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20 Abstract

21 Background

22 Near infrared spectroscopy (NIRS) is currently complementing techniques to age-grade 

23 mosquitoes. NIRS classifies lab-reared and semi-field raised mosquitoes into < or ≥ 7 days old with 

24 an average accuracy of 80%, achieved by training a regression model using partial least squares 

25 (PLS) and interpreted as a binary classifier. 

26 Methods and findings

27 We explore whether using an artificial neural network (ANN) analysis instead of PLS 

28 regression improves the current accuracy of NIRS models for age-grading malaria transmitting 

29 mosquitoes. We also explore if directly training a binary classifier instead of training a regression 

30 model and interpreting it as a binary classifier improves the accuracy. 

31 A total of 786 and 870 NIR spectra collected from laboratory reared An. gambiae and An. 

32 arabiensis, respectively, were used and pre-processed according to previously published protocols. 

33 Based on ten-fold Monte Carlo cross-validation, an ANN regression model scored root mean 

34 squared error (RMSE) of 1.6  0.2 for An. gambiae and 2.8  0.2 for An. arabiensis; whereas the ± ±

35 PLS regression model scored RMSE of 3.7  0.2 for An. gambiae, and 4.5  0.1 for An. ± ±

36 arabiensis. When we interpreted regression models as binary classifiers, the accuracy of the ANN 

37 regression model was 93.7  1.0 % for An. gambiae, and 90.2  1.7 % for An. arabiensis; while  ±  ±

38 PLS regression model scored the accuracy of 83.9  2.3% for An. gambiae, and 80.3  2.1% for ± ±

39 An. arabiensis. We also find that a directly trained binary classifier yields higher age estimation 

40 accuracy than a regression model interpreted as a binary classifier. A directly trained ANN binary 

41 classifier scored an accuracy of 99.4  1.0 for An. gambiae, and 99.0  0.6% for An. arabiensis; ± ±

42 while a directly trained PLS binary classifier scored 93.6  1.2% for An. gambiae, and 88.7  ± ±

43 1.1% for An. arabiensis. 

44 Conclusion

45 Training both regression and binary classification age models using ANNs yields models with 

46 higher estimation accuracies than when the same age models are trained using PLS. Regardless of 

47 the model architecture, directly trained binary classifiers score higher accuracy on classifying age of 

48 mosquitoes than a regression model translated as binary classifier. Therefore, we recommend 

49 training models to estimate age of An. gambiae and An. arabiensis using ANN model architectures 

50 and direct training of binary classifier instead of training a regression model and interpret it as a 

51 binary classifier.
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52 Introduction

53 Estimating the age of mosquitoes is one of the indicators used by entomologists for estimating 

54 vectorial capacity [1] and the effectiveness of an existing mosquito control intervention. Malaria is a 

55 vector-borne parasitic disease transmitted to people by mosquitoes of the genus Anopheles. The 

56 disease killed approximately 445,000 people in 2016 [2]. Mosquitoes contribute to malaria 

57 transmission by hosting and allowing the development to maturity of the malaria-causing 

58 Plasmodium parasite [3]. Depending on environmental temperature, Plasmodium takes 10-14 days 

59 in an Anopheles mosquito to develop fully enough to be transmitted to humans [3]. Therefore, 

60 knowing the age of a mosquito provides an indication of whether a mosquito is capable of 

61 transmitting malaria. 

62 Knowing the age of a mosquito population is also important when evaluating the effectiveness 

63 of a mosquito control intervention. Commonly used vector control interventions such as insecticide 

64 treated nets (ITNs) and indoor residual spraying (IRS) reduce the abundance and the lifespan of a 

65 mosquito population to a level that does not support Plasmodium parasite development to maturity 

66 [4, 5]. Monitoring and evaluation of ITNs and IRS involves determining the age and species 

67 composition of the mosquito population before and after intervention. The presence of a small 

68 number of old mosquitoes in an area with an (ITNs or IRS) intervention indicates that the 

69 intervention is working. On the other hand, if there are more old mosquitoes, the intervention is not 

70 working effectively. 

