
1 
 

Identifying A- and P-site locations on ribosome-protected mRNA 1 

fragments using Integer Programming 2 

 3 

Nabeel Ahmed1, ¶, Pietro Sormanni2, ¶, Prajwal Ciryam2, #, Michele Vendruscolo2, Christopher M. Dobson2 4 

and Edward P. O’Brien1, 3,* 5 

 6 

1Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania 7 

State University, University Park, PA, USA 8 

2Department of Chemistry, University of Cambridge, Cambridge, UK 9 

3Department of Chemistry, Pennsylvania State University, University Park, PA, USA 10 

 11 

¶ These authors contributed equally to this work. 12 

# Present address: Department of Neurology, Columbia University College of Physicians and Surgeons, 13 

New York, NY, USA 14 

*To whom correspondence should be addressed. Tel: (814) 867-5100; Fax: (814) 865-2927; Email: 15 
epo2@psu.edu 16 

 17 

Abstract 18 

Identifying the A- and P-site locations on ribosome-protected mRNA fragments from Ribo-Seq experiments 19 

is a fundamental step in the quantitative analysis of transcriptome-wide translation properties at the codon 20 

level. Many analyses of Ribo-Seq data have utilized heuristic approaches applied to a narrow range of 21 

fragment sizes to identify the A-site. In this study, we use Integer Programming to identify A-site by 22 

maximizing an objective function that reflects the fact that the ribosome’s A-site on ribosome-protected 23 

fragments must reside between the second and stop codons of an mRNA. This identifies the A-site location 24 

as a function of the fragment’s size and reading frame in Ribo-Seq data generated from S. cerevisiae and 25 

mouse embryonic stem cells. The correctness of the identified A-site locations is demonstrated by showing 26 

that this method, as compared to others, yields the largest ribosome density at established stalling sites. 27 

By providing greater accuracy and utilization of a wider range of fragment sizes, our approach increases 28 

the signal-to-noise ratio of underlying biological signals associated with translation elongation at the codon 29 

length scale. 30 

 31 
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Introduction 32 

Translation is a fundamental cellular process and an important step of gene expression resulting in the 33 

production of proteins in cells [1]. In the past decade the advent of Ribo-Seq (also known as Ribosome 34 

profiling), a high-throughput Next-Generation Sequencing method [2,3], has enabled the transcriptome-35 

wide study of translation. Ribo-Seq involves rapidly halting translation in cells through the use of antibiotics 36 

or flash freezing followed by cell lysis and then digestion of the lysate using an RNase enzyme [4]. The 37 

resulting pool of ribosome-protected mRNA fragments is then amplified and sequenced. The number and 38 

length of mRNA fragments that map to the coding sequences (CDSs) of transcripts is a function of the 39 

location and number of ribosomes that were sitting at a particular location on different copies of the same 40 

transcript. Where the ribosome’s A- and P-sites were located on a fragment during the digestion step is not 41 

known a priori, additional information and assumptions must be introduced to estimate their locations. Since 42 

translation occurs at the A- and P-sites, the identification of these sites is critical to address translation-43 

related questions. If the A- and P-sites are not accurately identified, then systematic or random error can 44 

diminish the statistical power of any underlying biological signal that might exist. The identification of the A- 45 

and P-sites within ribosome footprints is therefore fundamental to quantitatively understanding translation 46 

at the codon length scale. 47 

Because of the importance of this assignment problem, a number of methods for identifying the A- and 48 

P-sites have been created [2,5–13]. Many of these approaches utilize the biological fact that only the P-site 49 

is permitted to occupy the start codon during translation initiation and only the A-site is permitted to occupy 50 

the stop codon during termination. Using such approaches, the A-site location in S. cerevisiae Ribo-Seq 51 

datasets, for example, has been estimated to be 15 nt from the 5΄ end of ribosome-protected mRNA 52 

fragments of size 28 nt [2,14]; 16 nt for fragment size 29 nt [14]; 15 nts from the 5΄ end of fragments that 53 

are 30 nt in length [15] and frame-specific offsets of 14 to 17 nts from the 5΄ end for fragments between 28 54 

and 30 nt in length [12,16]. The P-site location offset is 3 nt prior to the A-site.  Similarly, in mouse embryonic 55 

stem cells (mESCs), such approaches have yielded specific offsets for different fragment lengths [11]. 56 

Here, we utilize the fundamental biological fact that the A-site on ribosome-protected fragments must 57 

reside within the CDS of a gene under normal growth conditions and without any upstream open reading 58 

frames. We use this fact to create an objective function that, when maximized, identifies where the 59 

ribosome’s A- and P-sites are most likely to be located on a ribosome-protected mRNA fragment. We apply 60 

our method to S. cerevisiae and mESCs Ribo-Seq datasets and show that, compared to other methods, 61 

our approach has greater accuracy and statistical power in identifying A- and P-site locations and assigning 62 

read density.  63 

Methods 64 

Integer Programming Algorithm 65 
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In the analysis of Ribo-Seq data, mRNA fragments are initially aligned onto the reference transcriptome 66 

and their location is reported with respect to their 5΄ end. This means that one fragment will contribute one 67 

read that is reported on the genome coordinate to which the 5΄end nucleotide of the fragment is aligned 68 

