via the RetinaNet-1. 

Each nucleus detected via the RetinaNet-1 is 

automatically fed into the RetinaNet-2 where 

FISH signals were classified and counted, 

documented in an image-wide report text file and 

visualized in an additional nucleus-specific 

image file. RetinaNet-2 predicts a bounding box 

and classifies each individual HER2 signal, 

HER2 cluster and CEN17 signal. Afterwards the 

boxes are counted and the ratio of HER2/CEN17 

signals is calculated per nucleus. If no HER2 

signals were detected the HER2/CEN17 ratio 

was automatically set to 1. In case no CEN17 

signal was detected the nucleus was classified 

as uncertain. When a HER2 cluster was 

detected the HER2/CEN17 ratio was set to 10 as 

a HER2 clusters may contain a high but 

unknown number of HER2 signals. The average 

and image-wide HER2/CEN17 ratio was 

calculated on the basis of all detected nuclei 

harboring CEN17 and HER2 signals. This 

quantity was used to decide the image-wide 

HER2 gene amplification status of the 

corresponding FISH image. 

 

To measure the performance of RetinaNet-2 for 

nucleus classification, 50 randomly selected 

nuclei were analyzed by the RetinaNet-2 and 

compared to the manual annotation by the 

pathologist. In six cases a different classification 

was revealed (Tab. 4). In three of the six cases, 

a normal nucleus was classified via the 

RetinaNet-2 while the pathologist detected a low-

grade nucleus which was caused due to missed 

HER2 single signal detection via the RetinaNet-

2. In two of the six cases the RetinaNet-2 

detected a high-grade nucleus while the 

pathologist classified these nuclei as normal. 

The reason was that RetinaNet-2 detected a 

HER2 signal as HER2 cluster because of strong 

blurring of the single HER2 signal mimicking a 

HER2 cluster. In one of the six cases, a 

classification via the RetinaNet-2 was not 

possible although the same number of HER2 

signals and CEN17 signals was found in 

comparison to the pathologist. However, 

because only one HER2 signal was identified, 

the RetinaNet-2 classified the nucleus as 

“uncertain”. 

Table 4. Comparison of FISH signal detection of RetinaNet-2 with the pathologist on 50 validation interphase nuclei 

Nucleus CEN17 single signal HER2 single signal HER2 cluster Nucleus classification 

 RetinaNet-2 Pathologist RetinaNet-2 Pathologist
1
 RetinaNet-2 Pathologist

2
 RetinaNet-2 Pathologist 

1 1 2 2 2 0 0 normal normal 

2 1 1 1 1 0 0 normal normal 

3 2 2 2 2 0 0 normal normal 

4 2 2 2 5 0 0 normal low 

5 2 2 3 3 0 0 low low 

6 1 1 2 3 0 0 normal low 

7 1 1 2 2 1 1 normal normal 

8 1 1 1 1 0 0 normal normal 

9 2 3 3 3 0 0 low low 

10 0 1 5 4 0 0 low low 

11 2 2 2 2 0 0 normal normal 

12 2 2 2 2 0 0 normal normal 

13 3 3 2 4 0 0 normal low 

14 2 2 4 4 0 0 low low 

15 1 1 1 2 0 0 normal normal 

16 2 2 2 2 0 0 normal normal 

17 2 2 3 3 0 0 low low 

18 2 2 2 2 0 0 normal normal 

19 2 3 3 3 0 0 low low 

20 4 4 5 5 0 0 low low 

21 2 2 1 1 0 0 uncertain normal 

22 1 1 1 1 0 0 normal normal 

23 2 3 3 3 0 0 low low 

24 2 2 2 2 0 0 normal normal 

25 2 4 4 4 0 0 low low 

26 1 2 4 3 0 0 low low 

27 3 3 3 4 0 0 low low 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 7, 2018. ; https://doi.org/10.1101/490052doi: bioRxiv preprint 