71 The current techniques used to estimate mosquito age are based on a combination of ovary 

72 dissecting and conventional microscopy to determine their egg laying history. Those found to have 

73 laid eggs are assumed to be older than those found to not have laid eggs [6]. This assumption can be 

74 misleading, as mosquitoes can be old but have not laid eggs and can be young (at least three days 

75 old), and have laid eggs. Dissection is laborious, difficult, and limited to only few experts. As a 

76 result, we need a new approach to address these limitations. 

77 Different techniques such as a change in abundance of cuticular hydrocarbons [7, 8], 

78 transcriptional profiles [9, 10], and proteomics [11, 12] have been developed to age grade Anopheles 

79 mosquitoes. However, these techniques are still in early development stages and are limited to 

80 analyzing a small number of samples due to high analysis costs involved.

81 Near infrared spectroscopy (NIRS) is a complementary method to the current mosquito age 

82 grading techniques [13, 14]. NIRS is a high throughput technique, which measures the amount of the 

83 near infrared energy absorbed by samples. NIRS has been applied to identify species of insects 

84 infecting stored grains [15]; to age grade houseflies [16], stored-grain pests [17], and biting midges 

85 [18]; to differentiate between species and subspecies of termites [19]; to estimate the age and to 
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86 identify species of morphologically indistinguishable laboratory reared and semi-field raised 

87 Anopheles gambiae and Anopheles arabiensis mosquitoes [13, 14, 20-23]; to estimate the age of 

88 Aedes aegypti mosquitoes [24]; and to detect and identify two strains of Wolbachia pipientis 

89 (wMelPop and wMel) in male and female laboratory-reared Aedes aegypti mosquitoes [25].  

90 The current state-of-the-art of the accuracy of NIRS to classify the age of lab-reared An. 

91 gambiae and An. arabiensis is an average of 80% [13, 14, 20-23]. This accuracy is based on a 

92 trained regression model using partial least squares (PLS) and interpreted as a binary classifier to 

93 classify mosquitoes into two age groups (< 7 days and ≥ 7 days). 

94 In this paper, using a set of spectra collected from lab-reared An. gambiae and An. arabiensis, 

95 we explored ways to improve the reported accuracy of a PLS model for estimating age of malaria-

96 transmitting mosquitoes. Selection of a method to train a model is one of the important factors 

97 influencing the accuracy of the model [26].  Studies [27-30] compared the accuracies of artificial 

98 neural network (ANN) and PLS regression models for predicting respiratory ventilation; explored 

99 the application of ANN and PLS to predict the changes of anthocyanins, ascorbic acid, total phenols, 

100 flavonoids, and antioxidant activity during storage of red bayberry juice; determined glucose 

101 multivariation in whole blood using partial least-squares and artificial neural networks based on 

102 mid-infrared spectroscopy; and compared modeling of nonlinear systems with artificial neural 

103 networks and partial least squares, concluding that ANN models generally perform better than PLS 

104 models. Therefore, using ANN [29-31]  and PLS, we trained regression age models and compared 

105 results. 

106 Since previous studies [13, 14, 20-23] trained a regression model and interpreted it as a binary 

107 classifier (< 7 d and ≥ 7 d), the interpretation process may introduce errors and compromise the 

108 accuracy of the model. We further trained ANN and PLS binary classifiers and compared their 

109 accuracies with the ANN and PLS regression models translated as binary classifiers. 

110 We find that training of both regression and binary classification models using an artificial 

111 neural network architectures yields higher accuracies than when the corresponding models are 

112 trained using partial least squares model architectures. Also, regardless of the architecture of the 

113 model, training a binary classifier yields higher age class estimation accuracy than a regression 

114 model interpreted as a binary classifier. 

