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Abstract 
The human epidermal growth factor receptor 2 
(HER2) gene amplification status is a crucial 
marker for evaluating clinical therapies of breast 
or gastric cancer. We propose a deep learning-
based pipeline for the detection, localization and 
classification of interphase nuclei depending on 
their HER2 gene amplification state in 
Fluorescence in situ hybridization (FISH) 
images. Our pipeline combines two RetinaNet-
based object localization networks which are 
trained (1) to detect and classify interphase 
nuclei into distinct classes normal, low-grade and 
high-grade and (2) to detect and classify FISH 
signals into distinct classes HER2 or centromere 
of chromosome 17 (CEN17). By independently 

classifying each nucleus twice, the two-step 
pipeline provides both robustness and 
interpretability for the automated detection of the 
HER2 amplification status. The accuracy of our 
deep learning-based pipeline is on par with that 
of three pathologists and FISH images on a set 
of 57 validation images containing several 
hundreds of nuclei are accurately classified. The 
automatic pipeline is a first step towards 
assisting pathologists in evaluating the HER2 
status of tumors using FISH images, for 
analyzing FISH images in retrospective studies, 
and for optimizing the documentation of each 
tumor sample by automatically annotating and 
reporting of the HER2 gene amplification 
specificities. 
 
 
Keywords 
HER2 gene amplification, Breast Cancer, 
Fluorescence in situ hybridization, Deep 
Learning, Convolutional Neural Network, 
RetinaNet  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 23, 2019. ; https://doi.org/10.1101/490052doi: bioRxiv preprint 

https://doi.org/10.1101/490052


2 

 

 

Background 
The human epidermal growth factor receptor 2 
(HER2) gene, also designated ERBB2 gene for 
the v-erb-b2 erythroblastic leukemia viral 
oncogene homolog 2, encodes a member of the 
epidermal growth factor receptor family of 
receptor tyrosine kinases. Amplification of the 
HER2 gene is the primary mechanism of HER2 
overexpression in tumors1. HER2 amplification 
occurs before HER2 protein overexpression and 
monitoring of the tumor HER2 gene amplification 
status has therefore become routine in breast 
cancer2–4 surveillance. In around 25% of breast 
cancers a positive HER2 status is associated 
with poorer prognosis, more aggressive disease, 
and an increased risk of disease recurrence2,5–7. 
Application of HER2-directed therapies such as 
treatment with anti-HER2 antibodies, e.g. 
trastuzumab, depends on the detection of HER2 
gene amplification and increases overall survival 
of individuals suffering from HER2 positive 
breast cancer2,6–10. In addition to breast cancer, 
HER2 status testing is also applied in gastric 
cancers as trastuzumab is similarly effective in 
prolonging survival in HER2 positive carcinoma 
of the gastric and of the gastroesophageal 
junction2,11. 
 
HER2 testing is commonly carried out by 
immunohistochemistry (IHC), chromogenic in 
situ hybridization (CISH), silver-enhanced in situ 
hybridization (SISH) or Fluorescence in situ 
hybridization (FISH). In interphase nuclei of 
investigated tumor material, HER2 gene 
amplification testing is preferentially conducted 
via FISH12. In FISH analysis a HER2 positive 
state is defined when a HER2/CEN17 ratio of 
more than 2.2 is detectable, where CEN17 is a 
centromeric probe for the centromere of 
chromosome 17 on which the HER2 gene 
resides. Negative HER2 FISH amplification is 
defined as HER2/CEN17 ratio of less than 1.812. 
If an internal control probe such as CEN17 is not 
available, HER2 positive FISH is defined when 
above six HER2 genes are detectable per 
interphase nucleus while the equivocal range is 

defined with an average copy number of four to 
six HER2 genes per nucleus. Normal nuclei 
harbor two or fewer HER2 genes13.  
 
In clinical practice, the analysis is carried out by 
a pathologist via observation of the FISH slide 
using a fluorescence microscope. The decision 
making relies on the individual expert knowledge 
of the pathologist and is dependent on 
standardization of the methodology, lab-
dependent routines, and finally on the quality of 
the FISH images, which is influenced by e.g. 
background signal, artifacts, tissue quality, and 
other acquisition-dependent parameters. 
Pathologists analyze the HER2 gene 
amplification status of a tumor sample via 
evaluation in comparison to control samples. 
Testing criteria define HER2 positive status 
when (on observing within an area of tumor that 
amounts to > 10% of contiguous and 
homogeneous tumor nuclei) there is evidence of 
HER2 gene amplification based on counting at 
least 20 nuclei within this area14. By counting 
and classification of at least 20 interphase nuclei 
from different areas of the FISH slides a 
diagnostic decision is possible regarding a 
positive or negative state of HER2 gene 
amplification and its HER2 grade (low or high). 
The diagnostic relies on ratios of HER2 to 
CEN17 signals per nuclei on which the 
subsequent classification of the corresponding 
tumor sample is conducted.  
 
While many classical methods exist for 
automatic extraction of features from 
microscopic images  such as spot detection and 
counting15,16, during the last years an increasing 
number of deep learning based applications for 
classification tasks of pathological microscopic 
images were developed and successfully 
conducted on a wide field of applications17. 
There, image classification tasks commonly 
involve the application of Convolutional Neural 
Networks (CNNs) that rely on a stack of 
convolutional and non-linear transformations of 
the input data to create high-level abstraction 
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classification18. Deep learning approaches such 
as CNNs have been already performed on 
pathology image classification, tumor 
classification, on imaging mass spectrometry 
data16, in the identification of metastatic cancer 
areas17, and annotation of pathological images19. 
In the context of FISH images, CNNs have been 
used for segmentation of chromosomes in 
multicolor FISH images20 and for detecting and 
counting of fluorescence signal in nuclei 
(SpotLearn)21. SpotLearn includes two 
supervised machine learning-based analysis 
workflows for high-accuracy detection of FISH 
signals from images with three separate 
fluorescence microscopy channels21. However, 
in the certified routine diagnostic workflow 
established in our Institute of Pathology, FISH 
signals are captured using a graded filter and the 
different HER2 gene and CEN17 signals are 
recorded in one step. Consequently, the 
resulting single-channel images cannot be 
distinguished by SpotLearn. Moreover, whereas 
SpotLearn detects spots of fluorescence, called 
FISH signals in our study, via segmentation, we 
aim to both localize and classify nuclei and FISH 
signals without the need for segmentation and 
additionally provide a detailed report on the 
HER2 amplification status in the sample. 
 
