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15 Abstract

16 This paper aimed to evaluate the efficiency of subset selection of markers for genome-enabled 

17 prediction of genetic values using radial basis function neural networks (RBFNN). For this 

18 purpose, an F1 population from hybridization of divergent parents with 500 individuals 

19 genotyped with 1,000 SNP-type markers was simulated. Phenotypic traits were determined by 

20 adopting three different gene action models – additive, additive-dominant, and epistasic , 

21 complying with two dominance situations: partial and complete with quantitative traits 

22 admitting heritability (h2) equal to 30 and 60%, each one controlled by 50 loci, considering two 

23 alleles per locus, totaling 12 different scenarios. To evaluate the predictive ability of RR_BLUP 

24 and the neural networks, a cross-validation procedure with five replicates were trained using 

25 80% of the individuals of the population. Two methods were used: dimensionality reduction 

26 and stepwise regression. The square of the correlation between the predicted genomic estimated 
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27 breeding value (GEBV) and the phenotype value was used to measure predictive reliability. For 

28 h2 = 0.3 in the additive scenario, the R2 values were 59% for neural network (RBFNN) and 57% 

29 for RR-BLUP, and in the epistatic scenario, R2 values were 50%  and 41%, respectively. 

30 Additionally, when analyzing the mean-squared error root, the difference in performance 

31 between the techniques is even greater. For the additive scenario, the estimates were 91 for RR-

32 BLUP and 5 for neural networks and, in the most critical scenario, they were 427 for RR-BLUP 

33 and 20 for neural network. The results showed that the use of neural networks and variable 

34 selection techniques allows capturing epistasis interactions, leading to an improvement in the 

35 accuracy of prediction of the genetic value and, mainly, to a large reduction of the mean square 

36 error, which indicates greater genomic value.

37 Keywords: simulation; genomics; linkage disequilibrium; breeding.

38

39 Introduction

40

41 One of the major challenges of genetic breeding today is understanding the genetic 

42 variation of quantitative traits, QTL (Quantitative trait loci), which are conditioned by a large 

43 number of genes with small effects [1] whose interaction often results in non-linearity in 

44 relations between phenotypes and genotypes [2,3]. 

45 With the advent of Genomic Selection (GS) [4], it became possible to estimate the 

46 genomic value of individuals (GEBV) without the need of phenotyping, which led to an 

47 increase in genetics gain by reducing time and money. Therefore, for many traits of agronomic 

48 importance, genetic values are determined by multiple genes of small effects and their 

49 phenotypic expression is strongly affected by genetic interaction between their additive, 

50 dominant and epistatic effects.  However, most applications of GS include only the additive 

51 portion of the genetic value, so a more realistic representation of the genetic architecture of 
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52 quantitative traits should include dominance and epistatic interactions, since these effects are 

53 crucial factors to increase the accuracy of prediction [5].

54 The inclusion of these interactions is computationally challenging and leads to the 

55 superparametrization of the models that are already in high dimensionality because of the large 

56 number of markers in the genome and the smallest number of individuals [2]. Besides that, 

57 before fitting the model it is necessary to define the model effects to be estimated. In this 

58 context, Artificial Neural Networks (ANNs) have a great potential because they can capture 

59 non-linear relationships between markers from the data themselves (without a previous model 

60 definition), which most of the models commonly used in the GS cannot do [2,6,7].

61 Radial Basis Function Neural Networks (RBFNN) are a particular class of Neural 

62 Networks (NN) that have properties that make it attractive to GS applications. According to 

63 Gianola et al. [8], RBFNNs have the ability to learn from the data used in their training, have 

64 universal approximation properties [9], give a unique solution and are faster than standard 

65 ANNs [10]. 

66 However, the inclusion of all markers in the prediction RBFNN model increases the 

67 chances of a high correlation between the markers [11]. The number of markers represents a 

68 huge challenge that leads to less precision and a great computational demand for NN training.  

69 This happens because NNs use good part of their resources to represent irrelevant portions of 

70 the search space and compromising the learning process because there are thousands of markers 

71 available in the genome [12].Thus, a more realistic model should include only SNPs related to 

72 the traits of interest [6].