(Fig 1A). In Ribo-Seq data, fragments of different lengths are observed that can arise from incomplete 69 

digestion of RNA and from the stochastic nature of mRNA cleavage by the RNase used in the experiment 70 

(Figs 1C-D, S1). A central challenge in quantitatively analyzing Ribo-Seq data is to identify from these Ribo-71 

Seq reads where the A- and P-site were located at the time of digestion. It is non-trivial to do this since 72 

incomplete digestion and stochastic cleavage can occur at both ends of the fragment. For example, a 73 

fragment of size 29 can be digested in two different ways resulting in the A-site being positioned differently 74 

relative to the 5΄ end of the fragment (Fig 1B). The quantity that we need to accurately estimate is the 75 

number of nucleotides that separate the codon in the A-site from the 5΄ end of the fragment, which we refer 76 

to as the offset and denote ∆. Knowing ∆ determines the position of the A-site as well as the P-site since it 77 

is always at ∆ minus 3 nt.  78 

Our solution to this problem relies on the biological fact that for canonical transcripts with no upstream 79 

translation, the A-site of actively translating ribosomes must be located between the second codon and 80 

stop codon of an  open reading frame (ORF) [17]. Therefore, the optimal offset value ∆ for fragments of a 81 

particular size (𝑆) and reading frame (𝐹) that map onto gene 𝑖 is the one that maximizes the total number 82 

of reads 𝑇(∆|𝑖, 𝑆, 𝐹) between these codons. The size of an mRNA fragment 𝑆 is measured in nucleotides, 83 

and the frame 𝐹 has values of 0, 1 or 2 and corresponds to the frame in which the 5΄ end nucleotide of the 84 

fragment is located. This concept can be expressed in terms of Integer Programming [18], a mathematical 85 

optimization procedure, in which an objective function is maximized  subject to integer and linear restraints. 86 

With ∆ as the decision variable, the objective function in this case is 𝑇(∆|𝑖, 𝑆, 𝐹) = ∑ 𝑅𝑃(𝑗, ∆|𝑖, 𝑆, 𝐹)
𝑁𝐶,𝑖

𝑗=4
, where 87 

𝑁𝐶,𝑖  is the number of nucleotides in the CDS of gene 𝑖 and 𝑅𝑃(𝑗, ∆|𝑖, 𝑆, 𝐹) is a vector containing all fragments 88 

of size 𝑆 and frame 𝐹 mapped onto gene 𝑖 whose 5΄ end is at nucleotide position 𝑗 on the transcript and 89 

then shifted along the transcript by a value of ∆. The optimal ∆, denoted ∆′, for a given (𝑆, 𝐹) for gene 𝑖 is 90 

determined as max{𝑇(∆|𝑖, 𝑆, 𝐹)} subject to the constraints [1] that 0 ≤ ∆ ≤ 𝑆, and [2] that the modulus of  
∆

3
=91 

0. Constraint [1] enforces the requirement that the A-site is located between the first and last nucleotide of 92 

the fragment of size 𝑆 nts. Constraint [2] maintains the frame of the 5΄-most nucleotide of the fragment as 93 

the Ribo-Seq reads are shifted by an amount ∆. We enforce Constraint [2] because ultimately, we are 94 

interested in the assignment of reads to the A-site at the resolution of a codon, not an individual nucleotide. 95 

If we did not enforce constraint 2 our algorithm would yield equal 𝑇(∆|𝑖, 𝑆, 𝐹) scores for the other two frames 96 

that the 5′ end is not in as they would also map the A-site to the same codon. Therefore, to simplify the 97 

determination of offsets we implemented constraint [2]. Thus, by maximizing 𝑇(∆|𝑖, 𝑆, 𝐹) for each gene’s 98 

CDS in a data set of 𝑁𝑔 genes, we will obtain a set of  𝑁𝑔 values of ∆′. From this distribution of ∆′ values, 99 

the A-site location corresponds to the most probable ∆′ value. 100 
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While identifying the ∆′ value for each gene in our data set, we also minimize the occurrence of false 101 

positives by ensuring that the highest score, 𝑇(∆′|𝑖, 𝑆, 𝐹), is significantly higher than the next highest score, 102 