https://doi.org/10.1101/490052


12 
 

28 2 2 2 2 0 0 normal normal 

29 2 2 2 2 0 0 high normal 

30 1 2 3 n.d. 2 1 high high 

31 0 0 2 n.d. 2 1 high high 

32 2 2 4 4 0 0 low low 

33 3 3 4 n.d. 4 1 high high 

34 1 2 2 2 0 0 normal normal 

35 0 0 4 n.d. 1 1 high high 

36 1 1 2 n.d. 1 1 high high 

37 0 0 1 n.d. 1 1 high high 

38 2 1 2 n.d. 2 1 high high 

39 0 1 0 n.d. 3 1 high high 

40 1 1 2 n.d. 1 1 high high 

41 0 0 3 n.d. 2 1 high high 

42 0 0 0 n.d. 4 1 high high 

43 2 2 0 2 1 0 high normal 

44 0 0 1 n.d. 2 1 high high 

45 0 0 5 n.d. 2 1 high high 

46 1 2 6 n.d. 1 1 high high 

47 0 0 0 n.d. 5 1 high high 

48 1 1 4 n.d. 1 1 high high 

49 1 2 4 4 0 0 low low 

50 0 0 1 n.d. 6 1 high high 

n.d. HER2 signals were not quantified in the Ground Truth in case at least one HER2 cluster was identified. HER2 cluster were not counted in the 

Ground Truth because of the strong subjective aspect of this procedure. The value was set to 1 when at least one HER2 cluster occurred. 

 

To validate the applicability and reliability of the 

RetinaNet-2 approach in the image-wide 

classification, 57 test FISH images (same 

images which were used for validation of the 

RetinaNet-1) were subject to their image-wide 

nuclei detection and classification compared to 

the ground truth annotated by the pathologist. 

The comparison was also conducted to “high 

quality” and “low quality” nuclei as previously 

done for the RetinaNet-1 to test the robustness 

on nuclei images of lower quality (Tab. 5). Again, 

we find a substantial agreement between our 

deep learning system and the human 

pathologist, but at a higher level of agreement, 

κ=0.76. In particular, the classification accuracy 

of normal nuclei has increased as compared to 

RetinaNet-1 (acc=0.40 and acc=0.72, 

respectively, Tab. 3). Whereas for low quality 

nuclei, we find only a moderate agreement 

(κ=0.55), similar to the performance of 

RetinaNet-1, for nuclei recorded at high quality, 

we find the classification performance of 

RetinaNet-2 κ=0.85, representing an almost 

perfect agreement with the pathologist. 

Nevertheless, a minor number of HER2 double 

or triple signals in very close vicinity were 

annotated as HER2 cluster leading to the wrong  

 

overall assumption that a high-grade nucleus 

occurred.  

 

The accuracy of both RetinaNets was compared 

regarding the image-wide detection and 

classification of nuclei in the 57 test FISH images 

(Suppl. Tab. 1). Similar to RetinaNet-1, we 

found for RetinaNet-2 that the detection and 

classification performance differs between 

images. Interestingly, however, several images 

where RetinaNet-1 performed poorly were well-

classified by RetinaNet-2 and vice versa, 

indicating these two approaches are 

complementary and are best used in 

combination (Suppl. Tab. 1). However, for most 

of the images the accuracy equals (Fig. 3A) but 

a few images show larger differences in their 

accuracies. Four example images were depicted 

where (1) the accuracy was 100% for both 

RetinaNets (Fig. 3, image 35), (2) the accuracy 

was low for RetinaNet-2 but high in RetinaNet-1 

(Fig. 3, image 16), (3) the accuracy was lower 

for RetinaNet-1 compared to RetinaNet-2 (Fig. 3, 

image 9) and (4) the accuracy was similar low 

for both RetinaNets (Fig. 3, image 47). Nuclei in 

the FISH images are marked with a red arrow 

where a different classification was obtained by  
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Table 5. Classification performance of RetinaNet-2 on validation images (n=57). 

 

both RetinaNets (Fig. 3C). In image 35 nuclei 

are clearly distinguishable and show massive 

amplification of the HER2 gene, which can be 

easily and clearly detected by both RetinaNets. 