To address these issues, we developed a 
pipeline for automatic detection of HER2 
amplification status in FISH images based on 
RetinaNet, a state-of-the-art CNN for object 
localization. The pipeline consists of two 
independently trained and validated object 
localization networks. In the first step, nuclei are 
localized and classified as low, normal or high 
grade in a whole FISH image. Subsequently, for 
each detected nucleus, a second network 
localizes and classifies each individual 
fluorescence signal as HER2 or CEN17 from 
which HER2/CEN17 ratios are calculated.  
 
We demonstrate that this two-step process 
provides a per-nucleus classification accuracy of 
the amplification status that is on par with the 

interrater agreement between three pathologists. 
Moreover, the classification accuracy of whole 
FISH images, achieved by combining the results 
of the two detection networks, was found to be in 
nearly perfect agreement with the team of 
pathologists. By classifying each nucleus twice 
our pipeline intrinsically provides double reading 
to expose prediction uncertainty which is 
essential in clinical applications. Additionally, our 
detection system yields interpretable results by 
providing a detailed report on the amplification 
status of every nucleus in the FISH image. This 
allows pathologists to understand the decision of 
our deep learning system, which is a prerequisite 
for the critical questioning of that decision and for 
the manual reassessment of questionable or 
uncertain cases. In clinical practice, our deep 
learning system could provide an assisting 
platform for pathologists in the daily routine 
diagnosis of HER2 amplification status detection 
in FISH image analysis of breast and gastric 
cancer. In addition, all nuclei of a FISH can be 
analyzed at once, enabling HER2 amplification 
state recognition based on whole FISH slide 
annotation.   
 
 
Material and Methods 
Preparation of slides, Fluorescence in situ 
hybridization (FISH) and image capturing 
Formalin-fixed Paraffin-embedded (FFPE) 
cancer tissue was delivered from clinical 
institutions from all over Germany. FFPE tissue 
was cut into small pieces (2µm) on a slide and 
dehydrated using first a xylene washing step 
subsequent flowed by a series of ethanol steps 
(100%, 96%, 70%). After drying the slide at room 
temperature slides were incubated with sodium 
thiocyanate followed by a wash step using 
distilled water. Subsequently, slides were 
incubated with pepsin and hydrochloric acid, 
washed using distilled water and dried at room 
temperature. Probes (PathVysion HER-2 DNA 
Probe Kit II, Abbott Inc.) were hybridized at 37°C 
in a wet chamber overnight. Washing of slides 
was performed in 2x saline-sodium citrate (SSC) 
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buffer and DAPI counterstaining was conducted. 
Images were taken using fluorescence 
microscope (Axioskop 2, Zeiss Inc.) using a 
graded filter (Filter Set 23 (488023-0000-000), 
emission: 515-530 nm + 580-630 nm, Zeiss 
Inc.), recording HER2 gene signals, CEN17 
signals and a small subset of DAPI signals at 
once. Images were captured at a magnification 
of 40x and processed using the Image-Pro 6.0 
software (Media Cybernetics) and saved in 
JPEG file format with a size of 1200 x 1600 pixel. 
 
Convolutional neural network architecture 
Our pipeline consists of two convolutional neural 
networks (CNN) for object localization. The 
“nucleus detector network” takes the whole FISH 
image as input and localizes nuclei while 
simultaneously classifying them into high, 
normal, or low grade (Figure 1A). The “signal 
detector network” takes cropped image-regions 
around the already detected nuclei as input and 
localizes the individual spot-like fluorescence 
signals therein and classifies them into HER2 or 
CEN17 gene signals (Figure 1B). Both detector 
networks have an identical architecture based on 
RetinaNet (Figure 1C) and have identical 
training procedures. 

RetinaNet22 is a state-of-the-art convolutional 
neural network (CNN) for object localization. Its 
architecture consists of three key parts: First, a 
standard feedforward CNN with convolutional 
and pooling layers (ResNet5023) is used as 
backbone network to perform general feature 
extraction (Figure 1C, left). Second, the 
resulting feature maps are used in a Feature 
Pyramid Network (FPN)24 that provides 
semantically rich feature maps at various spatial 
resolutions (Figure 1C, center) by combining 
the up sampled features of low resolution but 
high semantic content with the high resolution 
feature maps from the corresponding spatial 
scale. Third, two fully convolutional heads are 
attached at each level of the FPN that compute, 
for each anchor box at every spatial location, the 
offsets of the bounding boxes for detected 
objects (regression head) and the class 

probabilities for each object (classification head) 
(Figure 1C, right). The large number of boxes 
predicted by RetinaNet improves the accuracy 
compared to one-step detector networks such as 
YOLO25,26 and SSD27, particularly for small 
objects. However, it also causes an extreme 
class imbalance as most predicted boxes are 
easy-to-classify background samples. In order to 
avoid the loss being dominated by these 
background samples, RetinaNet replaces the 
typically used cross-entropy loss with a 
dedicated loss function (focal loss) that 
increases the contribution from hard examples 
while decreasing the contribution of 
uninformative background samples. 