𝑇(∆′′|𝑖, 𝑆, 𝐹), which occurs at a different offset  ∆′′. If the difference between the top two scores is less than 103 

the average number of reads per codon, we apply the following additional selection criteria. To choose 104 

between ∆′ and ∆′′, we select the one that yields a number of reads at the start codon that is at least one-105 

fifth less than the average number of reads at the second, third and fourth codons. We further require that 106 

the second codon have a greater number of reads than the third codon. The biological basis for these 107 

additional criteria are that the true offset (i.e., the actual location of the A-site) cannot be located at the start 108 

codon, and that the number of reads at the second codon should be higher on average than the third codon 109 

due to contributions from the initiation step of translation, during which the ribosome is assembling on the 110 

mRNA with the start codon in the P-site. In the Results section, we demonstrate that the results from our 111 

method are largely robust to changes in these thresholds. 112 

Ribo-Seq datasets  113 

S. cerevisiae. Published Ribo-Seq data from S. cerevisiae were obtained from GSM1557447 used in the 114 

study of Pop and co-workers [19]. The raw reads were pre-processed according to the method stated in 115 

the original study. Raw fastq files were downloaded and preprocessed using Fastx-toolkit (v0.013) 116 

(http://hannonlab.cshl.edu/fastx_toolkit/index.html) as stated in the methods of the original study. The 117 

adapter sequence CTGTAGGCACCATCAAT was stripped using FastQ clipper and low-quality reads were 118 

filtered by FastQ quality filter. The processed reads were aligned first to the ribosomal RNA sequences 119 

using Bowtie 2 (v2.2.3)[20]. The reads which did not align to the ribosomal sequences were then aligned 120 

to the Saccharomyces cerevisiae assembly R64-2-1 (UCSC: sacCer3) using Tophat (v2.0.13)[21] with up 121 

to two mismatches allowed. Gene annotations were obtained from Saccharomyces Genome Database 122 

(http://www.yeastgenome.org/) on May 4, 2016 for 6,572 protein-coding genes. Reads were assigned to 123 

the nucleotide positions according to the 5΄ end.  124 

  The pooled Ribo-Seq dataset was formed by combining reads from all replicates of S. cerevisiae Ribo-125 

Seq data published in studies in which cycloheximide (CHX) was not used to induce translation arrest [14–126 

16,19,22–28]. It has been demonstrated that CHX pre-treatment leads to distortion of ribosome profiles due 127 

to ribosome slippage even after CHX treatment  [12,22]. The distorted ribosome profiles can spill across 128 

the CDS boundaries thus limiting the application of Integer Programming algorithm. Hence, our analysis 129 

only uses those datasets without CHX pre-treatment. The list of all the utilized datasets is reported in Table 130 

S1. The raw reads from each study were processed according to the reported method in the original study. 131 

If the method is not reported in the original study, we use cutadapt (v1.14) [29] to pre-process the raw 132 

reads. The alignment and assignment of reads to gene transcripts was done as above for the Pop dataset 133 

[19].  134 

Mouse embryonic stem cells. The “no drug” sample for mouse embryonic stem cells (mESCs) measured 135 

by Ingolia and co-workers [11] was utilized in this study. Since CHX treatment has been shown to artificially 136 
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alter ribosome profiles in S. cerevisiae, we believed it prudent to not use mESC samples pre-treated with 137 

CHX.  To increase the coverage we pooled reads from another untreated Ribo-Seq sample of mESCs 138 

published in the study of Hurt and co-workers [30]. The linker sequence 139 

CTGTAGGCACCATCAATTCGTATGCCGTCTTCTGCTTGAA for Ingolia’s dataset and the poly-A adapter 140 

sequence for Hurt’s dataset were trimmed using cutadapt (v1.14) [29]. The trimmed reads were first aligned 141 

to ribosomal RNA sequences using Bowtie2 (v2.2.3) [20] and the filtered reads were subsequently aligned 142 

to mm10 reference transcriptome consisting of 21,185 genes obtained from UCSC knownGene database 143 

using Tophat (v2.0.13) [21] with up to two mismatches allowed. For a gene with multiple isoforms, only the 144 

isoform with the longest CDS was included in the reference transcriptome. For transcripts with no 145 

information on the 5′ UTR region, we included 40 nt of genomic sequence upstream from the start codon 146 

for successful alignment of reads around start codon and effective application of Integer Programming 147 

algorithm.  Translation initiation site data was obtained from Table S3 of study of Ingolia and co-workers 148 

[11]. We selected genes that have only one translation initiation site coding for only a canonical CDS 149 

product. From these genes, only genes containing a single isoform were selected, resulting in 430 genes 150 

in our final dataset. 151 

Escherichia coli. Wild-type Ribo-Seq data for E.coli were obtained from studies of Li and co-workers 152 

(2012) [31], Li and co-workers (2014) [32] and Woolstenhulme and co-workers [33]. The accession numbers 153 

of the samples used are provided in Table S1. The respective linker sequences in each sample were 154 

trimmed using cutadapt (v1.14) [29]. Reads were initially aligned to ribosomal RNA sequences using 155 

Bowtie2 (v2.2.3) [20] and the rest of reads aligned to the E.coli reference genome build NC_000913.3 using 156 