115
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116 Materials and methods

117 Ethics approval

118 Permission for blood feeding laboratory-reared mosquitoes was obtained from the Ifakara 

119 Health Institute (IHI) Review Board, under Ethical clearance No. IHRDC/EC4/CL.N96/2004. Oral 

120 consent was obtained from each adult volunteer involved in the study. The volunteers were given the 

121 right to refuse to participate or to withdraw from the experiment at any time. 

122 Mosquito and spectra collection 

123 We used spectra of Anopheles gambiae mosquito collected at 1, 3, 5, 7, 9, 11, 15, and 20 

124 days and An. arabiensis collected at 1, 3, 5, 7, 9, 11, 15, 20 and 25 days post emergence from the 

125 Ifakara Health Institute insectary. While An. arabiensis were reared in a semi-field system (SFS) at 

126 ambient conditions, An. gambiae were reared in a room made of bricks at controlled conditions. 

127 Adult mosquitoes were often provided with a human blood meal in a week and 10% glucose 

128 solution daily. Using a LabSpec 5000 NIR spectrometer with an integrated light source (ASD Inc., 

129 Longmont, CO), we followed the protocol supplied by Mayagaya and colleagues to collect spectra 

130 [13]. Prior to spectra collection, as opposed to killing by chloroform, mosquitoes were killed by 

131 freezing for 20 minutes. A total of 786 An. gambiae and 870 An. arabiensis were scanned with at 

132 least 70 mosquitoes from each age group.

133 Model training

134 We first trained ANN and PLS regression models, scored and compared their accuracies as 

135 regressors and then as binary classifiers. We further trained binary classifiers and compared the 

136 accuracies with regressors interpreted as binary classifiers. We used a two-tail t-test to test the 

137 hypothesis that there is significant difference in accuracies between ANN and PLS trained model, a 

138 one-tail t-test to test the hypothesis that an ANN trained model scores higher accuracies than a PLS 

139 trained model. 

140 In each species, we separately processed spectra according to Mayagaya et. al, randomized, 

141 and divided processed spectra into two groups. The first group contained 70% of the total spectra 

142 and was used for training models. The second group had 30% of the total spectra and was used for 

143 out-of-sample testing. 

144 We trained a PLS ten-components model on using ten-fold cross validation [32]. Even though 

145 a range of six to ten PLS components were used in previous studies [13, 14, 20-22], we used ten 

146 PLS components after plotting the percentage of variance explained in the dependent variable 

147 against the number of PLS components (S1 Fig in the supporting information). For both species, 
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148 there is not much change in the percentage variance explained in the dependent variables beyond ten 

149 components. 

150 For the ANN model, we trained a feed-forward ANN with one hidden layer, ten neurons, 

151 and a linear transfer function (purelin) using Levenberg-Marquardt (damped least-squares) 

152 optimization [33]. We used actual mosquito ages as labels during training of both PLS and ANN 

153 regression models. We determined whether the trained models are over-fit by applying trained 

154 models (PLS and ANN) to estimate ages of mosquitoes on both training (in sample) and test (out-of-

155 sample) data sets. Normally, if the model is not over-fit, the accuracy of the model is consistent 

156 between training and test sets [34]. 

157 The accuracies of the models were determined by computing their root mean squared error 

158 (RMSE) [35-37] . We evaluated the influence of the model architecture on the model accuracy by 

159 comparing their accuracies. 

160 When interpreting the regression models as binary classifiers, mosquitoes with an estimated 

161 age < 7 days were considered as less than seven days old, and those ≥ 7 were considered older than 

162 or equal to seven days old. Using Equations 1, 2, and 3, we computed and compared sensitivity, 

163 specificity, and accuracy between the PLS and ANN regression models interpreted as binary 

164 classifiers. Sensitivity of the model is the ability to classify mosquitoes correctly, which are older 

165 than or equal to seven days old (assumed to be positively related to malaria transmission), and 

166 specificity is the ability of the model to classify mosquitoes correctly which are less than seven days 

167 old (assumed to be negatively related to malaria transmission) [38-40]. 