In this work, we used the implementation of 
RetinaNet provided by Fizyr28 with a ResNet50 
backbone provided by the Broad Institute. All 
networks are implemented within the Keras29 
framework with Tensorflow30 as backend.  

Image annotation 
FISH images of high quality were selected from 
documented images of breast cancer FISH 
diagnostics on the HER2 gene amplification 
status from the years 2015-2018 harbored at the 
Institute of Pathology at the clinical campus of 
Carl Gustav Carus Hospital of TU Dresden. FISH 
images (n=299) were manually annotated by 
providing bounding boxes and class labels for 
every nucleus in these images. Nuclei were 
categories into five classes: low, normal, high 
grade, uncertain, and artefact. Additionally, 
images of individual nuclei (n=300) were 
manually annotated with bounding boxes and 
class labels for each individual FISH signal, 
classified as CEN17, HER2 or HER2 cluster. 
The latter class was introduced to represent a 
cluster of HER2 signals where individual signals 
could not be distinguished. Annotation was 
performed manually by a pathologist using 
LabelImg31. Training and validation (randomly 
chosen 10% of all images) was performed on 
each step, respectively. An overview of the 
training data set is given in Table 1 for the 
nucleus detector and in Table 2 for the signal 
detector. 
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Training procedure 
Except for the input data and annotation, 
identical training procedures, loss functions and 
hyperparameters were used for training of both 
networks. Image data (including ground-truth 
bounding boxes) was augmented using 
rotations, random crops, translations, shearing, 
scaling, and horizontal and vertical flips using 
augmentation implementation provided by the 
Keras RetinaNet package. We used focal loss24 
for the classification, and a smooth L1 loss for 
bounding box regression. For optimization we 
used adaptive moment estimation (Adam)28 with 

a fixed learning rate of 10-4 and a batch size of 1
due to GPU memory limitations. Both networks
were trained for 50 epochs without pre-training
on a single NVIDIA GPU (GeForce 1080Ti).  
 
Post processing 
To convert the localization and classification
results from the nucleus detector network and
the signal detector network into nucleus-level
and image-level predictions, we implemented
detector-specific post processing steps as part of
the pipeline. Concretely, the results of the
nucleus detector are used to calculate two ratios:
ratio-1 is the number of low-grade nuclei divided

Figure 1. Illustration of the two-stage deep learning detection system of the HER2 gene amplification stage in FISH 
images from breast cancer samples. 
(A) The nucleus detector network takes whole FISH images as input and outputs the localization and classification for all detected 
nuclei. (B) The signal detector network subsequently takes each detected nucleus and localizes and classifies individual FISH 
signals. The output of both networks is post-processed by calculation of the low/high grade ratios and HER2/CEN17 ratios, and 
an image-wide classification prediction is computed and reported. (C) Both detectors are based on RetinaNet which consists of a 
ResNet50 feature extraction network, a feature pyramid network and two fully convolutional classification and box regression 
networks for every level of the feature pyramid. 
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by the number of all detected nuclei; ratio-2 is 
the number of high-grade nuclei divided by the 
number of all detected nuclei. A FISH image is 
defined to be low-grade when ratio-1 is at least 
0.2 while a FISH image is classified to be high-
grade when ratio-2 is at least 0.4. These 
thresholds can be modified by the pathologist 
according to individual specificities and criteria.  
 
Similarly, analogous ratios are computed from 
the results of the signal detector network. 
Specifically, the HER2/CEN17 ratio is calculated 
as the ratio of the number of CEN17 signals to 
the number of HER2 signals per nucleus. In case 
no HER2 signals were detected, the ratio is set 
to 1. In case of detection of a HER2 cluster, the 
ratio is set to a high value (HER2/CEN17=10). In 
case no CEN17 signal was detected, the nucleus 
is classified as artefact. To classify the FISH 
image based on the HER2/CEN17 ratios for 
each nucleus, the average of the HER2/CEN17 
ratios is calculated. A HER2/CEN17 ratio greater 
than 1.5 and lower than 6.0 indicates a low-
grade status of the FISH image. A value greater 
than 6.0 indicates a high-grade status of the 
FISH image. These thresholds can be modified 
by the pathologist according to individual 
specificities and criteria. The localization and 
classification results, as well as the calculated 
ratios for both detector networks were stored in a 
text file alongside the annotated images. From 
these files, a detailed report was generated for 
each FISH image describing the final image-wide 

classification as well as the nucleus- and signal-
level classification details on which this decision 
is based.  
 
 
Results 
To enable an automated detection service for 
FISH image samples, we developed a pipeline 
based on convolutional neural networks (CNN) 
for object detection, and trained it on annotated 
FFPE breast cancer FISH image samples 
originating from routine diagnostics. The data set 
used in this retrospective study was obtained 
using a certified FISH protocol that is used 
routinely on the daily diagnostic practice for 
breast and gastric cancer patients which has 
been in use since 16 years. Our deep learning 
pipeline consists of two RetinaNet22-based object 
localization networks that successively process a 
single FISH image. First, the nucleus-detector 
network localizes and classifies the amplification 
status of each nucleus in the FISH image into 
low, normal or high grade (Fig. 1A). 
Subsequently, the signal-detector network 
processes cropped images of each nucleus 
detected in the first step, and localizes and 
classifies every HER2 and CEN17 signal in 
these image, from which a HER2/CEN17 ratio is 
calculated (Fig. 1B). In this fashion, every 
nucleus in the FISH image is classified twice by 
two independently trained CNN models. From 
these nucleus-level classifications, proportions 
between low and high grade nuclei are 

Table 1. Details on training FISH images 
  # nuclei     
# images normal low-grade high-grade # uncertain # artifact 
299 626 782 1,760 2,037 1,050 
 
 
Table 2. Details on training interphase nuclei 
  # FISH signals 
# images CEN17 HER2 HER2 cluster 
301 512 1,552 441 
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calculated that result in a final image-wide 
classification into low, normal or high grade 
amplification status. This decision-making 
process was designed to be analogous to the 
assessment made by human pathologists where 
in a first step nuclei are image-wide localized 
and classified and secondly a confirmation of the 
classification is applied on the basis of 
HER2/CEN17 ratios for each nucleus (Fig. 1). 
 