Tophat (v2.0.13) [21] with up to two mismatches allowed. Gene annotations were obtained for 4314 genes 157 

from RefSeq database corresponding to NC_000913.3. 158 

Gene selection, analyses and statistical tests 159 

Selection of genes. To obtain good sampling statistics, we select for analysis only those genes that have 160 

on average greater than 1 read per codon per fragment length per reading frame. This means that different 161 

sets of genes can be used in the Integer Programming algorithm depending on the fragment length and 162 

frame under scrutiny. The average number of reads per codon was calculated on the CDS region of the 163 

gene and an additional upstream region corresponding to the size of the fragment length being considered. 164 

Genes in which more than 1% of the total number of mapped reads, for a given 𝑆 and 𝐹, mapped to multiple 165 

locations across the genome were discarded from further analysis. 166 

Identifying unique offsets. We define the most probable offset ∆′ to have a unique, unambiguously 167 

identified A-site if at least 70% of genes in the dataset have an offset equal to  ∆′, and further require that 168 

there be at least 10 genes in the dataset. Otherwise, the A-site location is defined as ambiguous for the 169 

fragment size and frame under scrutiny. In the Results section, we show the A-site location is largely robust 170 

to moderate variation in this 70% threshold. 171 
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High coverage test. To test for the effect of depth of coverage on the A-site location we increased the 172 

average number of reads per codon required for a gene to be included in the analyzed dataset from 1 to 173 

values up to 50. Three requirements have to be met for an ambiguous offset to be identified as unique as 174 

coverage is increased. As before, 70% of the genes had to have the most probable offset with at least 10 175 

genes in the dataset. In addition, there must to be a statistically significant increasing trend in the most 176 

probable offset with increasing coverage. This requirement prevents fluctuations above 70% due to 177 

statistical error as being counted as a unique offset. This trend is calculated using Linear Regression 178 

Analysis.  179 

Statistical significance of PPX and XPP motifs. To test if the normalized read density distribution of a 180 

PPX or XPP motif is not due to random chance, we calculate the P-value using a permutation test [34]. For 181 

the total number of instances of a PPX/XPP motif, we randomly select an equal number of instances of any 182 

other three-residue motif and determine the median normalized read density at the third codon position of 183 

the motif, thereby creating a random distribution. We do this procedure 10,000 times and calculate the 184 

fraction of iterations that have a median density equal to or greater than the one observed for that PPX/XPP 185 

motif. This fraction is equal to the P-value. The instances of PPX and XPP motifs are identified from those 186 

transcripts that have at least 50% of codon positions with 1 read or more. 187 

Comparison with other A-site mapping methods. We compare the performance of Integer Programming 188 

algorithm with other methods by calculating the difference in normalized read density between the Integer 189 

Programming A-site value and the compared method’s A-site value at the third codon of PPG and PPE 190 

motifs, which are associated with ribosome pausing in S. cerevisiae and mESCs respectively.   191 

In S. cerevisiae, A-site ribosome profiles were obtained for Integer Programming method by applying 192 

the offsets listed in Table 1 for fragment sizes 24 to 34 nt. For methods used by Martens and co-workers 193 

[5] and Hussmann and co-workers [12] specifically in S. cerevisiae, A-site profiles were obtained by 194 

applying the offsets for specific fragment sizes as stated in the Methods sections of those studies. We 195 

include a constant heuristic offset of 15 nt which has been used in several studies of S. cerevisiae  Ribo-196 

Seq data [2,35–37]. The constant offset of 15 nt has been applied to a wide range of fragment lengths 197 

across studies including 22-32 nt [2], 27-30 nt [35], 28 nt [36], 27-34 nt [37]. To be conservative, we apply 198 

a constant offset of 15 nt to fragments between 27 and 30 nt only. Similarly, we also include a method 199 

where a constant offset of 18 nt is applied to fragments between 27 and 30 nt to compare to the performance 200 

of the Integer Programming method.  201 

For mESCs, Ingolia and co-workers [11] implemented length specific offsets of 15, 16 and 17 nts from 202 

the 5΄ end, respectively, for fragments of size 29-30 nt, 31-33 nt and 34-35 nt. Several studies have also 203 

implemented a constant offset of 15 for range of fragment sizes 25-35 nt [38,39]. Similar to S. cerevisiae, 204 

we also implement a constant offset of 18 nt to fragment size range of 25-35 nt. 205 

Few general methods have been proposed to determine A-site locations in any organism. We 206 

implemented the methods riboWaltz [9], Plastid [7] and RiboProfiling [8] which are publicly available as R 207 
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packages. The A-site offset tables generated using these methods for our analyzed datasets in S. 208 

cerevisiae and mESCs are presented in Table S8. To determine the A-site profiles using the ‘ribodeblur’ 209 

method created by Wang and co-workers [6], we ran the source code available in GitHub 210 

(https://github.com/Kingsford-Group/ribodeblur-analysis/releases/tag/v0.1) on our datasets and added a 211 

custom Python script to generate the ‘deblurred’ A-site profiles. For Rpbp [40], the publicly available 212 

software was downloaded and run locally to obtain the A-site offsets. We also applied the center-weighted 213 

method as described by Becker and co-workers [41]; for reads greater than 23 nt, we trim 11 nt from both 214 

ends of the fragment and distribute the read equally among the remaining nucleotides. For scikit-ribo 215 

method [10], the source code was downloaded and was successfully run for S. cerevisiae datasets to obtain 216 

the A-site profiles. Scikit-ribo could not be run on mouse ESC data as the current available version of the 217 

source code contains bugs resulting in inaccurate annotation assignments for higher eukaryotic genomes. 218 

