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ABSTRACT 

Brain cancer is a common cancer that affects more than 700,000 people in the US every 
year. We explore the dynamic changes in the abundance of immune cells based on RNA 
and DNA samples extracted from a large cohort of brain cancer patients. We used gene 
expression data and copy number data from a large brain cancer collections - the 
REMBRANDT project (REpository for Molecular BRAin Neoplasia DaTa) that includes 
671 patients.  

We applied virtual flow cytometry tools CIBERSORT and xCell to estimate the 
abundance of the immune cells in the RNA of these samples. The immune cell landscape 
in this dataset is compared with that of the TCGA brain cancer collection, that includes 
511 patients with Lower Grade Glioma (TCGA-LGG) and 156 patients with 
Glioblastoma (TCGA-GBM).  
We also discuss how well the results align with published literature, and how this 
computational analysis can help better understand how immune cells affect clinical 
outcome and survival in brain cancer patients  

 
INTRODUCTION 

Brain cancer is a common cancer that affects more than 700,000 people in the US every 
year. Of these brain tumors, 80% are benign and 20% are malignant. More than any 
other cancer, brain cancers can have lasting life-altering impacts on a patient’s life. 
This is because brain cancers, including benign tumors, can interfere with portions of 
the brain responsible for viral body functions including speech, motor functions etc. 
The average survival rate for malignant brain tumor patients is only 33.8% in men, and 
36.4% in women. The survival rate for the most common malignant brain tumor - 
Glioblastoma (GBM) is only 5.5% 1,2.  

A total of 130 sub types of brain cancers have been discovered. Some relevant to this 
dataset are described here. Most common primary brain tumor is called Meningioma. 
These rise in the meninges (brain lining), and mostly occur in the 70s or 80s. These are 
typically slow growing, and can be of tumor grade 1, 2, or 3. Astrocytoma are the 
cancer of the cerebrum, and can be of any tumor grade. High grade (grade 4) 
Astrocytoma is called Glioblastomas (GBM). Oligodendroglioma are cancer in the cells 
that make the covering that protects nerves. These are also typically slow growing, and 
can be of tumor grade 1, 2, or 3. For most brain tumor types, surgery and radiation 
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remain the standard of care. There are only four approved drugs for brain tumors, and 
little has changed over the last 30 years2. 

All these facts mentioned above are related to primary brain tumors. Secondary brain 
tumors are tumors that start elsewhere in the body and metastasize to the brain. 
Approximately 80% of cancers are known to metastasize in the brain2.  
Brain tumors are known to have the highest cost of care for any cancer group2. This 
combined with limited treatment options makes brain cancers a deadly disease. It is 
hence imperative to improve the prognosis and treatment of this cancer group. 

In recent years, immunotherapy has shown much promise in the treatment of various 
cancers. The microenvironment of the normal brain and early stage tumors is 
immunosuppressive due to the blood–brain barrier (BBB). The central nervous system 
(CNS) is known to be ‘immune privileged’ due to the BBB, which limits infiltration of 
molecules and helps regulation of immune cells normal circumstance3. However, this 
viewpoint of immune privilege has been revised. The antigens derived from CNS have 
been shown to induce immune response. In cancer, the BBB often gets compromised 
resulting in more infiltration of immune cells3,4. 

In this analysis, we explore the dynamic changes in the expression of immune cells in 
the RNA of brain cancer patients. We used gene expression data from one of the largest 
brain cancer collections - the REMBRANDT project (REpository for Molecular BRAin 
Neoplasia DaTa) project that includes 671 patients5,6. We applied virtual flow 
cytometry tools CIBERSORT7 and xCell8 to estimate the abundance of the immune 
cells in the RNA of these samples. We examine the immune cell landscape in this 
dataset and compared with that of the TCGA brain cancer collection, which includes 
511 patients with Lower Grade Glioma (TCGA-LGG) and 156 patients with 
Glioblastoma (TCGA-GBM). We also discuss how well the results align with published 
literature, and how this computational analysis can help better understand how immune 
cells affect clinical outcome and survival in brain cancer patients  
 

DATA 
The dataset used in this analysis is called the REMBRANDT dataset (REpository for 
Molecular BRAin Neoplasia DaTa). It is a large brain cancer cohort, that includes 671 
patients collected from 14 contributing institutions from 2004-20065,6. The project won 
the Service to America Award in 20059. Madhavan et al6 demonstrated the power of the 
data portal through several case studies. 
 