Nucleus detector: Detection and classification of 
nuclei in FISH images 
Training of the nucleus-detector network was 
performed on manually labelled FISH images 
(n=299) containing several thousands (n~7,000) 
of high-grade, low-grade and normal nuclei, as 
well as uncertain cases and artifacts (as 
described in materials and methods) (Tab. 1).  
 
To validate the applicability and reliability of the 
nucleus-detector network in routine diagnostics, 
57 high quality FISH images were subject to 
image-wide nuclei detection and classification 
and compared to the annotation by three 
pathologists. A total of 1,183 nuclei were 
independently evaluated by a team of three 
pathologists on the one hand and the nucleus 
detector in the other hand. Both pathologists and 
the deep object detector network were tasked to 
localize and classify each nucleus in the 57 FISH 
images as unidentifiable (incl. artifacts and 
uncertain cases), low-grade, normal, or high-
grade. The classification results were collected 
as confusion matrices from which we calculated 
the interrater agreement between the nucleus 
detector and the pathologists in terms of a 
weighted Cohen’s Kappa coefficient κ

32, 
reflecting the agreement between independent 
observers and the ordinal nature of the classes. 
In absence of an unambiguous ground truth data 
set, we calculate the arithmetic mean of the 
agreement coefficients κ to reflect the 
performance of the nucleus detector compared 
to three pathologists. 
 

As shown in Figure 2A, we find that the nucleus 
detector obtains a mean κND=0.648, representing 
a substantial level of agreement32 between 
detector and pathologists. To compare this result 
to the agreement among the pathologists 
themselves, we calculated the agreement 
between the annotations obtained by all three 
pathologist using the average pairwise Cohen’s 
kappa’s (also known as Light’s kappa)32, 
resulting in κpatho=0.643. This demonstrates that 
there is a similar classification reliability among 
human pathologists, reflecting the inherent 
ambiguities in reading FISH images. As 
indicated in the accuracies displayed in Figure 
2B and as broken down in the confusion 
matrices in Figure 2C, these ambiguities mainly 
affect the classification of low and normal-grade 
nuclei, while high-grade and undefined nuclei are 
classified more reliably. Importantly, since these 
difficulties affect both human readers and our 
automated pipeline and, the agreement between 
nucleus detector and pathologists is on par with 
the agreement within the team of pathologists. 
 
The nuclei in FISH images from our routine 
diagnostics in this retrospective study can be of 
reduced quality compared to up-to-date 
fluorescence images as they have to be 
prepared under time limitation and a 
standardization procedure. Background noise, 
an increased number of artifacts and large 
differences in the number and shape of nuclei as 
well as overlapping nuclei all influence the image 
quality of the captured nuclei. In addition, the 
quality depends on the input tumor material and 
available tissue type for analysis. To test the 
robustness of the nucleus detector, we manually 
subdivided the nuclei from our investigated FISH 
images into the two groups “high quality” and 
“low quality” nuclei. Nuclei in the “high quality” 
group (n=641) are characterized by clearly 
differentiable HER2 and CEN17 signals and 
exhibit a uniform and regular nucleus shape 
without overlapping by further nuclei. In contrast, 
nuclei in the “low quality” group (n=542) show 
blurring of FISH signals, overlapping by further 
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nuclei, very weak FISH signals or signal artifacts 
which made it difficult to adequately detect the 
signals. As shown in Figure 2A, the image 
quality has substantial impact on the 
classification performance assessed by the 
interrater agreement. Cohen kappa of the 
nucleus detector is reduced from substantial 
agreement (κ=0.648) for high quality nuclei to 
moderate agreement (κ=0.458) in the case of 
low quality nuclei. Correspondingly, a similar 

decrease (from κ=0.643 to κ=0.450) can be 
observed in the agreement among the team of 
pathologists, again demonstrating the similarity 
in performance of our pipeline. 
 
Signal Detector: Counting the HER2 and CEN17 
FISH signals per nucleus and detection of the 
image-wide HER2/CEN17 ratio 
In order to increase the classification accuracy 
and to validate and control the nucleus-based 

Figure 2. The predication 
of the two-stage deep 
learning-based detection 
system for the HER2 gene 
amplification stage is in 
par with pathologists. 
 
(A) Interrater agreement 
(Light´s Kappa κ) among a 
team of three pathologists 
and between the team of 
pathologists and the 
nucleus detector (ND) and 
signals detector (SD), 
respectively, for all images, 
for high quality images and 
for low quality images.  
 
(B) Nucleus class-specific 
accuracies between the 
team of pathologists and 
the nucleus and diagonal 
detector. 
 
(C) Confusion matrices for 
all images with respect to 
the classification of nuclei 
among the group of the 
three pathologists, between 
the three pathologists and 
the nucleus detector and 
between the three 
pathologists and the signal 
detector, respectively.  
Light´s Kappa κ and 
accuracies are shown 
above each matrix. 
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classification performed by the nucleus detector, 
we trained a second RetinaNet to localize and 
classify the individual HER2 and CEN17 signals 
in each detected nucleus. It acts as a control 
mechanism comparable to a second opinion and 
provides additional detailed source of information 
on the number of HER2 and CEN17 signals per 
nucleus.  
 