Instances of PPG motifs (in S. cerevisiae) and PPE motifs (in mESCs) used for analysis are selected 219 

from genes in which at least 90% of codon positions have at least 1 read in their 5΄ aligned ribosome profiles 220 

in the CDS region and an upstream region of 18 nt. An instance of a motif is included for analysis only if its 221 

ribosome density is greater than 1.5 of average ribosome density at the third codon position in the A-site 222 

profile of any compared methods. We use the Wilcoxon signed rank test to determine if there is a statistically 223 

significant difference between the normalized read density at the third codon of motif instances obtained by 224 

Integer Programming and other methods. 225 

Results 226 

Illustrating the Integer Programming optimization procedure 227 

To illustrate this Integer Programming algorithm in action we provide an example using the hypothetical 228 

mRNA shown in Fig 2. The algorithm is as follows: First, for gene 𝑖, consider 𝑅𝑃(𝑗, ∆= 0|𝑖, 𝑆, 𝐹) composed 229 

of those fragments of size 𝑆 (= [20,21, … ,35] nt) and whose 5΄ end has been aligned to reading frame 𝐹 230 

(= 0, 1 or 2). Second, for this ribosome profile, determine the ∆ that maximizes 𝑇(∆|𝑖, 𝑆, 𝐹). Do this by 231 

starting from the 5΄-end-aligned ribosome profile (∆=0) and shift it three nucleotides at a time (i.e., obey 232 

Constraint 2 described in Methods) towards the 3΄ end of the transcript such that ∆ = 0, 3, 6, 9, … , ≤ 𝑆. At 233 

each value of ∆, calculate 𝑇(∆|𝑖, 𝑆, 𝐹) and record its value. Third, after all ∆ values have been tested, 234 

the ∆ that maximizes 𝑇(∆|𝑖, 𝑆, 𝐹) is denoted ∆′, which is the putative location of the A-site relative to 5΄ end 235 

of fragments of size 𝑆 and frame 𝐹 for gene 𝑖. Check if the secondary-selection criteria are required and 236 

apply them when the scores for the top two offsets differ by less than the average number of reads per 237 

codon in the mRNA. Finally, repeat these steps for every fragment size between 20-35 nts in length and 238 

every reading frame. Thus, for one gene, this procedure yields 48 (=16x3) independent values for ∆′, one 239 

for each fragment size and frame combination.  240 

The fragment-size and frame distributions of ribosome-protected fragments (Figs 1C, D) in S. cerevisiae 241 

are not gene dependent (Fig S2), and therefore, neither should be the offset values. Thus, the location of 242 
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the A-site, relative to the 5΄ end of a fragment of size 𝑆 and frame 𝐹, corresponds to the most probable 243 

value of the offset across all the genes in the dataset.  244 

A-site locations in S. cerevisiae Ribo-Seq data are fragment size and frame 245 

dependent 246 

We first applied the Integer Programming method to Ribo-Seq data from S. cerevisiae published by Pop 247 

and co-workers [19]. For each combination of 𝑆 and 𝐹 we first identified those genes that have at least 1 248 

read per codon on average in their corresponding ribosome profile. The number of genes meeting this 249 

criterion is reported in Table S2. We then applied the Integer Programming method to this subset of genes. 250 

The resulting distributions of  ∆ values are shown in Fig 3A for different combinations of fragment length 251 

and frame. We only show results for fragment sizes between 27 and 33 nt because greater than 90% of 252 

reads map to this range (Fig 1C). The most probable offset value for all fragment sizes between 20 to 35 253 

nt is reported as an offset table (Table S4). 254 

We see that the optimal ∆ value - that is, the A-site location - changes for different combinations of 𝑆 255 

and  𝐹, with the most probable values either at 15 or 18 nt. Thus, the location of the A-site depends on 𝑆 256 

and 𝐹. In most cases, there is one dominant peak for a given pair of 𝑆 and 𝐹 values. For example, for 257 

fragments of size 27 through 30 nt in frame 0, greater than 70% of their per-gene optimized ∆ values are 258 

15 nt from the 5΄ end of these fragments. Similar results are found for other combinations such as sizes 30, 259 

31 and 32 nt in frame 1 and 28 through 32 nt in frame 2, where optimized ∆ values are 18 nt. Thus, across 260 

the transcriptome, the A-site codon position on these fragments is uniquely identified. 261 