73 For this reason, a subset of SNPs can be used for training, since, by reducing the search 

74 space, RBFNNs improve the learning process and increase the predictive power of the model, 

75 as realized by [2]. These authors used two types of RBFNN models: one considering a common 

76 weight parameter for each SNP, and the other in which each SNP has specific parameters of 
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77 importance. However, due to the importance of NNs for the improvement of prediction of 

78 quantitative traits, there is still a need to test different dimensionality reduction methods and 

79 prediction models for polygenic traits. 

80 In view of the above, this paper aimed to evaluate the efficiency of genome-enabled 

81 prediction by radial basis function neural networks (RBFNN) in the prediction of genetic values 

82 by considering a subset of markers in simulated data set with different gene actions (as 

83 dominance and epistasis) and degrees of heritability. The results were compared with those 

84 obtained by one of the standard GS model: RR-BLUP. 

85

86 Material and methods

87 Origin of populations

88 In order to assess the reliability of GS predictions, data were simulated by considering 

89 a diploid species with 2n = 2x = 20 chromosomes as the reference, and the total length of the 

90 genome was stipulated in 1.000 cM. Genomes were generated with a saturation level of 101 

91 molecular markers spaced by 1cM per linkage group, totaling 1010 markers. Divergent parental 

92 line genomes were simulated, as well as genomes from the base population (F1). Since the base 

93 population was derived from two contrasting homozygous parents, the effective size of the base 

94 population is the size of F1 itself. 

95 Simulation of quantitative traits

96 Quantitative traits were simulated in three scenarios by considering three degrees of 

97 dominance (d/a = 0, 0.5 and 1) and two broad sense heritability (h2 = 0.30 and 0.60), considering 
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98 two gene actions: additive and epistatic, thus totaling six scenarios. Each trait was controlled 

99 by 50 randomly chosen loci, with 2 alleles per locus. 

100 The phenotypic values of the ith individuals were obtained according to the additive 

101 model as follows: 

102                                                                       (1)𝑌𝑖 = 𝜇 + ∑50
𝑗 = 1𝑝𝑗𝛼𝑗 + 𝐸𝑖

103 where  is the effect of the favorable allele in locus j, considered equal to 1, 0 or -1 for  𝛼𝑗

104 the genotypic classes AA, Aa and aa, respectively, and  is the contribution of locus j to the 𝑝𝑗

105 manifestation of the trait under consideration. In this study, the contribution of each locus was 

106 established as being equivalent to the probability of the set generated by the binomial 

107 distribution X~ b (a+b)s, where a=b=0.5 and s = (50). The value of di was defined according to 

108 the average degree of dominance expressed in each trait. Ei is the environmental effect, 

109 generated according to a normal distribution with means equal to zero and variance given by 

110 the equation bellow: 

111         (2)𝜎2
𝑒 =

𝜎2
𝑔(1 ‒  ℎ2)

ℎ2

112

113 where  is the variance given by the environmental values,  is the variance of the genetic σ2
e 𝜎2

𝑔

114 values, and  is the heritability defined for the trait. The genetic variance is defined from the ℎ2

115 information of the genetic control and the importance of each locus in the polygenic model.

116 For the epistatic model, the phenotypic values of the ith individuals were obtained 

117 according to the following equation:

118                  (3)𝑌𝑖 = 𝜇 + ∑50
𝑗 = 1𝑝𝑗𝛼𝑗 + ∑49

𝑗 = 1𝑝𝑗𝛼𝑗𝛼𝑗 + 1 + 𝐸𝑖

119 In the above equation, the first summation of the expression refers to the contribution 

120 of the individual locus through its additive and dominant effects and the second summation 

121 represents the multiplicative effects corresponding to the epistatic interactions between pairs of 
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122 loci.  is the multiplicative effect of the favorable allele in locus j, and j+1 and  is the 𝛼𝑗 𝑝𝑗

123 contribution of locus j to the manifestation of the trait under consideration. 