Therefore, no differences in the nuclei 

classification were detected. In image 47 the 

performance of the two RetinaNets is equally low 

due to the general low quality of many nuclei 

occurring in the image. In addition, the overall 

number of nuclei in the image is low so that the 

influence of the “low quality” nuclei on the image-

wide classification is higher. Reasons for 

different classification between RetinaNet-1 and 

RetinaNet-2 in images 9 and 34 may be due to 

weak and blurring FISH signals not seen by 

RetinaNet-2 and/or the interpretation of very 

adjacent located HER2 gene signals as HER2 

cluster by RetinaNet-2 leading to false  

 

classification of the corresponding nucleus. More 

precisely, Figure 4 shows selected and 

representative examples on three cases for a 

same and three cases for a different 

classification between both RetinaNets. The 

three nuclei in the left column (Fig. 4A-C) were 

classified identically by both networks and the 

classification corresponds to those of the 

pathologist, providing stronger confidence in the 

correct classification. The three nuclei in the right 

column, however, were classified differently (Fig. 

4D-F). In the first case (Fig. 4D) RetinaNet-2 

detected three HER2 signals in close vicinity as 

a single HER2 cluster, leading to a 

misclassification as high-grade nucleus while the 

RetinaNet-1 correctly classified this nucleus as 

low-grade.  

normal low high unid. REL

normal 102 21 4 16 0,71

low 1 80 24 2 0,75

high 3 14 287 18 0,89

unid. 35 29 21 519 0,86

ACC 0,72 0,56 0,85 0,94 κ = 0.76

normal low high unid. REL

normal 77 8 0 10 0,81

low 1 73 4 1 0,92

high 3 7 233 7 0,93

unid. 13 13 3 188 0,87

ACC 0,82 0,72 0,97 0,91 κ = 0.85

normal low high unid. REL

normal 25 13 4 6 0,52

low 0 7 20 1 0,25

high 0 7 54 11 0,75

unid. 22 16 18 331 0,86

ACC 0,53 0,16 0,56 0,95 κ = 0.55
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Figure 3 Comparison of the accuracy of RetinaNet-1 and RetinaNet-2 on the image-wide nucleus detection 

and classification.  

(A) The accuracy in classifying the detected nuclei was compared among the 57 validation FISH images. Exemplarily, 

the four most interesting images are depicted where (1) the accuracy was 100% in both RetinaNets (image 35), (2) 

the accuracy was low in both networks (image 47), (3) RetinaNet-1 had a much better accuracy than RetinaNet-2 

(image 34) or (4) vice versa (image 9). (B) Detailed overview about the classification of the nuclei in these four FISH 

images and (C) visualization of the classification of RetinaNet-1. Nuclei with a differing classification by RetinaNet-2 

are marked with a red arrow.   
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In the second case (Fig. 4E), RetinaNet-2 

missed the detection of HER2 and CEN17 

signals, presumably due to overexposure, and 

therefore a misclassification of the nucleus as 

normal was conducted. The RetinaNet-1 

correctly classified the nucleus as low-grade. 

Finally, in Figure 4F, RetinaNet-2 correctly 

detected all signals but classified the nucleus as 

normal in contrast to RetinaNet-1 which 

conducted a classification as uncertain. 

However, the pathologist´s classification was 

low-grade.  

 

Automated classification of high quality FISH 

images into normal, low- and high-grade  

Our nuclei detection and classification system 

relies on the combination of two steps performed 

by the RetinaNet-1 and the RetinaNet-2 enabling 

a final decision on the HER2 gene amplification 

status with HER2 and CEN17 FISH signal 

counting of the whole FISH image. The decision 

relies on ratios being calculated in both 

RetinaNet steps. In the RetinaNet-1 the ratio-1 

and the ratio-2 (ranging from 0 to 1, respectively) 

are calculated and indicate on the relative 

number of low grade nuclei (ratio-1) and high 

grade nuclei (ratio-2), respectively, compared to 

the overall occurrence of all classifiable nuclei. A 

low-grade or high-grade stage of is indicated by 

ratio-1 greater or equal to 0.2 and by ratio-2 

greater than 0.4, respectively. Both thresholds 

are modifiable with respect to the pathologist’s 

specified criteria. In the RetinaNet-2 an image-

wide HER2/CEN17 ratio is calculated as average 

value among all nuclei-specific HER2/CEN17 

ratios of classifiable nuclei. A HER2/CEN17 ratio 

greater than 1.5 and lower than 6.0 indicates a 

low-grade status of the FISH image. A value 

greater than 6.0 indicates a high-grade status of 

the FISH image. The maximum average value is 

10.0 because the highest value a single nucleus 

can obtain is 10.0 due to the fact that as soon as 

a HER2 cluster is detected the value is 

automatically set to 10.0. The overall image-wide 

classification of the HER2 gene amplification 

status is mostly identical between our pipeline 

(RetinaNet-1 and RetinaNet-2) and the 

pathologist on the 57 test FISH images (Tab. 6). 