The HER2 FISH signal detection class was split 
into two subclasses: HER2 single signals and 
HER2 clusters. A HER2 cluster represents a 
region of the nucleus which is characterized by a 
high density of adjacent HER2 signals which 
often cannot be well distinguished into the 
underlying single signals and hence appeared as 
an accumulation. Training was performed on 
several thousands (n~3,000; HER2-Cluster were 
counted as n=1 although they contain many 
single HER2 gene signals) of HER2 and CEN17 
signals from the ~300 randomly selected nuclei 
from the ~300 training FISH images. Apart from 
the different input images and annotations, the 
training procedure of the signal detector was 
identical to that described above for the nucleus 
detector (see Materials and Methods). 
The signal detector predicts a bounding box and 
classifies each individual HER2 single signal, 
HER2 cluster and CEN17 signal. The boxes are 
counted and the ratio of HER2/CEN17 signals is 
calculated per nucleus. Each nucleus is 
classified based on this ratio as described above 
(see Post-processing in Materials and 
Methods). The average and image-wide 
HER2/CEN17 ratio was calculated on the basis 
of all detected nuclei harboring CEN17 and 
HER2 signals. This quantity was used to decide 
on the image-wide HER2 gene amplification 
status of the corresponding FISH image. 
 
To measure the performance of the signal 
detector at the level of the detection of individual 
FISH signals, 50 randomly selected nuclei were 
analyzed and compared to the manual 
annotation by a pathologist. In six cases a 
different classification was revealed (Tab. 2). In 

three of the six cases, a normal nucleus was 
classified via the signal detector while the 
pathologist detected a low-grade nucleus which 
was caused due to missed HER2 single signal 
detection via the signal detector. In two of the six 
cases the signal detector identified a high-grade 
nucleus while the pathologist classified these 
nuclei as normal. The reason was that signal 
detector detected a HER2 signal as HER2 
cluster because of strong blurring of the single 
HER2 signal mimicking a HER2 cluster. In one of 
the six cases, a classification via the signal 
detector was not possible although the same 
number of HER2 signals and CEN17 signals was 
found in comparison to the pathologist. However, 
because only one HER2 signal was identified, 
the signal detector classified the nucleus as 
“uncertain”. 
 
To validate the applicability and reliability of the 
signal detector at the level of nucleus 
classification, the same 57 test FISH images 
were subject to nuclei detection and 
classification and compared to the team of 
pathologists (n=3). The comparison was also 
conducted to “high quality” and “low quality” 
nuclei as previously done for the nucleus 
detector to test the robustness on nuclei images 
of lower quality. We find an agreement value of 
κ=0.675, demonstrating a substantial agreement 
between our deep learning system and human 
pathologists  (Fig. 2B). This is a slightly higher 
level of agreement than obtained by the nucleus 
detector and also higher than the agreement 
among pathologists. For low quality nuclei, we 
find only a moderate agreement (κ=0.440), 
which is similar to the performance of the 
nucleus detector. For nuclei recorded at high 
quality, we find a classification agreement of 
κ=0.725, representing a good agreement with 
the pathologists. Nevertheless, visual inspection 
showed that a minor number of HER2 double or 
triple signals in very close vicinity were 
annotated as HER2 cluster leading to the wrong 
overall assessment that a high-grade nucleus 
occurred. 
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Comparison of nucleus and signal detector 
networks 
The accuracy of both deep learning networks 
was compared regarding the image-wide 
detection and classification of nuclei in the 57 
test FISH images (Suppl. Tab. 1). Similar to the 
nucleus detector, we found for the signal 
detector that the detection and classification 
performance differs between images. 

Interestingly, however, several images where the 
nucleus detector performed poorly were well-
classified by the signal detector and vice versa, 
indicating these two approaches are 
complementary and are best used in 
combination (Suppl. Tab. 1). While for most 
images, however, the performance of both 
networks is similar (Fig. 3A), a few images show 
larger differences in their accuracies. Four 
example images are depicted where (1) the 

Figure 3. Comparison of 
the accuracy of nucleus 
detector and signal 
detector on the image-
wide nucleus detection 
and classification.  
 
(A) The accuracy in 
classifying the detected 
nuclei was compared 
among the 57 validation 
FISH images. Exemplarily, 
the four most interesting 
images are depicted 
where (1) the accuracy 
was nearly 100% in both 
steps (image 35), (2) the 
accuracy was low in both 
steps (image 25), (3) 
nucleus detector had a 
better accuracy than 
signal detector (image 8) 
or (4) vice versa (image 
14).  
 
(B) Detailed overview 
about the classification of 
the nuclei in these four 
FISH images and  
 
(C) Visualization of the 
classification of nucleus 
detector. Nuclei with a 
differing classification by 
signal detector are marked 
with a red arrow. 
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accuracy was nearly 100% for both detector 
networks (Fig. 3, image 35), (2) the accuracy 
was lowest for the signal but higher in the 
nucleus detector (Fig. 3, image 8), (3) the 
accuracy was lower for the nucleus detector 
compared to the signal detector (Fig. 3, image 
14) and (4) the accuracy was low for both 
detectors (Fig. 3, image 25). Nuclei in the FISH 
images are marked with a red arrow where a 
different classification was obtained by both 
detectors (Fig. 3C). In image 35 nuclei are 
clearly distinguishable and show massive 
amplification of the HER2 gene, which can be 
easily and clearly detected by both detectors. 
Therefore, no differences in the nuclei 
classification were detected. In image 25 the 
performance of the two detectors is equally low 

due to the general low quality of many nuclei 
occurring in the image. In addition, the overall 
number of classifiable nuclei in the image is low 
so that the influence of the “low quality” nuclei on 
the image-wide classification is higher. Reasons 
for different accuracy between the nucleus and 
signal detectors in images 8 and 14 may be due 
to weak and blurring FISH signals not seen by 
the signal detector and/or the interpretation of 
very adjacent located HER2 gene signals as 
HER2 cluster by the signal detector leading to 
false classification of the corresponding nucleus. 
More precisely, Figure 4 shows selected and 
representative examples on three cases for a 
same and three cases for a different 
classification between both detectors. The three 
nuclei in the left column (Fig. 4A-C) were 