The dataset includes a total of 671 patients with clinical data, of which 541 had gene 
expression data, and 507 patients had undergone SNP chip profiling. 263 patients had 
information about segment level copy number data. 220 patients had both gene 
expression and copy number data. Such combined datasets would provide researchers 
with a unique opportunity to conduct integrative analysis of gene expression and copy 
number changes in patients alongside clinical outcomes (overall survival). 
 
For this analysis, we wanted to compare the immune infiltrates between the disease sub-
groups. Table 1 shows a summary of various disease groups available in this data set 
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Clinical Attribute Number of 
patients 

%  Of patients 

Disease 
Type 

GBM 261 38.9 % 
Astrocytoma 170 25.3 % 
Oligodendroglioma 86 12.8 % 
Non tumor 31 4.6 % 
Unknown 68 10.1 % 
Unclassified 1 0.1 % 
Mixed 13 1.9 % 
Blank/NA 41 6.1 % 

Table 1: Summary of various disease groups in the REMBRANDT dataset 
 

 
METHODS 

We used the REMBRANDT dataset to explore the dynamic changes in the expression 
of immune cells. We first applied virtual flow cytometry tools CIBERSORT7 and 
xCell8 on the processed gene expression data to estimate the abundance of the immune 
cells in the RNA of these samples. The raw gene expression data in the form of ‘.CEL’ 
files, were initially processed according to the instructions of the CIBERSORT tool.   
 
The estimated immune cells output was visualized using stacked bar graph and box 
plots. This allowed a visual comparison of the immune cell landscape of this dataset 
with that of the TCGA brain cancer collection and other public datasets. Gentles et al7, 
the creators of the CIBERSORT tool, applied their tool to the TCGA cancer collection 
that included brain cancers and other public datasets 
(https://precog.stanford.edu/iPRECOG.php)7.  
 
We then used the estimated immune cells output to compare various disease sub-
groups. We focused on the comparison between Astrocytoma (Astro), Glioblastoma and 
Oligodendroglioma (Oligo). We used non parametric Wilcoxin Test10 to compare each 
of these two groups. The results were in the form of differentially changed immune cell 
types.  
 
We also compared these three groups in terms of copy number data, which is the form 
of chromosome instability index (CINdex). In Gusev et al5, we described the processing 
steps for this data conversion which was done using the CINdex Bioconductor 
package11. The CINdex package uses the segment level data to calculate the genomic 
instability in terms of copy number gains and losses separately at the chromosome and 
cytoband level. The genomic instability across a chromosome offers a global view 
(referred to as Chromosome CIN), and the genomic instability across cytobands regions 
provides higher resolution (referred to as Cytobands CIN) view of instability. This 
allows assessing the impacts of copy number alternations on various biological events 
or clinical outcomes by studying the association of CIN indices with those events. Each 
of these analyses in G-DOC was done on all patients that had data available. 
 
This comparison of the disease sub-groups using the CINdex data was performed using 
the G-DOC platform using a student’s T test12.  The results were in the form of 
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differentially changed cytobands. We then used the CINdex Bioconductor package to 
find out which genes were present in these differentially changed cytoband regions. 
After we obtained the gene list, we performed system biology analysis to find out which 
biological processes were implicated (using R package EnrichR). Figure 1 shows the 
workflow diagram 
 

 
Figure 1: Analysis workflow 

 
 

RESULTS 
 

Analysis of immune cell landscape based on gene expression data 
 
Figure 2A shows the immune cell landscape of the Rembrandt data using estimation 
from CIBERSORT. Figure 2B is from Gentles et al (2015)7 showing immune cell 
landscape of the TCGA data collection (also using CIBERSORT). Figure 2C shows 
immune cell landscape of various public datasets (also using CIBERSORT), taken from 
iPRECOG7. 
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Figure 2A shows the immune cell landscape of the Rembrandt data using estimation from 
CIBERSORT. Figure 2B is from Gentles et al (2015) [ref] showing immune cell landscape of the 

TCGA data collection (also using CIBERSORT). Figure 2C shows immune cell landscape of 
various public datasets (also using CIBERSORT), taken from iPRECOG website 

 
 