In two of the 57 cases a different classification of 

was denoted. In one of the two cases, the 

RetinaNet-1 classified a low-grade FISH image 

while the RetinaNet-2 had a tendency towards a 

high-grade image. In the second case, the 

RetinaNet-1 classified the image to be low-grade 

while the RetinaNet-2 classified it as high-grade 

due to a misclassification of one normal nucleus 

as high-grade nucleus. 
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Figure 4. Application of the second RetinaNet pipeline on three interphase nuclei detection and re-

classification. The second RetinaNet pipeline (RetinaNet-2) detects FISH signals in each of the separated and pre-

classified nuclei from the first RetinaNet pipeline (RetinaNet-1) and classifies the signals into HER2 (light blue framed 

boxes), HER2 cluster (dark blue framed boxes) and CEN17 (red framed boxes) signals. Exemplarily three nuclei are 

shown: (A-C) The classification was confirmed. (D) The classification was not confirmed due to a misinterpretation of 

three very adjacent HER2 gene single signals as HER2 cluster. (E) The classification was not confirmed because two 

HER2 gene signals were not detected by the RetinaNet-2. (F) The classification was not confirmed although all FISH 

signals were detected by RetinaNet-2 because the classification was defined to be unclassifiable if only one CEN17 

signals occurs. 

 

Table 6. Detection of the HER2 gene amplification status in 57 validation FISH images 

  RetinaNet-1
1
 RetinaNet-2

2
 Grade estimation Pathologist 

Image Ratio1
3
 Ratio2

4
 HER2/CEN17

5
 based on RetinaNet-1/-2 Grade 

1 0,08 0,83 9,42 HIGH/HIGH HIGH 

2 0,07 0,93 9,43 HIGH/HIGH HIGH 

3 0 1,00 10,00 HIGH/HIGH HIGH 

4 0,13 0,88 7,75 HIGH/HIGH HIGH 

5 0,33 0,67 10,00 HIGH/HIGH HIGH 

6 0,07 0,93 9,69 HIGH/HIGH HIGH 

7 0,22 0,78 9,11 HIGH/HIGH HIGH 

8 0 0,91 9,13 HIGH/HIGH HIGH 

9 0,17 0,83 10,00 HIGH/HIGH HIGH 

10 0 1,00 10,00 HIGH/HIGH HIGH 

11 0 1,00 10,00 HIGH/HIGH HIGH 

12 0 1,00 10,00 HIGH/HIGH HIGH 

13 0,17 0,75 9,46 HIGH/HIGH HIGH 

14 0,25 0,75 9,15 HIGH/HIGH HIGH 

15 0,26 0,74 8,08 HIGH/HIGH HIGH 

16 0,57 0 2,63 LOW/LOW LOW 
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17 0,75 0 3,67 LOW/LOW LOW 