Figure 4. Application of the deep learning-based system on six interphase nuclei detection.  
The signal detector (SD) detects FISH signals in each of the separated and pre-classified nuclei from the nucleus detector (ND) 
and classifies the signals into HER2 (light blue framed boxes), HER2 cluster (dark blue framed boxes) and CEN17 (red framed 
boxes) signals. Exemplarily three nuclei are shown:  
(A-C) The classification was confirmed.  
(D) The classification was not confirmed due to a misinterpretation of three very adjacent HER2 gene single signals as HER2 
cluster.  
(E) The classification was not confirmed because two HER2 gene signals were not detected by the signal detector. (F) The 
classification was not confirmed although all FISH signals were detected by signal detector because the classification was defined 
to be unclassifiable if only one CEN17 signals occurs. 
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classified identically by both networks and the 
classification corresponds to those of the 
pathologist, providing stronger confidence in the 
correct classification. The three nuclei in the right 
column, however, were classified differently (Fig. 
4D-F). In the first case (Fig. 4D) the signal 
detector detected three HER2 signals in close 
vicinity as a single HER2 cluster, leading to a 
misclassification as high-grade nucleus while the 
nucleus detector correctly classified this nucleus 
as low-grade. In the second case (Fig. 4E), the 
signal detector missed the detection of HER2 
and CEN17 signals, presumably due to 
overexposure, and therefore a misclassification 
of the nucleus as normal was conducted. The 
nucleus detector correctly classified the nucleus 
as low-grade. Finally, in Figure 4F, the signal 
detector correctly detected all signals but 
classified the nucleus as normal, the nucleus 
detector classified the nucleus as uncertain, and 
the pathologist´s classification was low-grade. 
Automated classification of high quality FISH 
images into normal, low- and high-grade Our 
nuclei detection and classification system relies 
on the combination of the two steps performed 
by the nucleus detectors and the signal detector 
enabling a final decision on the HER2 gene 
amplification status with HER2 and CEN17 FISH 
signal counting of the whole FISH image. The 
decision relies on ratios being calculated in both 
detector steps. In the nucleus detector, the ratio-
1 and the ratio-2 (ranging from 0 to 1, 
respectively) are calculated and indicate the 
relative number of low grade nuclei (ratio-1) and 
high grade nuclei (ratio-2), respectively. A low-
grade or high-grade stage is indicated by ratio-1 
greater or equal to 0.2 or by ratio-2 greater than 
0.4, respectively. Both thresholds are modifiable 
with respect to the pathologist’s specified criteria. 
In the signal detector, an image-wide 
HER2/CEN17 ratio is calculated as average 
value among all nuclei-specific HER2/CEN17 
ratios of classifiable nuclei. A HER2/CEN17 ratio 
greater than 1.5 and lower than 6.0 indicates a 
low-grade status of the FISH image. A value 
greater than 6.0 indicates a high-grade status of 

the FISH image. The image-wide classification of 
the HER2 gene amplification status showed 
identical results by our pipeline and the team of 
pathologists for 55 of the 57 (96%) test FISH 
images, showing excellent agreement between 
our automated pipeline and the team of 
pathologists (Tab. 3). In two of the 57 images a 
different classification was observed. In one of 
the two cases, the nucleus detector classified a 
low-grade FISH image while the signal detector 
had a tendency towards a high-grade image. In 
the second case, the nucleus detector classified 
the image to be low-grade while the signal 
detector classified it as high-grade due to a 
misclassification of one normal nucleus as high-
grade nucleus. 
 
Conclusions 
In this study, we developed a deep learning 
pipeline for analyzing Fluorescence in situ 
hybridization (FISH) images regarding the 
image-wide detection of interphase nuclei and 
their classification depending on the HER2 gene 
amplification level. The pipeline can be useful in 
assisting pathologists in analyzing the HER2 
gene amplification stage of a breast cancer or 
gastric cancer samples by automatically 
analyzing high quality FISH images. Image-wide 
ratios representing the number of abnormal 
nuclei in relationship to all classified nuclei are 
calculated which serve as guideline for 
classifying the HER2 gene amplification status of 
the corresponding tumor sample from which the 
FISH image originated from. It can also be used 
for automatic investigation in retrospective 
studies of large amounts of documented FISH 
images collected over several years for re-
evaluation. Another application could be the 
enhancement of the documentation quality of the 
images. Furthermore, an anonymized and 
human-independent evaluation of the HER2 
gene amplification level is possible. Analyzing 
one FISH image including the generation of the 
annotated image data and the report occurs in 
less than a second which is orders of magnitude 
faster compared to human visual evaluation and  
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Table 3. Detection of the HER2 gene amplification status in 57 validation FISH images 