168

169 Sensitivity =  
Number of mosquitoes correctly predicted as ≥ 7 days old

Total number of  mosquitoes ≥ 7 days old                 (1)

170

171 Specificity =
Number of mosquitoes correctly predicted < 7 days old

Total number mosquitoes < 7 days old                         (2 )  

172

173 Accuracy =
Sensitivity + Specificity

Total number of all mosquitoes in a test set                                                   (3)

174

175 Training a regression model and interpreting it as a binary classifier can compromise the 

176 accuracy of the model as a classifier. This is because, while training a regression model forces the 

177 model to learn differences between actual ages of mosquitoes, direct training of a binary classifier 

178 forces the model to learn similarities between mosquitoes of the same class and only differences 

179 between two classes. Therefore, we directly trained binary classification models using ANN and 
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180 PLS architectures and compare the accuracies with the ANN and PLS regression models interpreted 

181 as binary classifiers. In both species, we divided processed spectra (786 spectra for An. gambiae and 

182 870 spectra for An. arabiensis) into two groups; < 7 days old and ≥ 7 days old. The spectra in a 

183 group with mosquitoes < 7 days old were labeled 0, 1 for those in a group with mosquitoes ≥ 7 days 

184 old, and the two groups were merged. The spectra were randomized and divided into training (N = 

185 508 for both species) and test (N = 278 for An. gambiae and N = 362 for An. arabiensis) sets. We 

186 trained a PLS ten-component model using ten-fold cross-validation [32] and a one hidden layer, ten 

187 neuron feed-forward ANN using logistic regression as a transfer function and Levenberg-Marquardt 

188 (damped least-squares) optimization for training [33, 41]. During interpretation of these models, 

189 mosquitoes < 0.5 were considered as < 7 days old and ≥ 0.5 as ≥ 7 days old. Using Equations 1, 2, 

190 and 3, for each species, we computed specificity, sensitivity, and accuracy of the trained PLS and 

191 ANN binary classifiers and compared to the PLS and ANN regressors interpreted as the binary 

192 classifiers. 

193 We repeated the process of random splitting the dataset into training and test sets; training, 

194 testing and scoring the accuracies of trained models ten times and compare the average results, a 

195 process known as Monte Carlo cross-validation [42-44].  

196 Results

197 Both PLS and ANN regression models consistently estimated the age of An. gambiae and An. 

198 arabiensis in the training and test data sets, showing that the models were not over-fit during 

199 training (Fig 1). Table 1, S2 Fig in the supporting information and Fig 2 present the performances of 

200 PLS and ANN regression models when estimating actual age of An. gambiae and An. arabiensis in 

201 the test data set and when their outputs are interpreted into two age classes, showing significant 

202 differences in accuracies of the two models (PLS vs ANN models). Table 1 further shows that the 

203 ANN regression model scores significantly higher accuracy than the PLS regression model.

204  

205

206 Fig 1: PLS (A and C) and ANN (B and D) regression models, estimating actual age of training 

207 and testing samples of An. gambiae (A and B) and An. arabiensis (C and D), respectively. 
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208  Table 1: Performance analysis of PLS and ANN regression models on estimating age of An. 

209 gambiae and An. arabiensis. Results from ten-fold Monte Carlo cross-validation.

Model architecture P-value
(two tail)

P-value
(one tail)

Species Model 
estimation

Metric

PLS ANN

Actual age  RMSE 3.7  0.2± 1.6  0.2± 3.9 x 10-09 1.6 x 10-11

Accuracy (%) 83.9  ±

2.3

93.7  1.0± 3.6 x 10-07 2.3 x 10-07

Sensitivity (%) 89.0  ±

2.1

92.5  1.6± 4.7 x 10-02 4.7 x 10-01

An. 

gambiae Age class

Specificity (%) 75.8  ±

5.2

95.6  1.8± 3.7 x 10-11 1.1 x 10-06

Actual age RMSE 4.5  0.1± 2.8  0.2± 1.7 x 10-09 5.9 x 10-08

Accuracy (%) 80.3  ±

2.1

90.2  1.7± 1.4 x 10-07 2.4 x 10-08

Sensitivity (%) 90.5  ±

1.9

91.7  3.3± 5.8 x 10-01 6.0 x 10-01

An. 