 
We also visualized the estimated immune cell types using box plots. Figure 3A shows 
the box plot of immune cells estimates from the tool CIBERSORT, while Figure 3B 
shows immune cell fractions estimated by the tool xCell. 
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Figures 3A and 3B: Box plot of immune cells from CIBERSORT and xCell respectively 

 

 

Comparison of immune infiltrates in several types of brain cancer 
 
We also used the estimated immune cells output from CIBERSORT to compare various 
disease sub-groups - Astrocytoma (Astro), Glioblastoma and Oligodendroglioma 
(Oligo) using non-parametric Wilcoxin Test. The differentially changed immune cell 
type results are shown in Table 2A, B and C. 

 

Feature SignedFC W statistic P-value Mean of 
CompGroup 

Mean of 
BaseGroup FDR 

Macrophages.M0 Inf 2516 0.001 0.035 0.000 0.01 

Macrophages.M2 1.20 2736 0.001 0.363 0.302 0.01 

Macrophages.M1 1.58 2641 0.005 0.016 0.010 0.03 

Monocytes -1.70 1397 0.005 0.034 0.057 0.03 

Dendritic.cells.resting -1.48 1488.5 0.017 0.024 0.036 0.07 

Mast.cells.activated -1.37 1522 0.026 0.131 0.179 0.08 
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T.cells.CD8 -1.20 1525 0.027 0.075 0.091 0.08 

 
 
 
 

Table 2A: GBM vs. Astrocytoma 
 

Feature SignedFC W statistic P-value Mean of 
CompGroup 

Mean of 
BaseGroup FDR 

Macrophages.M2 1.57 2313 4.17E-09 0.363 0.232 8.76E-08 

Mast.cells.activated -1.58 682 2.53E-04 0.131 0.206 0.003 

Macrophages.M1 2.09 1796 0.004 0.016 0.008 0.025 

T.cells.follicular.helper -1.40 824 0.005 0.050 0.070 0.025 

Neutrophils 1.57 1760 0.008 0.042 0.027 0.031 

NK.cells.activated -1.37 860 0.009 0.039 0.053 0.031 

T.cells.regulatory..Tregs. -1.69 889 0.014 0.026 0.044 0.043 

NK.cells.resting 12.16 1607 0.017 0.005 0.000 0.045 

Table 2B: GBM vs Oligodendroglioma 
 
 

Feature SignedFC W statistic P-value Mean of 
CompGroup 

Mean of 
BaseGroup FDR 

T.cells.follicular.helper 1.59 655 0.002 0.070 0.044 0.03 

Macrophages.M2 -1.30 256 0.005 0.232 0.302 0.05 

Table 2C: Astrocytoma vs Oligodendroglioma 

 
 

Analysis of immune response landscape based on copy number data 

Comparing groups using cytoband level CIN data 
 
We also compared these three groups in terms of copy number data, which is the form 
of chromosome instability index (CINdex) using Students T-test using G-DOC. The 
differentially changed cytobands have been summarized in Table 3 and visualized as a 
circus plot (Figure 4). Complete results from the T-test are available as Supplementary 
File 1.  
 

Comparison # of differentially changed cytobands 
# genes in these cytoband 
regions 

GBM vs Astrocytoma 67 cytobands covering: 7p ,7q, 8q, 10q, etc 1309 genes 

GBM vs. 
Oligodendroglioma 

166 cytobands covering: 
1p, 4q, 7p, 7q, 10q, 11p, 11q, 13q, 19q, etc 4280 genes 

Astrocytoma. Vs. 
Oligodendroglioma 

74 cytobands covering:  
1p, 19q, etc 2465 genes 
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Table 3: Comparing group using copy number data (CINdex cytoband data) 

 
 

 
 
Figure 4: Circos plot showing significantly changed cytobands in each comparison. Each dot is a 
cytoband. The outer most track shows the significantly changed cytoband regions in the GBM vs. 
Astro copy number CIN data comparison. The middle track shows the significantly changed 
cytobands in the GBM vs. Olilgo CIN data comparison. The inner most track shows the 
significantly changed cytobands for the Oligo vs Astro CIN data comparison. The green line 
indicates 0 fold change. Cytobands with fold change > 0 are in orange dots, and those < 0 are in 
blue dots. 
 