   There are, however, 𝑆 and 𝐹 combinations that have ambiguous A-site locations based on these 262 

distributions. For example, for fragments of size 27 nt in frame 1, 47% of the gene-optimized ∆ values are 263 

at 15 nt while 30% are at 18 nt. Similar results are observed for fragments 28 and 29 nt in frame 1, and 31 264 

and 32 nt in frame 0.  Thus, for these 𝑆 and 𝐹 combinations there is a similar probability of the A-site being 265 

located at one codon or another, and therefore we cannot uniquely identify the A-site’s location.  266 

Higher coverage leads to more unique offsets 267 

We hypothesized that ambiguity in identifying the A-site for particular 𝑆 and 𝐹 combinations may be due to 268 

low coverage (i.e., sampling poor statistics). To test this hypothesis, we pooled the reads from different 269 

published Ribo-Seq datasets into a single dataset with consequently higher coverage and more genes that 270 

meet our selection criteria (Table S2). Application of our method to this Pooled dataset gives unique offsets 271 

for more 𝑆 and 𝐹 combinations compared to the original Pop dataset (Fig 3B and Table S4), supporting our 272 

hypothesis. For example, for fragments of size 27 and frame 1, now we have the unique offset of 15 nt with 273 

72% of gene-optimized ∆ values at 15 nt (Fig 3B). However, we still see the ambiguity present for certain 274 

(𝑆, 𝐹) combinations.  275 

We employed an additional strategy to increase coverage by restricting our analysis to genes with 276 

greater and greater average reads per codon. If the hypothesis is correct, then we should see a statistically 277 
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significant trend of an increase in the most probable ∆ value with increasing read depth. We applied this 278 

analysis to the Pooled dataset and find that some initially ambiguous 𝑆 and 𝐹 combinations become 279 

unambiguous as coverage increases. For example, at an average of 1 read per codon, (𝑆, 𝐹) combinations 280 

of (25, 0), (27, 2) and (30,1) are ambiguous as they fall below our 70% threshold. However, we see a 281 

statistically significant trend (𝑠𝑙𝑜𝑝𝑒 = 0.5, 𝑝 =  3.94 ×  10−6) for fragments of (25, 0) that the 15 nt offset 282 

becomes more probable upon increasing the coverage, eventually crossing the 70% threshold (Fig 4A). 283 

Similarly, for (27, 2) (𝑠𝑙𝑜𝑝𝑒 = 0.58, 𝑝 = 5.77 × 10−5) and  (30,1) (𝑠𝑙𝑜𝑝𝑒 = 0.25, 𝑝 = 0.009) there is a trend 284 

towards an offset of 18 nt, with more than 70% of genes having this offset at the highest coverage (Figs 285 

4B, C). Hence, for these fragments, increasing coverage uniquely identifies ∆′ and hence the A-site location. 286 

For a few combinations of (𝑆, 𝐹), like (32, 0), the ambiguity is not resolved even upon very high coverage 287 

(Fig 4D), which we speculate may be due to inherent features of nuclease digestion being equally likely for 288 

more than one offset. 289 

Thus, high enough coverage yields the optimal offset table represented in Table 1, where the offset is 290 

the most probable location of the A-site relative to the 5΄ end of the mRNA fragments generated in S. 291 

cerevisiae. 292 

Consistency across different datasets 293 

Ribo-Seq data is sensitive to experimental protocols that can introduce biases in the digestion and ligation 294 

of ribosome-protected fragments. Pooling datasets together offers the advantage of higher coverage but it 295 

may mask the biases specific to an individual dataset. To determine whether our unique offsets (Table 1) 296 

are consistent with results from individual data sets we applied the Integer Programming algorithm to each 297 

individual dataset. Most of these datasets have low coverage resulting in fewer genes meeting our filtering 298 

criteria (File S1). For each unique offset in Table 1, we classify it as consistent with an individual data set 299 

provided that the most probable offset from the individual dataset (even if it does not reach the 70% 300 

threshold due to limitations in the depth of coverage) is the same as in Table 1. We find that the vast majority 301 

of unique offsets (18 out of 20) in Table 1 are consistent across 75% or more of the individual datasets 302 

(statistics reported in Table S5). Just two (𝑆, 𝐹) combinations show frequent inconsistencies. (𝑆, 𝐹) 303 

combinations (27, 1) and (27,2) are inconsistent in 33% or more of the individual datasets. (Table S5). This 304 

suggests that researchers who wish to minimize false positives should discard these (𝑆, 𝐹) combinations 305 

when creating A-site ribosome profiles. 306 

Robustness of the offset table to threshold variation 307 

The Integer Programming algorithm utilizes two thresholds to identify unique offsets. One is that 70% of 308 

genes exhibit the most probable offset, the other, designed to minimize false positives arising due to 309 

sampling noise in the Ribo-Seq data, is that the reads in the first codon be less than one-fifth of the average 310 

reads in the second, third and fourth codon. While there are good reasons to introduce these threshold 311 

criteria, the exact values of these thresholds are arbitrary. Therefore, we tested whether varying these 312 
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thresholds changes the results reported in Table 1.   We varied the first threshold to 60% and 80%, and 313 

recomputed the offset table. We report whether the unique offset changed by listing an ‘R’ or ‘S’ (for robust 314 

and sensitive, respectively) alongside the reported offset in Table S5. We find that two-thirds of the unique 315 