 Nucleus detector1 Signal detector2 Grade estimation Pathologist 

Image Ratio 
13 Ratio 24 HER2/CEN175 based on Nucleus/Signal 

detector 1 2 3 

1 0.08 0.83 9.42 HIGH/HIGH HIGH HIGH HIGH 
2 0.07 0.93 9.43 HIGH/HIGH HIGH HIGH HIGH 
3 0 1.00 10.00 HIGH/HIGH HIGH HIGH HIGH 
4 0.13 0.88 7.75 HIGH/HIGH HIGH HIGH HIGH 
5 0.33 0.67 10.00 HIGH/HIGH HIGH HIGH HIGH 
6 0.07 0.93 9.69 HIGH/HIGH HIGH HIGH HIGH 
7 0.22 0.78 9.11 HIGH/HIGH HIGH HIGH HIGH 
8 0 0.91 9.13 HIGH/HIGH HIGH HIGH HIGH 
9 0.17 0.83 10.00 HIGH/HIGH HIGH HIGH HIGH 
10 0 1.00 10.00 HIGH/HIGH HIGH HIGH HIGH 
11 0 1.00 10.00 HIGH/HIGH HIGH HIGH HIGH 
12 0 1.00 10.00 HIGH/HIGH HIGH HIGH HIGH 
13 0.17 0.75 9.46 HIGH/HIGH HIGH HIGH HIGH 
14 0.25 0.75 9.15 HIGH/HIGH HIGH HIGH HIGH 
15 0.26 0.74 8.08 HIGH/HIGH HIGH HIGH HIGH 
16 0.57 0 2.63 LOW/LOW LOW LOW LOW 
17 0.75 0 3.67 LOW/LOW LOW LOW LOW 
18 0.67 0.17 1.40 LOW/LOW LOW LOW LOW 
19 0.31 0 3.37 LOW/LOW LOW LOW LOW 
20 0.36 0 1.55 LOW/LOW LOW LOW LOW 
21 0.40 0 4.33 LOW/LOW LOW LOW LOW 
22 0.40 0 1.65 LOW/LOW LOW LOW LOW 
23 0.31 0 1.65 LOW/LOW LOW LOW LOW 
24 0.33 0 1.93 LOW/LOW LOW LOW LOW 
25 0.50 0.10 1.67 LOW/LOW LOW LOW LOW 
26 0.50 0 4.89 LOW/LOW LOW LOW LOW 
27 0.44 0.22 3.33 LOW/LOW LOW LOW LOW 
28 0.27 0 1.00 LOW/NORMAL LOW LOW LOW 
29 0.25 0 3.43 LOW/LOW LOW LOW LOW 
30 0.15 0.69 8.71 HIGH/HIGH HIGH HIGH HIGH 
31 0 1.00 8.20 HIGH/HIGH HIGH HIGH HIGH 
32 0 1.00 9.00 HIGH/HIGH HIGH HIGH HIGH 
33 0.09 0.91 8.82 HIGH/HIGH HIGH HIGH HIGH 
34 0.05 0.95 8.93 HIGH/HIGH HIGH HIGH HIGH 
35 0 1.00 10.00 HIGH/HIGH HIGH HIGH HIGH 
36 0.15 0.85 9.43 HIGH/HIGH HIGH HIGH HIGH 
37 0.17 0.83 10.00 HIGH/HIGH HIGH HIGH HIGH 
38 0 1.00 10.00 HIGH/HIGH HIGH HIGH HIGH 
39 0 1.00 10.00 HIGH/HIGH HIGH HIGH HIGH 
40 0.15 0.85 9.41 HIGH/HIGH HIGH HIGH HIGH 
41 0 1.00 10.00 HIGH/HIGH HIGH HIGH HIGH 
42 0 1.00 10.00 HIGH/HIGH HIGH HIGH HIGH 
43 0 1.00 10.00 HIGH/HIGH HIGH HIGH HIGH 
44 0.29 0 1.35 LOW/LOW LOW LOW LOW 
45 0.44 0 1.63 LOW/LOW LOW LOW LOW 
46 0.56 0 1.92 LOW/LOW LOW LOW LOW 
47 0.67 0 5.63 LOW/LOW LOW LOW LOW 
48 1.00 0 4.50 LOW/LOW LOW LOW LOW 
49 0.53 0 3.20 LOW/LOW LOW LOW LOW 
50 0.69 0.06 1.91 LOW/LOW LOW LOW LOW 
51 0.38 0 2.44 LOW/LOW LOW LOW LOW 
52 0.40 0 2.81 LOW/LOW LOW LOW LOW 
53 0.67 0.17 4.93 LOW/LOW LOW LOW LOW 
54 1.00 0 1.17 LOW/LOW LOW LOW LOW 
55 0.40 0 7.00 LOW/HIGH LOW LOW LOW 
56 0.29 0 1.39 LOW/LOW LOW LOW LOW 
57 0.43 0 2.90 LOW/LOW LOW LOW LOW 

1 The nucleus detector detects and classifies nuclei image-wide in a FISH image 
2 The signal detector detects, classifies and counts FISH signals in each nucleus detected by the first RetinaNet pipeline 
3 Ratio-1 represents number of low-grade nuclei divided by the number of all classified nuclei. A value greater than 0.2  
indicates LOW stage of the FISH image. 
4 Ratio-2 represents number of high-grade nuclei divided by the number of all classified nuclei. A value greater than 0.4  
indicates HIGH stage of the FISH image. 
5 The average of all detected HER2/CEN17 ratios among all nuclei in one FISH image. A value greater than 1.0  
indicate LOW stage and greater than 6.0 HIGH stage of the FISH image. 
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manual report generation. Therefore, we 
interpret our pipeline as a first step towards the 
automation of the HER2 gene amplification 
detection in FISH images.  
 