Once we obtained the genes located in the differentially changed cytoband regions, we 
performed system biology analysis. The biological processes enriched in Gene 
Onotology are shown in Table 4.  
 
 
 

GBM	VS	ASTROCYTOMA	 GBM	VS	OLIGODENDROGLIOMA	
ASTROCYTOMA.	VS.	

OLIGODENDRIOGLIOMA	

signal	transduction	(GO:0007165)	
regulation	of	transcription,	DNA-templated	

(GO:0006355)	
regulation	of	transcription,	DNA-templated	

(GO:0006355)	

natural	killer	cell	activation	involved	in	
immune	response	(GO:0002323)	

positive	regulation	of	peptidyl-serine	
phosphorylation	of	STAT	protein	

(GO:0033141)	
phosphatidylinositol	acyl-chain	remodeling	

(GO:0036149)	
positive	regulation	of	peptidyl-serine	
phosphorylation	of	STAT	protein	

(GO:0033141)	
natural	killer	cell	activation	involved	in	

immune	response	(GO:0002323)	 neural	tube	closure	(GO:0001843)	
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T	cell	activation	involved	in	immune	
response	(GO:0002286)	 B	cell	differentiation	(GO:0030183)	 xenobiotic	catabolic process (GO:0042178)	

B	cell	differentiation	(GO:0030183)	
T	cell	activation	involved	in	immune	

response	(GO:0002286)	
positive	regulation	of	protein	targeting	to	

mitochondrion	(GO:1903955)	
response	to	exogenous	dsRNA	

(GO:0043330)	 response	to	exogenous	dsRNA	(GO:0043330)	 liver	development	(GO:0001889)	

humoral	immune	response	(GO:0006959)	 blood	coagulation	(GO:0007596)	 epoxygenase	P450	pathway	(GO:0019373)	

B	cell	proliferation	(GO:0042100)	 signal	transduction	(GO:0007165)	

nuclear-transcribed	mRNA	catabolic	
process,	nonsense-mediated	decay	

(GO:0000184)	

regulation	of	type	I	interferon-mediated	
signaling	pathway	(GO:0060338)	 B	cell	proliferation	(GO:0042100)	

multicellular	organism	development	
(GO:0007275)	

blood	coagulation	(GO:0007596)	 humoral	immune	response	(GO:0006959)	
negative	regulation	of	autophagy	

(GO:0010507)	

adaptive	immune	response	(GO:0002250)	 epoxygenase	P450	pathway	(GO:0019373)	
negative	regulation	of	gene	expression	

(GO:0010629)	

innate	immune	response	(GO:0045087)	
type	I	interferon	signaling	pathway	

(GO:0060337)	 female	pregnancy	(GO:0007565)	

type	I	interferon	signaling	pathway	
(GO:0060337)	 retinoid	metabolic	process	(GO:0001523)	 apoptotic	process	(GO:0006915)	

sensory	perception	of	smell	(GO:0007608)	
regulation	of	type	I	interferon-mediated	

signaling	pathway	(GO:0060338)	
miRNA	mediated	inhibition	of	translation	

(GO:0035278)	

cytokine-mediated	signaling	pathway	
(GO:0019221)	 steroid	metabolic	process	(GO:0008202)	

positive	regulation	of	p38MAPK	cascade	
(GO:1900745)	

positive	regulation	of	cell proliferation 
(GO:0008284)	 cell	cycle	arrest	(GO:0007050)	 pre-miRNA	processing	(GO:0031054)	

social	behavior	(GO:0035176)	 response	to	virus	(GO:0009615)	 mismatch	repair	(GO:0006298)	

negative	regulation	of	transcription,	DNA-
templated	(GO:0045892)	 adaptive	immune	response	(GO:0002250)	

cell	surface	receptor	signaling	pathway	
(GO:0007166)	

positive	regulation	of	insulin	secretion	
(GO:0032024)	 xenobiotic	catabolic	process	(GO:0042178)	

regulation	of	lamellipodium	assembly	
(GO:0010591)	

glucose	homeostasis	(GO:0042593)	 mismatch	repair	(GO:0006298)	 interstrand	cross-link	repair	(GO:0036297)	

response	to	virus	(GO:0009615)	

positive	regulation	of	transcription	
regulatory	region	DNA	binding	

(GO:2000679)	
	