(𝑆, 𝐹) combinations do not change (Table S5). (𝑆, 𝐹) combinations (25, 0), (25, 2), (27,0), (27, 1), 316 

 (28, 1), (31, 0), (33, 0)   and (33, 2) become ambiguous when we increased the threshold to 80%.  317 

We varied the second, aforementioned threshold from one-fifth up to one and down to one-tenth, and 318 

we find that all unique (𝑆, 𝐹) combinations except (25, 2), (33,0), (33, 2)  and (34, 1) remain unchanged 319 

(reported as ‘R’ in Table S5). Thus, in summary, in the vast majority of cases, the unique offsets reported 320 

in Table 1 depend very little on specific values of these thresholds. 321 

A-site offsets in mouse embryonic stem cells 322 

The biological fact that A-site of a ribosome resides only between the second and stop codon is not limited 323 

to S. cerevisiae and hence the Integer Programming algorithm should be applicable to Ribo-Seq data from 324 

any organism. Therefore, we applied our method to a Pooled Ribo-Seq dataset of mouse embryonic stem 325 

cells (mESCs). The resulting A-site offset table exhibited ambiguous offsets at all but three (𝑆, 𝐹) 326 

combinations (Table S6). In mESCs there is widespread translation elongation that occurs beyond the 327 

boundaries of annotated CDS regions in upstream open reading frames (uORFs) [38]. Enrichment of 328 

ribosome-protected fragments from these translating uORFs can make it difficult for our algorithm to find 329 

unique offsets because they can contribute reads around the start codon of canonical annotated CDSs. 330 

Therefore, we hypothesized that if we apply our algorithm to only those transcripts devoid of uORFs and 331 

possessing a single initiation site then our algorithm should identify more unique offsets. Ingolia and co-332 

workers [11] have experimentally identified for well-translated mESCs transcripts its number of initiation 333 

sites and whether uORFs are present using translation-initiation inhibiting drug Harringtonine. Therefore, 334 

we selected those genes that have only one translation initiation site near the annotated start codon and 335 

further restricted our analysis to transcripts with a single isoform, as multiple isoforms can have different 336 

termination sites. 337 

 Application of Integer Programming algorithm to this set of genes increases the number of unique 338 

offsets from 3 to 13 (𝑆, 𝐹) combinations (Table S7). Applying the same robustness and consistency tests 339 

as we did in S. cerevisiae reveals that 77% of the unique offsets are robust to threshold variation, and a 340 

similar percentage is consistent across both individual datasets used to create the Pooled data (Table S7). 341 

Thus, the unique offsets we report for mESCs are robust and consistent in the vast majority of datasets. 342 

This result also indicates that successful identification of A-site locations requires analysing only those 343 

transcripts that do not contain uORFs. 344 

Integer Programming does not yield unique offsets for E.coli  345 

As a further test of how widely we can apply our algorithm, we applied it to a Pooled Ribo-Seq data from 346 

the prokaryotic organism E. coli. The number of genes meeting our filtering criteria is reported in Table S3. 347 

MNase, the nuclease used in the E. coli Ribo-Seq protocol, digests mRNA in a biased manner - favoring 348 
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digestion from the 5΄ end over the 3΄ end [33,42]. Therefore, as done in other studies [33,42,43], we applied 349 

our algorithm such that we identified the A-site location as the offset from the 3΄ end instead of the 5΄ end. 350 

Polycistronic mRNAs (i.e., transcripts containing multiple CDSs) can cause problems for our algorithm due 351 

to closely spaced reads at boundaries of contiguous CDS being scored for different offsets in both the 352 

CDSs. To avoid inaccurate results, we restrict our analysis to the 1,915 monocistronic transcripts that do 353 

not have any other transcript within 40 nt upstream or downstream of the CDS. Based on our experience 354 

in the analysis of mESCs dataset, we filter out transcripts with multiple translation initiation sites as well as 355 

transcripts whose annotated initiation sites have been disputed. Nakahigashi and co-workers [44]  have 356 

used tetracycline as translation inhibitor to identify 92 transcripts in E.coli with different initiation sites from 357 

the reference annotation and we exclude these transcripts from our analysis. However, for this high 358 

coverage pooled dataset, we find ambiguous offsets for all (𝑆, 𝐹) combinations ( Table S6). A meta-gene 359 

analysis of normalized ribosome density in the CDS and 30 nt  region upstream and downstream reveal 360 

signatures of translation beyond the boundaries of the CDS (Fig S3), especially a higher than average 361 

enrichment of reads a few nucleotides before the start codon. We speculate that the base-pairing of the 362 

Shine-Dalgarno (SD) sequence with the complementary anti-SD sequence in 16S rRNA [45] protects these 363 

few nucleotides before the start codon from ribonuclease digestion and hence results in an enrichment of 364 