18 0,67 0,17 1,40 LOW/LOW LOW 

19 0,31 0 3,37 LOW/LOW LOW 

20 0,36 0 1,55 LOW/LOW LOW 

21 0,40 0 4,33 LOW/LOW LOW 

22 0,40 0 1,65 LOW/LOW LOW 

23 0,31 0 1,65 LOW/LOW LOW 

24 0,33 0 1,93 LOW/LOW LOW 

25 0,50 0,10 1,67 LOW/LOW LOW 

26 0,50 0 4,89 LOW/LOW LOW 

27 0,44 0,22 3,33 LOW/LOW LOW 

28 0,27 0 1,00 LOW/NORMAL NORMAL 

29 0,25 0 3,43 LOW/LOW LOW 

30 0,15 0,69 8,71 HIGH/HIGH HIGH 

31 0 1,00 8,20 HIGH/HIGH HIGH 

32 0 1,00 9,00 HIGH/HIGH HIGH 

33 0,09 0,91 8,82 HIGH/HIGH HIGH 

34 0,05 0,95 8,93 HIGH/HIGH HIGH 

35 0 1,00 10,00 HIGH/HIGH HIGH 

36 0,15 0,85 9,43 HIGH/HIGH HIGH 

37 0,17 0,83 10,00 HIGH/HIGH HIGH 

38 0 1,00 10,00 HIGH/HIGH HIGH 

39 0 1,00 10,00 HIGH/HIGH HIGH 

40 0,15 0,85 9,41 HIGH/HIGH HIGH 

41 0 1,00 10,00 HIGH/HIGH HIGH 

42 0 1,00 10,00 HIGH/HIGH HIGH 

43 0 1,00 10,00 HIGH/HIGH HIGH 

44 0,29 0 1,35 LOW/LOW LOW 

45 0,44 0 1,63 LOW/LOW LOW 

46 0,56 0 1,92 LOW/LOW LOW 

47 0,67 0 5,63 LOW/LOW LOW 

48 1,00 0 4,50 LOW/LOW LOW 

49 0,53 0 3,20 LOW/LOW LOW 

50 0,69 0,06 1,91 LOW/LOW LOW 

51 0,38 0 2,44 LOW/LOW LOW 

52 0,40 0 2,81 LOW/LOW LOW 

53 0,67 0,17 4,93 LOW/LOW LOW 

54 1,00 0 1,17 LOW/LOW LOW 

55 0,40 0 7,00 LOW/HIGH LOW 

56 0,29 0 1,39 LOW/LOW LOW 

57 0,43 0 2,90 LOW/LOW LOW 

1 The first RetinaNet pipeline detects and classifies nuclei image-wide in a FISH image 
2 The second RetinaNet pipeline detects, classifies and counts FISH signals in each nucleus detected by the first RetinaNet pipeline 
3 Ratio-1 represents number of low-grade nuclei divided by the number of all classified nuclei. A value greater than 0.2 indicates LOW stage of the 
FISH image. 
4 Ratio-2 represents number of high-grade nuclei divided by the number of all classified nuclei. A value greater than 0.4 indicates HIGH stage of the 
FISH image. 
5 The average of all detected HER2/CEN17 ratios among all nuclei in one FISH image. A value greater than 1.0 indicate LOW stage and greater than 

6.0 HIGH stage of the FISH image. 

 

Conclusions 

In this study, we developed a deep learning 

pipeline for analyzing Fluorescence in situ 

hybridization (FISH) images regarding the 

image-wide detection of interphase nucleus and 

their classification depending on the HER2 gene  

 

amplification level. The pipeline can be useful in 

assisting pathologists in analyzing the HER2 

gene amplification stage of a breast cancer 

samples by automatically analyzing high quality 

FISH images for control purposes. It can also be 

used for automatic investigation in retrospective 
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studies of large amounts of documented FISH 

images collected over several years at our 

Institute for re-evaluation. Another application 

could be the enhancement of the documentation 

quality of the images. Furthermore, an 

anonymized and human-independent evaluation 

of the HER2 gene amplification level is possible. 

Analyzing one FISH image including the 

generation of the annotated image data and the 

report files occurs in less than a second which is 

quite faster than comparable human evaluation 

so far. Therefore, we interpret our pipeline as a 

first step towards the automation of the HER2 

gene amplification detection in FISH images. 

 

Image-wide ratios representing the number of 

abnormal nuclei in relationship to all classified 

nuclei are calculated which serve as guideline for 

classifying the HER2 gene amplification status of 

the corresponding tumor sample from which the 

FISH image originated from. Our pipeline works 

on the basis of two CNNs for localization and 

classification, called RetinaNet. RetinaNet-1 

detects and classifies nuclei in the FISH images 

and calculates two ratios. Ratio-1 (ranging from 

0 to 1) represents how frequently nuclei with a 

low amplification status of HER2 genes occurred 

and ratio-2 (ranging from 0 to 1) indicates the 

same for nuclei with high amplification status of 

the HER2 gene. The second RetinaNet, 

RetinaNet-2, detects and classifies FISH signals 

for each nucleus into HER2 signals, CEN17 

signals and HER2 cluster, which consists of 

multiple, non-distinguishable HER2 signals. An 

average HER2/CEN17 image-wide ratio is 

calculated on the basis of all nucleus-specific 

HER2/CEN17 ratios which serves for decision 

making on the image-wide HER2 gene 

amplification status of the FISH image. The 

reliability of our pipeline in making correct 

classification of the image-wide HER2 gene 

amplification status was demonstrated to be 

comparable to the pathologist with an accuracy 

of 96% based on 57 annotated FISH images (55 

out of 57 images). 