Our pipeline consists of the successive 
application of two state-of-the-art CNNs for 
localization and classification (nucleus detector 
and signal detector). In the first step the nucleus 
detector detects and classifies nuclei in the FISH 
images and calculates two ratios: ratio-1 
represents how frequently nuclei with a low 
amplification status of HER2 genes occurred and 
ratio-2 indicates the same for nuclei with high 
amplification status of the HER2 gene. In the 
second step, the signal detector, identifies and 
classifies FISH signals for each nucleus into 
HER2 signals, CEN17 signals and HER2 cluster, 
which consists of multiple, non-distinguishable 
HER2 signals. An average HER2/CEN17 image-
wide ratio is calculated on the basis of all 
nucleus-specific HER2/CEN17 ratios and serves 
for decision making on the image-wide HER2 
gene amplification status of the FISH image. The 
reliability of our pipeline was demonstrated to be 
comparable to the pathologist with an accuracy 
of 96% based on 57 annotated FISH images (55 
out of 57 images). Apart from its accuracy, our 
two-step pipeline provides additional robustness 
by classifying every nucleus twice. Moreover, the 
detailed reports at the image level as well as at 
the level of an individual nucleus provide 
important information that largely increases the 
interpretability of the automated detection of the 
HER2 amplification status. One limitation of this 
approach is need for annotation of bounding 
boxes and classification of nuclei and FISH 
signals. This requires considerable addition work 
as compare to an alternative approach where 
image-wide classification of HER2 amplification 
status is directly learned from FISH whole slides. 
Indeed, it is possible to train off-the-shelf 
networks such as ResNet23 or Inception33 to 
achieve comparable accuracy as our pipeline. 
However, this strategy completely lacks the AI 
interpretability which we consider an essential 

requirement for clinical applicability. Our deep 
learning pipeline will only be applied in clinical 
practice and involved in decision about treatment 
options if pathologists are able to understand 
how the system arrives at a particular decision. 
 
Software-based systems for automated detection 
of HER2 gene amplification status in breast 
cancer samples have already been developed34–

36, all based on conventional image analysis 
algorithms. These software solutions are strictly 
dependent on accurate preparation of the FISH 
slides, which otherwise could not be well 
analyzed by the software pipeline. In contrast, 
our pipeline can easily be trained under 
laboratory specific conditions and is not 
dependent on strict preparation conditions and 
therefore is highly flexible to be used in any 
laboratory under laboratory conditions. The 
conventional image analysis pipelines achieve a 
high level of agreement with the pathologist (e.g. 
acc=96%-99% and κ=0.89 or κ =0.9436 or 
acc=96%-97% and κ=0.92 to κ=0.9434 
(depending on categorization strategy)) on the 
single sample level which is comparable to our 
success rate of 96% accuracy on a FISH image-
wide level. However, since no quantitative data 
is available on their performance at the level of a 
single nucleus, our results cannot be directly 
compared to these previous studies. At this level, 
our results show that our system achieves 
agreements that correspond to those of a team 
of pathologists.  
  
However, there are still limitations of our 
pipeline: An important issue is the difficulty in 
predicting the HER2 gene amplification status in 
FISH images of relatively low quality 
characterized by high background noise, low 
signal-to-noise ratio, a large number of artifacts, 
strong differences in nuclei shape, weak signals, 
or truncated/overlapping nuclei. To overcome 
these limitations one would need to either (1) 
greatly enlarge the manually annotated training 
data set by incorporating many thousands of 
corresponding low-quality examples, (2) improve 
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the image acquisition practice in clinical routine 
to obtain higher quality images, or (3) further 
increase the number of pathologists that provide 
annotations. However, due to performing the 
FISH diagnostics on slides originating from 
FFPE material it might be difficult to obtain 
higher quality images. FISH slides originating 
from FFPE samples are of much lower quality 
compared to slides from fresh material. Training 
our pipeline on these samples would largely 
enhance its performance on future cases of 
similar reduced image quality. Nevertheless, 
even in its current form our pipeline (trained on 
high quality FISH images) makes surprisingly 
accurate predictions on the HER2 amplification 
status of the tumor on these low quality FISH 
images demonstrating the general potential of 
deep learning on this task (Suppl. Fig. 1). It 
should be noticed that, in clinical practice, 
pathologists do not analyze every nucleus in a 
FISH image. Instead, a certain number of nuclei 
(at least 20) are pre-selected and all other nuclei 
that are difficult to analyze (e.g. due to low image 
quality) are excluded. Additionally, variations in 
the experimental setup among different 
pathology labs might result in different shape, 
structure and nuclei composition of the FISH 
images (e.g. used antibodies and fluorophores, 
tissue type, tissue preparation protocol, 
consideration of DAPI staining, fluorescence 
microscope type and parameters). Therefore, a 
customization of our pipeline, e.g. setting 
different thresholds, and additional training of 
both networks will be necessary to adapt the 
detection and classification pipeline to lab-
specific conditions and lab-specific investigated 
tissue types in order to automatize the HER2 
amplification detection of tumors in other 
pathology labs.  
 
Pathologists normally analyze the FISH slides 
directly under the fluorescence microscope by 
acquiring only a single 2D image at a specific 
focus position of the microscope. Consequently 
any volumetric image context that otherwise 
could provide additional classification information 

is lost. Therefore, a deep learning pipeline based 
on nuclei detection and classification on a stack 
of images representing the 3D volume of the 
FISH slide is likely to show improved accuracy 
compared to the 2D solution used in our study. 
Additionally, future solutions could directly 
implement one-stage detectors or similar CNN 
architectures into the fluorescence microscope 
for instantly classifying the nuclei while the 
pathologist is observing it. A comparable solution 
was recently developed by Google Inc. for 
marking tumor areas in Hematoxylin and Eosin 
stained slides37. Alternatively, a fully automated 
software solution recording all layers and 
positions of a FISH slide as volumetric input to 
the deep learning-based nuclei detection and 
classification pipeline might be used. 
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Supplemental Figure 1. Two 
examples of the application of 
our pipeline on FISH images of 
low quality.  
 
In (A) a normal stage was 
detected and corresponds to the 
decision of a pathologist.  
 
In (B) a high-grade stage was 
detected which also corresponds 
to the pathologists decision on 
the FISH image. Numerous nuclei 
have not been detected in both 
images indicating the limitations 
of our system on FISH images of 
very low quality. Training on a 
large set of FISH images of low 
quality would enhance the 
accuracy in detecting most nuclei. 
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