124 Table 1.  Scenarios composed by combination of traits, action genenic model. 

125 heritabilty and dominance degree. 

126

127

128

129 RR-BLUP

130 The RR-BLUP model was used to obtain the genomic estimated breeding values 

131 (GEBV) [4]:  

132 y = Xb + Za + e, (4)

133 where y is the vector of phenotypic observations, b is the vector of fixed effects, a is the vector 

134 of random marker effects, and e refers to the vector of random errors, N(0, ); X and Z are σ2
e

135 matrices of incidence for a and b. The effects of the individuals (GEBVs) were estimated by 

136 the equation below: 

137 GEBVs = i= , (5)𝑦 ∑𝑛
𝑗 𝑍𝑖𝑗𝛼𝑗 

Traits Heritability (%) Model dominance
V1-D0H30_Ad 30 additive 0

V2-D0.5H30_Ado 30  additive-dominant 0.5

V3-D1H30_Ado 30  additive-dominant 1
V4 - D0H30Ep 30 epistatic 0

V5 - D0.5H30Ad 30 epistatic 0.5
V6 - D1H30Ep 30 epistatic 1
V7 - D0H60Ad 60 additive 0

V8 - D0.5H60Ado 60  additive-dominant 0.5
V9 - D10H30Ado 60  additive-dominant 1
V10 - D0H60Ad 60 epistatic 0
V11 - D1H60Ado 60 epistatic 0.5
V12 - D1H60Ep 60 epistatic 1
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138 where n is the number of markers arranged in the genome, Zij is the line of the matrix of 

139 incidence that allocates the genotype of the jth marker for each individual (i), 1, 0,  -1 for 

140 genotypes A1A1, A1A2, A2A2, respectively, for biallelic and codominant markers, and  is the 𝛼𝑗

141 effect of the jth marker estimated by RR-BLUP. In this model, the incidence matrix associated 

142 with the effects of dominance was not included. However, it should be remembered that the 

143 population has probably allele frequency being p different from q and therefore the additive 

144 effects estimated through matrix Z capture dominance effects.

145 Radial Basis Function Neural Network (RBFNN)
146 A RBFNN is an artificial neural network that uses radial basis functions as activation 

147 functions. The RBFNN in the present study is a three layered feed-forward neural network, 

148 where the first layer is linear and only distributes the input signal, while the next layer is 

149 nonlinear and uses Gaussian functions (Fig 1).      

150

151 Fig. 1 Structure of a radial basis function neural network (RBFNN). In the hidden layer, 
152 each input vector (xi1,…,xip )is summarized by the Euclidean distance between the input 
153 vectors xi and the centers cm,( m = 1, ..., M) neurons, i.e., hm||xi – cm||, where hm  is a 
154 bandwidth parameter. Then distances are transformed by the Gaussian kernel exp(-(hm||xi – 

155 cm||)2) for obtaining the response,   (extracted from  𝑦𝑖 =  𝐰0 + ∑𝑀
𝑚 = 1 +  𝐰m𝐳mi + 𝜀𝑖

156 Gonzalez-Camacho et al., 2012).                               

157 The training of RBFNN optimization includes: the weights between the hidden layer 

158 and the output layer, the activation function, the center of activation functions, the distribution 

159 of center of activation functions, and the number of hidden neurons [13]. During the training 

160 process, only the weights between the hidden layer and the output layer are modified. The 

161 vector of weights =  of the linear output layer is obtained using the ordinary 𝑤1, …, 𝑤𝑠 

162 least-squares fit that minimizes the mean squared differences between i (from RBFNN) and y
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163 the observed i observed in the training set, provided that the Gaussian RBFs for centers ck y

164 and hk of the hidden layer are defined. 