arabiensis Age class

Specificity (%) 60.3  ±

4.2

88.4  3.9± 1.7 x 10-07 1.2 x 10-06

210

211

212

213 Fig 2: Number of An. gambiae s.s (A and B) and An. arabiensis (C and D) in two age classes 

214 (less than or greater/equal seven days) when PLS (A and C) and ANN (B and D) regression 

215 models, respectively, interpreted as binary classifiers. 

216

217

218  Fig 3 represents consistency in accuracy of PLS (A and C) and ANN (B and D) directly trained 

219 binary classifiers on estimating both training and test data sets, showing that the models were not 

220 over-fitted during training. Fig 4, S3 Fig in the supporting information and Table 2 present the 

221 results when directly trained PLS (A and C) and ANN (B and D) binary classifiers were applied to 

222 classify ages of An. gambiae (A and B) and An. arabiensis (C and D) in test sets (out-of-the sample 

223 testing), showing ANN binary classifier scores higher accuracy than the PLS binary classifier. The 

224 results further show that in both species, irrespective of the architecture used to train the model, 
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225 direct training of the binary classifier scores significantly higher accuracy, specificity, and 

226 sensitivity than the regression model translated as a binary classifier (S1 Table in the supporting 

227 information). 

228

229

230 Fig 3: The consistency in accuracies of directly trained PLS (A and C) and ANN (B and D) 

231 binary classifiers for estimating age classes of An.gambiae (A and B) and An. arabiensis (C and 

232 D) in both training and testing sets. 

233

234

235 Fig 4: The number of correct and false predictions in each estimated age-class when directly 

236 trained PLS (A and C) and ANN (B and D) binary classifiers were applied to classify age of 

237 An. gambiae (A and B) and An. arabiensis (C and D) in testing sets. Results from ten replicates.

238

239

Table 2: Comparison of the accuracy of ANN and PLS classification models on ten 

replicates

Model architectureSpecies Metric 

PLS ANN

P-value
(two-tail)

P-value
(one-tail)

Accuracy (%) 93.6  1.2± 99.4  1.0± 2.4 x 10-19 1.2 x 10-19

Sensitivity (%) 94.4  1.6± 99.3  1.4± 1.6 x 10-04 2.0 x 10-05An. gambiae

Specificity (%) 92.4  1.9± 99.5  0.7± 2.2 x 10-06 6.0 x 10-05

Accuracy (%) 88.7  1.1± 99.0  0.6± 1.5 x 10-21 7.6 x 10-22

Sensitivity (%) 95.4  1.4± 99.5  0.5± 4.5 x 10-05 2.3 x 10-05An. arabiensis

Specificity (%) 75.2  3.4 ± 98.3  1.3 ± 4.0 x 10-09 2.0 x 10-09

240

241

242 Discussion

243 This study aimed at improving the current state of the art accuracies of the models trained using near 

244 infrared spectra to estimate the age of An. gambiae and An. arabiensis. Previous studies [13, 14, 20-

245 23] trained a regression model using partial least squares (PLS) and interpreted it as a binary 

246 classifier (< 7 d and ≥ 7 d) with an accuracy around 80%. 
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247 Knowing that the selection of a model architecture often influences the model accuracy [26], 

248 we trained age regression models using an artificial neural network [29-31, 45, 46] and partial least 

249 squares as model architectures and compared the accuracies. ANN models achieved significantly 

250 higher accuracies than corresponding PLS regression models. As summarized in Table 1, ANN 

251 regression models scored an average RMSE of 1.60  0.18 for An. gambiae and 2.81  0.22 for ± ±

252 An. arabiensis. The PLS regression models scored RMSE of 3.66  0.23 for An. gambiae and 4.49 ±

253  0.09 for An. arabiensis. When both ANN and PLS regression models were interpreted as binary ±