	

negative	regulation	of	transcription,	DNA-
templated	(GO:0045892)	

	 
 
Table 4: Gene Ontology – biological processes enriched with genes located on cytobands 
with significantly different level of CIN index 

 
DISCUSSION 
 
From Figure 2, we can see that majority of the immune cells within brain tumors are 
macrophages. In Figure 3A, we can see that some cell types show immune suppression 
in higher grade cancer subtype compared to lower grade sub-types (e.g. B cells 
memory, T cells CD8, Dendritic cells resting, Mast cells activated). In the same figure, 
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we can see that other cells types are upregulated in higher grade disease sub-types (E.g. 
Macrophages M2, CD4 memory resting, B cells memory naïve). 
 
From the circus plot (Figure 4), we can easily spot the 1p/19q co-deletion in the group 
comparisons where Oligodendroglioma patient are involved. The 1/19q co-deletion has 
been used as a prognostic and predictive biomarker in Oligodendrogliomas 13-15.  
 
In our results, Natural Killer (NK) cells were activated in GBM when compared to 
Oligo in both CIBERSORT and Copy number results. This is consistent with literature.  
It is known that the function of NK cells is often affected in brain cancer patients. One 
such example is TGFB down-regulates the expression of NKG2D activating receptor on 
NK cells in GBM patients. Decreased numbers of NK cells were observed in the blood 
of GBM patients post radiation treatment16 .  
 
In our data, we saw that GBM patients had high T cells CD4 memory resting, and 
lowest CD8 T cells (Figure 3A). According to published literature, GBM patients a high 
level of CD4+ TILs combined with low CD8+ TILs was associated with unfavorable 
prognosis 17. 
 
Tumor aneuploidy (somatic copy number alterations) correlates with markers of 
immune evasion and with reduced response to immunotherapy18. Highly aneuploid 
tumors show reduced expression of CD8+ T cells. In our results, we see reduced T cells 
CD8 in GBM (Figure 3). Hence results are consistent with literature. 
 
Also, tumor associated macrophages (TAMs) within the brain tend to be pro-
tumorigenic and accumulate with higher tumor grade. TAMs have been implicated in 
brain tumor angiogenesis and resistance to anti-angiogenic therapies4.  
 
It is important to note that copy number results from our analysis suggest similar pattern 
of immune cell response as Cibersort results. We found that the majority of categories 
of biological processes that are affected by cytoband level instability are mostly related 
to the processes involving the same categories of immune cells such asL  B cells 
proliferation and differentiation, T cells activation, Natural Killer Cells activation etc..  
These findings indicate that copy number changes in brain tumors playing important 
role in affecting immune cell activity in brain tumor microenvironment.  
 

Tumor microenvironment in brain cancers 
The microenvironment of the normal brain & early-stage brain tumors is generally 
immunosuppressive due to the blood–brain barrier (BBB). Immune privilege qualities 
of the Central Nervous System (CNS) have been attributed to the BBB which limits 
transit of molecules and helps regulate lymphocyte tracking under normal 
circumstance3. However, this viewpoint of immune privilege has been revised. The 
CNS derived antigens have been shown to induce immune response. In cancer, the BBB 
often gets compromised resulting in leakiness3,4.  
 
Recent therapies 
Some recent therapies immuno-therapies in brain cancer are listed below. These include 
(a) To develop strategies that re-educate macrophages to specifically adopt anti-tumor 
phenotypes in cancer. (b) Enhancing T cell activation by enabling co-stimulation, e.g., 
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through the use of checkpoint inhibitors (c) Dendritic cells vaccines are likewise 
gaining significant clinical attention as an alternative strategy to stimulate T cell 
responses and (d) Monocyte/macrophage activation test has been developed as a 
cellular test of diagnostics and therapy19. 
 
DATA AVAILABILITY 
The Rembrandt dataset is accessible for conducting clinical translational research using 
the open access Georgetown Database of Cancer (G-DOC)20,21 platform 
(https://gdoc.georgetown.edu). In addition, the raw and processed genomics and 
transcriptomics data have also been made available via the public NCBI GEO 
repository as a super series GSE108476. The MRI medical images for this dataset is 
available via The Cancer Imaging Archive (TCIA) initiative 
(https://wiki.cancerimagingarchive.net/display/Public/REMBRANDT). 
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