165 The radial basis function selected is usually a Gaussian kernel selected using K-means 

166 clustering algorithm. The centers are selected using the orthogonalization least-squares 

167 learning algorithm, as described by [14] and implemented in [15]. The centers are added 

168 iteratively such that each new selected center is orthogonal to the others. The selected centers 

169 maximize the decrease in the mean squared error of the RBFNN, and the algorithm stops 

170 when the number of centers (neurons) added to the RBFNN attains a desired precision (goal 

171 error) or when the number of centers is equal to the number of input vectors, that is, when 

172 S=n. 

173 To select the best RBFNN, a grid for training the net was generated, containing 

174 different spread values and different precision values (goal error). The spread value ranging 

175 from 5 to 100 and an initial value of 0.01 for the goal error was considered. The spread 

176 parameter allows adjusting the form of the Gaussian RBFNN such that it is sufficiently large 

177 to respond to overlapping regions of the input space but not so big that it could induce the 

178 Gaussian RBFNN to have a similar response [16].

179 SNP subset selection

180 To determine the number of markers, stepwise regression was used in the scenario with epistatic 

181 effects, dominance and low heritability. In this procedure, the maximum number of markers 

182 was determined in conjunction with measures representative of the data as the mean square 

183 error  root of the model (MSER), determination coefficient (R2) obtained by inclusion of the 

184 selected markers, and the condition number (CN) of the correlation matrix. As for the first two 

185 criteria, the MSER chosen was the one that presented the lowest possible value tied to the best 

186 possible values for R2 (the higher the better). The third criterion was used to avoid 
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187 multicollinearity problems. The condition number of the correlation matrix between the 

188 explanatory variables verifies the degree of multicollinearity in the correlation matrix X’X 

189 [17]. When the CN resulting from this division was lower than or equal to 100, it was 

190 considered that there was weak multicollinearity between the explanatory variables; for 100 < 

191 CN <1000 moderate to severe multicollinearity, and for CN≥1000 severe multicollinearity was 

192 considered. So, based on a graphical analysis, the number was determined by the graphical 

193 point with the best R2 , the lowest REQM when 100 <CN.

194       NC=     (6)
𝜆𝑛

𝜆1

195 where λn is the eigenvalue of largest absolute value and λ1 of the smallest.

196 Computational applications for data analysis

197 The models were compared using the reliability (R2) defined as the squared correlation 

198 between the predicted GEBVs of the individuals with no phenotypic traits and the root mean 

199 squared error (RMSE) using predicted and realized values. A five-fold cross-validation scheme 

200 was used to determine the reliability of genomic prediction of a selected subset of SNPs in the 

201 population. The individuals (500) were randomly split into five equal-size groups and each 

202 group with about 100 individuals (20% of the population) was in turn assigned with phenotypic 

203 values and used as the validation set. The reliability of genomic prediction was calculated as 

204 the squared correlation between the predicted GEBVs of the individuals with no phenotypic 

205 traits. The reliability reported in the study was the average of the reliability of genomic 

206 prediction from 5-fold groups. For comparison purposes, the reliability of genomic prediction 

207 from all the SNPs (1000) was also calculated, in addition to 100 SNPs selected to be even.. The 

208 simulations were implemented with software GENES [18] and the statistical analyses were 

209 performed with software R, with the RR-BLUP package [19].

210
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211 Results

212 Dimensionality reduction was performed using a graphical procedure that considers the  of the 

213 model, the determination coefficient (R2) obtained by including the selected markers and the condition 

214 number (CN) of the correlation matrix. The number of markers was determined by the graphical point 

215 which presented the larger (R2 and the lowest MSER when 100 <CN (Fig 2). After defining the optimal 

216 number of markers, stepwise regression was used to select, among all markers, those used in the 

217 fit.  

218
219
220 Figure 2: A graphical representation of the values of determination coefficient (R2) in black, 
221 Mean squared error root (MSER) in red and the condition number(CN)  in blue obtained by 
222 the stepwise regression method by including 1 to 400 molecular markers (from the total  of 
223 1000) in the stepwise regression model. 
224

225 Twelve different scenarios considering different levels of heritability, dominance and 

226 epistatic effects were evaluated (Table 2 and 3). Five cross-validation folds were used to access 

227 the reliability (R2) of fit models (RBFNN and RR-BLUP), considering or not dimensionality 

228 reduction. 