254 classifiers, ANN regression model scored accuracy, sensitivity, and specificity of 93.71  1.03%, ±

255 92.54  1.60%, and 95.64  1.82%, respectively, for An. gambiae; 90.16  1.70%, 91.68  ± ± ± ±

256 3.27% and 88.44  3.86%, respectively, for An. arabiensis. The PLS regression model scored ±

257 accuracy, sensitivity, and specificity of 83.85  2.32%, 89.00  2.10%, and 75.82  5.22%, ± ± ±

258 respectively, for An. gambiae; 80.30  2.06%, 90.48  1.88%, and 60.25  4.20%, respectively, ± ± ±

259 for An. arabiensis. 

260 The interpretation of a regression model into a binary classifier can introduce errors that 

261 compromise the accuracy of the model. We directly trained PLS and ANN binary classifiers and 

262 compared the accuracies with ANN and PLS regression models interpreted as binary classifiers. 

263 Irrespective of the model architecture, directly trained binary classifiers scored significantly higher 

264 accuracies than corresponding regression models interpreted as binary classifiers (S1 Table in the 

265 supporting information). The explanation of these results could be that, training a regression model 

266 and interpreting it as a binary classifier involved learning differences between multiple age groups 

267 (1, 3, 5, 7, 9, 11, 13, 15, and 20 days old for An. gambiae and 1, 3, 5, 7, 9, 11, 13, 15, 20 and 25 days 

268 for An. arabiensis) of mosquitoes, which can be challenging for two consecutive age groups. In 

269 contrast, direct training of the binary classifier involved learning differences existing between only 

270 two age groups. During direct training of the binary classifier, the process of dividing spectra into 

271 two groups (< 7 or ≥ 7 days) forced a model to learn similarities instead of differences between 

272 mosquitoes of the same age class.  We also observed that directly trained ANN binary classifier 

273 scored higher accuracy than directly trained PLS binary classifier. ANN binary classifier scored an 

274 accuracy, sensitivity, and specificity of 99.4  1.0%, 99.3  1.4%, and 99.5  0.7%, ± ± ±

275 respectively, for An. gambiae; 99.0  0.6%, 99.5  0.5%, and 98.3  1.3%, respectively, for An. ± ± ±

276 arabiensis. The PLS binary classifier scored 93.6  1.2%, 94.4  1.6%, and 92.5  1.9% for An. ± ± ±

277 gambiae; 88.7  1.1%, 95.5  1.4%, and 75.2  3.5% for An. arabiensis (Table 2).± ± ±

278 Our study is not the first to observe ANN model outperforming PLS model. These findings 

279 are supported with other previous studies [27-29, 31] compared the accuracies of ANN and PLS 

280 models, where they report ANN perform better than PLS. The explanation on these results could be 
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281 that ANN, unlike PLS, considers both linear and unknown non-linear relationships between 

282 dependent and independent variables [29-31]; builds independent-dependent relationships that 

283 interpolates well even to cases that were not exactly presented by training data; and has a self 

284 mechanism of filtering and handling noisy data during training [45, 46]. Hence, ANN models are 

285 unbiased estimators in contrast to PLS models (Fig 5 and S4 Fig in supporting information).

286

287

288 Fig 5. Error distribution per actual age of An. gambiae and An. arabiensis when ANN and PLS 

289 regressors applied to estimate the actual ages of mosquitoes in training and test data sets, 

290 showing uniform distribution of errors (un-biased estimating) across actual ages of mosquitoes 

291 for ANN regressor and un-uniform distribution of errors (biased estimating) for PLS 

292 regressor. 

293

294

295 Conclusion

296 We conclude that training both regression and binary classification age artificial neural network 

297 models yield higher accuracies than partial least squares models. Also, training a binary classifier 

298 scores higher accuracy than training a regression model and interpreting it as a binary classifier. 

299 Hence, we recommend training of age models using artificial neural network and training of binary 

300 classifier instead of training regression model and interpret it as binary classifier.
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