 

However, there are limitations of our pipeline: An 

important issue is the difficulty in predicting the 

HER2 gene amplification status in routine FISH 

images of relatively low quality characterized by 

high background noise, low signal-to-noise ratio, 

a large number of artifacts, strong differences in 

nuclei shape, weak signals and truncated or 

overlapping nuclei. To overcome these 

limitations we would need to either (1) greatly 

enlarge the manually annotated data set for 

training by incorporating many thousands of 

examples for each of the previously mentioned 

cases causing the low quality of FISH images or 

(2) better standardize the image acquisition 

practice in clinical routine to obtain higher quality 

images and (3) increase the number of 

pathologists in annotating the data. However, 

due to performing the FISH diagnostics on slides 

originating from FFPE material it might be 

difficult to obtain higher quality images. Training 

the pipelines on these samples will largely 

enhance its performance on future cases of a 

similar reduced overall quality. Nevertheless, 

even now our pipeline (trained on high quality 

FISH images) makes predictions on the HER2 

amplification status of the tumor on the basis of 

these low quality FISH images demonstrating the 

general potential of deep learning on this task 

(Suppl. Fig. 1). It should be noticed that, in 

clinical practice, pathologists do not analyze 

every nucleus in a FISH image. Instead, a 

certain number of nuclei (at least 20) are 

selected and, in this process nuclei are excluded 

that are difficult to analyze, e.g. due to low image 

quality. Additionally, variations in the 

experimental setup among different pathology 

labs might result in different shape, structure and 

nuclei composition of the FISH images (e.g. 

used antibodies and fluorophores, tissue type, 

tissue preparation protocol, consideration of 

DAPI staining, fluorescence microscope type 

and parameters). Therefore, a customization of 

our pipeline, e.g. setting different thresholds, and 

additional training of both networks will be 

necessary to adapt the detection and 

classification pipeline to lab-specific conditions 

and lab-specific investigated tissue types in 
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order to automatize the HER2 amplification 

detection of tumors in other pathology labs.  

 

Pathologists normally analyze the FISH slides 

directly under the fluorescence microscope. Due 

to shifting in z-dimension HER2 and CEN17 

signals of one nucleus can be located which are 

not detectable in a single 2D position only. 

Since, however, a FISH image is only a 2D 

representation of the 3D space of the FISH slide 

only limited information is available for the nuclei 

classification for our pipeline potentially leading 

to false estimations of the HER2 gene 

amplification status of the corresponding tumor 

sample. Therefore, a deep learning application 

based on nuclei detection and classification on at 

least a stack of images representing the 3D 

space of the FISH slide will be largely superior 

compared to the 2D solution used in our study. 

Our pipeline is in principle able to make nuclei 

detections and classifications on videos which is 

under investigation in our lab. Future solutions 

should directly implement one-stage detectors or 

similar CNN architectures into the fluorescence 

microscope for instantly classifying the nuclei 

while the pathologist is observing it. A 

comparable solution was recently developed by 

Google Inc. for marking tumor areas in 

Hematoxylin and Eosin stained slides
27

. 

Alternatively, a fully automated software solution 

recording all layers and positions of a FISH slide 

as large data input for the deep learning-based 

nuclei detection and classification might be used. 
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Supplemental Figure 1. Two examples of the application of our pipeline on FISH images of low quality. In (A) a 

normal stage was detected and corresponds to the decision of a pathologist. In (B) a high-grade stage was detected 

which also corresponds to the pathologists decision on the FISH image. Numerous nuclei have not been detected in 

both images indicating the limitations of our pipeline (RetinaNet-1) on FISH images of low quality. Training on a large 

set of FISH images of low quality would enhance the accuracy in detecting most nuclei. 
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