229 Overall, dimensionality reduction improved the reliability values for all scenarios, 

230 specifically, with h2 =30 the reliability value from 0.03 to 0.59 using RBFNN and from 0.10 to 

231 0.57 with RR-BLUP in the scenario with additive effects. In the additive dominant scenario, 

232 the reliability values changed from 0.12 to 0.59 using RBFNN and from 0.12 to 0.58 with RR-

233 BLUP, and in the epistasis scenarios the reliability values changed from 0.07 to 0.50 using 

234 RBFNN and from 0.06 to 0.47 with RR-BLUP (Table 2).

235 In the scenarios with h2
= 60, the reliability value improved from 0.38 to 0.79 using 

236 RBFNN and from 0.36 to 0.79 with RR-BLUP in the scenario with additive effects. In the 

237 scenario with additive dominance, the values changed from 0.34 to 0.79 using RBFNN and 

238 from 0.30 to 0.73 with RR-BLUP, and in the epistatic scenarios the average of reliability values 

239 changed from 0.10 to 0.60 using RBFNN and from 0.08 to 0.58 with RR-BLUP (Table 2).
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240
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241 Table 2. Reliability values of selection obtained from RBFNN (Radial Basic Neural 
242 Network) and RR-BLUP through all markers (1000) or selected markers (100) by Stepwise 
243 Regression(SWR) in a set of validation data involving cross-validation procedures.   

244
245 Table 3 shows the range of values for the accuracy of prediction (MSER = mean squared 

246 err root). For all scenarios with and without dimensionality reduction, RBFNN outperformed 

247 RRBLUP.  Besides that, dimensionality reduction also improved the accuracy of RBFNN and 

248 RRBLUP. The MSER value ranged from 3.5 to 23.8 for RBFNN and from 71.4 to 575.4  for 

249 RR-BLUP. Specifically, with h2 =30 the MSER value ranged from 5.9 to 4.9 using RBFNN and 

250 from 33.7 to 23.4 with RR-BLUP in the scenario with additive effects. In the additive-

251 dominance scenario, the average of MSER values changed from 11.5 to 9.3 using RBFNN and 

252 from 47.1 to 29.4 with RR-BLUP, and in the epistasis scenarios the average of MSER values 

253 changed from 19.73 to 13.76 using RBFNN and from 380.7 to 2773.9 with RR-BLUP .

254 In the scenarios with h2=60, the MSER value improved from 4.5 to 3.4 using RBFNN 

255 and from 85.8 to 71.4 with RR-BLUP in the scenario with additive effects. In the scenario with 

256 additive dominance, the average of values changed from 5.0 to 4.0 using RBFNN and from 

257 23.76 to 88.43 with RR-BLUP and in the epistasis scenarios the average of reliability values 

258 changed from 15.9 to 13.2 using RBFNN and from 257.9.0 to 358.3 with RR-BLUP. 

259

Reliability Values
Scenarios 1000 RBFNN   1000 RRBLUP           100 RBFNN       100 RR-BLUP

V1-D0H30_Ad 0.11 ± 0.12 0.10 ± 0.02 0.59 ± 0.02 0.57 ± 0.03
V2-D0.5H30_Ado 0.12 ± 0.06 0.12 ± 0.07 0.59 ± 0.03 0.58 ± 0.05
V3-D1H30_Ado 0.02 ± 0.01 0.01 ± 0.01 0.56 ± 0.07 0.54 ± 0.06
V4-D0H30_Ep 0.03 ± 0.00 0.01 ± 0.01 0.45 ± 0.05 0.42 ± 0.05

V5-D0.5H30_Ep 0.05 ± 0.02 0.02 ± 0.02 0.56 ± 0.05 0.54 ± 0.06
V6-D1H30_Ep 0.07 ± 0.05 0.06 ± 0.05 0.50 ± 0.05 0.47 ± 0.04
V7-D0H60_Ad 0.38 ± 0.08 0.36 ± 0.07 0.79 ± 0.03 0.79 ± 0.03

V8D0.5H60_Ado 0.34 ± 0.07 0.30  ±0.07 0.74 ± 0.03 0.73 ± 0.03
V9-D1H60_Ado 0.18 ± 0.04 0.19 ± 0.05 0.64 ± 0.02 0.64 ± 0.01
V10-D0H60Ep 0.06 ± 0.03 0.03 ± 0.05 0.58 ± 0.05 0.79 ± 0.05

V11-D0.5H60_Ep 0.10 ± 0.02 0.08 ± 0.07 0.62 ± 0.04 0.59 ± 0.09
V12-D1H60_Ep 0.13 ± 0.03 0.13 ± 0.07 0.58 ± 0.08 0.58 ± 0.09
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260 Table 3.  Mean squared error root obtained from RBFNN and RR-BLUP through all markers 
261 (1000) or selected markers (100) by Stepwise Regression(SR)in a set of validation data 
262 involving cross-validation procedures. 
263

MSER –mean squared error root

Scenarios 1000 RBF 1000 RR-BLUP 100 RBF 100-RRBLUP
V1-D0H30_Ad 5.9 ± 0.1 33.7 ± 2 4.9 ± 0.1 23.4 ± 0.0

V2-D0.5H30_Ado 6.2 ± 0.1 36.0 ± 1.3 5.1 ± 0.1 24.9 ± 3.7
V3-D1H30_Ado 16.8 ± 1.2 58.2 ± 5.7 13.5 ± 0.1 34.9 ± 17.7
V4-D0H30_Ep 16.9 ± 1.2 267.9 ± 10.5 14.2 ± 0.1 205.9 ± 48.1

V5-D0.5H30_Ep 18.5 ±0.6 338.1 ± 17.7 15.5 ± 0.3 232.1 ± 18.9
V6-D1H30_Ep 23.8 ± 1.7 534.6 ± 24 20.8 ± 0.3 395.9 ± 40.6
V7-D0H60_Ad 4.5 ± 0.1 20.7 ± 1 3.4 ± 0.4 11.99 ± 0.9

V8-D0.5H60_Ado 4.7 ± 0.2 22.4 ± 2 3.7 ± 0.1 107.4 ± 1.1
V9-D1H60_Ado 5.4 ± 0.2 28.23 ±  2 4.3 ± 0.1 145.9 ± 5.2
V10-D0H60Ep 13.5 ± 0.3 181.5 ± 12 11.7 ± 0.2 320.1 ± 36.4

V11-D0.5H60_Ep 15.5 ± 0.5 236.8 ± 19 12.4 ± 0.3 280.9 ± 28.9

V12-D1H60_Ep 18.8 ± 0.8 355.5 ± 26 15.7 ± 0.6 473.8 ± 22.0
264

265

266

267 Discussion
268 The dimensionality reduction for the model fit is a recurring theme in several studies 

269 aimed at genomic prediction of genetic values [6,12,20,21]. However, it is worth noting that 

270 there is a difference between two approaches usually considered as dimensionality reduction 

271 ones. The first approach uses methods such as main and independent components to obtain 

272 latent variables that will be used to fit the models. With that strategy, the main goal is not to 

273 exclude markers but to use the latent variables, which are linear combinations of all available 

274 markers, to fit the model. In the second approach, the researcher has an interest in selecting the 

275 markers most related to the traits of interest and uses them in fitting the models whether they 

276 are regression ones or diversified architectures of computational intelligence [22,2,5] for their 

277 benefits both in regression models and in diversified architectures of computational intelligence. 

278 The present study considers the second approach.

279 In general, in terms of reliability, dimensionality reduction positively impacted all the 

280 scenarios evaluated, which represented different genetic architectures (Table 1). Better 

281 performance was not observed regarding the use of neural networks when compared with the 

282 results obtained with RR-BLUP. These results suggest that the degree of simulated epistasis, in 
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283 which only dual interactions between subsequent markers are considered, was not a determining 

284 factor in differentiating the fit of regression models and neural networks. In terms of dominance, 

285 as already reported in the literature [22,23,24,25,26], that is not regarded as a problem in 

286 genomic prediction studies. Therefore, even if non-parametric models such as artificial neural 

287 networks do not need to impose strong assumptions upon the phenotype-genotype relationship 

288 presenting the potential to capture interactions between loci by the interactions between neurons 

289 of different layers [27,2], a substantial improvement in the prediction process depends on the 

290 level of epistasis present. In terms of reliability, similar results were observed in the studies 

291 carried out by [2,6], which were based on complete genome simulation with 2000 markers in a 

292 random mating population of bulls and heifers in three scenarios: additive, dominant and 

293 epistatic. In the present study, two RBFNN models were used, and in the first one there were 

294 specific weights for each SNP; while in the second one, all SNPs had the same importance. In 

295 most cases, the model with specific weights was better than that with a common weight for 

296 each SNP.

297 Weigel et al. [28,29] compared the use of some equally spaced markers in the genome 

298 and imputed other markers based on a reference population with all the genotyped markers 

299 using a set of markers selected according to their effect on the character of interest. The above 

300 authors concluded that when the number of selected markers is small, the predictive capacity 

301 of the model with markers selected according to the effect is higher than the use of a smaller 

302 set of markers scattered throughout the genome.

303 On the other hand, considering the results within the two approaches evaluated (RBFNN 

304 and RR-BLUP), dimensionality reduction also caused a reduction in the RMSE values. These 

305 results were similar to those obtained by the authors in [10], who observed that it is possible to 

306 improve prediction, both in terms of R2 and RMSE, predicting genetic values by means of non-

307 parametric models when the selection includes markers that are not related to the traits of 

308 interest. When the methods were compared, a gain was observed in terms of RMSE when the 

309 fitting was performed by means of Neural Networks.

310 In the case of RR-BLUP, the effects of dominance and epistasis contributed to the 

311 increase of the error by increasing the difference between the expected and the observed values. 

312 In this way, when the interest is to select only a few individuals, the best 20% for example may 

313 not be the same. Similar results were observed in the study developed by the authors in [6], 

314 who used simulation of quantitative characters under different modes of gene action (additive, 

315 dominant, and epistatic) and found that RBFNN had a better ability to predict the merit of 

316 individuals in future generations in the presence of non-additive effects than by using an 
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317 additive linear model, such as the Bayesian Lasso one. In the case of purely additive gene effects, 

318 RBFNN was slightly worse than Lasso. Still in the above study, the authors reported the use of 

319 the dimensionality reduction method – of the main component type – before using RBFNN and 

320 also showed that with the selection of markers the performance of the radial base network was 

321 better. 

322 In non-parametric models, no assumption is made regarding the form of the genotype–

323 phenotype relationship. Rather, this relationship is described by a smoothing function and 

324 driven primarily by the data . Because of that, RBFNN should be flexible with respect to type 

325 of input data and mode of gene action, such as epistasis [8,30,31,7]. This is due to the fact that 

326 artificial neural networks (ANNs) can capture non-linear relationships between predictors and 

327 responses and learn about functional forms in an adaptive manner, since they act as universal 

328 approximators of complex functions [8]. ANNs are interesting candidates for the analysis of 

329 characters affected by genetic action with epistatic effects. 

330  Due to the importance of epistasis in studies of quantitative traits in plants 

331 [32,33,34,35,36,37], explicit (in the model) or implicit (in hidden layers) inclusion of epistatic 

332 interactions may increase the accuracy of prediction [38]. Furthermore, the frequency variation 

333 of the epistatic allele between populations may cause the gene-of-interest effect to be significant 

334 in one population but not in another, and the effect may even be inverse on the character in 

335 different environments [5], which reinforces the importance of using computational intelligence 

336 methods that easily incorporate interactions between linear effects through their hidden layers.

337 Conclusion

338 The use of a variable selection procedure is an effective strategy to improve the 

339 prediction accuracy of computational intelligence techniques that successfully allow 

340 incorporating interactive effects, which in the present study represent biological epistatic 

341 interactions. 

342
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