Ribo-Seq reads. Since these “pseudo” ribosome-protected fragments cannot be differentiated from actual 365 

ribosome-protected fragments containing a codon with the ribosome’s A-site on it, our algorithm is limited 366 

in its application for this data.   367 

Reproducing known PPX and XPP motifs that lead to translational slowdown 368 

In S. cerevisiae [46] and E. coli [33,47] certain PPX and XPP polypeptide motifs (in which X corresponds 369 

any one of the 20 amino acids) can stall ribosomes when the third residue is in the A-site.  Elongation 370 

factors eIF5A (in S. cerevisiae) and EF-P (in E. coli) help relieve the stalling induced by some motifs but 371 

not others [46]. Even in mESCs, Ingolia and co-workers [11] detected PPD and PPE as strong pausing 372 

motifs. Therefore, we examined whether our approach can reproduce the known stalling motifs. We did this 373 

by calculating the normalized read density at the different occurrences of a PPX and XPP motif. 374 

In S. cerevisiae, we observe large ribosome densities at PPG, PPD, PPE and PPN (Fig 5A), all of which 375 

were classified as strong stallers in S. cerevisiae [46] and also in E. coli [47]. In contrast, there is no stalling, 376 

on average, at PPP, consistent with other studies [46]. This is most likely due to the action of eIF5A. For 377 

the XPP motifs, the strongest stalling is observed for GPP and DPP motifs, which are consistent with the 378 

results in S. cerevisiae and in E. coli (Fig 5B). In mESCs, we see the strongest stalling at PPE and PPD, 379 

reproducing the results of Ingolia and co-workers [11] (Fig S4A). For XPP motifs, we observe very weak 380 

stalling only for DPP (Fig S4B). Thus, our approach to map the A-site on ribosome footprints enables the 381 

accurate detection of established translation pausing at particular PPX and XPP nascent polypeptide motifs.  382 

Greater A-site location accuracy than other methods 383 
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There is no independent experimental method to verify the accuracy of identified A-site locations using our 384 

method or any other method [4,5,40,41,48–50,6–10,12,13,37]. We argue that the well-established 385 

ribosome pausing at particular PPX sequence motifs is the best available means to differentiate the 386 

accuracy of existing methods. The reason for this is that these stalling motifs have been identified in E.coli 387 

[51,52] and S. cerevisiae [53] through orthogonal experimental methods (including enzymology studies and 388 

toe printing), and the exact location of the A-site during such a slowdown is known to be at the codon 389 

encoding the third residue of the motif [51]. Thus, the most accurate A-site identification method will be the 390 

one that  most frequently assigns greater ribosome density to X at each occurrence of the PPX motif. 391 

We apply this test to the strongest stalling PPX motifs, i.e., PPG in S. cerevisiae and PPE in mESCs. In 392 

S. cerevisiae, the Integer Programming method yields the greatest ribosome density at the glycine codon 393 

of PPG motif when applied to both the Pooled (Fig 6A) and Pop datasets (Fig S5A). Examining each 394 

occurrence of PPG in the transcriptome, we find that in a majority of instances our method assigns more 395 

ribosome density to glycine than every other method when applied to both the Pooled (Fig 6B, Wilcoxon 396 

signed-rank test (𝑛 = 224), 𝑃 <  0.0005 for all methods except Hussmann (𝑃 = 0.164)) and Pop datasets 397 

(Fig S5B, Wilcoxon signed-rank test (𝑛 = 35), 𝑃 <  10−5 for all methods except Hussmann (𝑃 = 0.026) and 398 

Ribodeblur (𝑃 = 0.01)). The same analyses applied to mESCs at PPE motifs shows that our method 399 

outperforms the other nine methods (Figs 6C-D) with our method assigning greater ribosome density at 400 

glutamic acid for at least 85% of the PPE motifs in our dataset as compared to all other methods (Fig 6D, 401 

Wilcoxon signed-rank test (𝑛 = 104), 𝑃 <  10−15 for all methods). Thus, for S. cerevisiae and mESCs our 402 

Integer Programming approach is more accurate than other methods in identifying the A-site on ribosome-403 

protected fragments.  404 

A large number of molecular factors influence codon translation rates and ribosome density along 405 

transcripts [54]. One factor is the cognate tRNA concentration, in which codons with higher cognate tRNA 406 

concentrations have lower ribosome densities [15,16,55]. Therefore, as an additional qualitative test, we 407 

expect that most accurate A-site method will yield the strongest correlation between the ribosome density 408 

at a codon and its cognate tRNA concentration. Using tRNA abundances previously estimated from RNA-409 

Seq data for S. cerevisiae [16], we find that our Integer Programming method yields the largest correlation 410 

coefficient compared to the eleven other methods (Table S9), further supporting the accuracy of our 411 

method. (We were unable to run this test in mESCs as measurements of tRNA concentration have not been 412 

reported in the literature.)  413 

Discussion  414 

We have introduced a method to determine the A- and P-site locations on ribosome-protected mRNA 415 

fragments, and shown that it is more accurate than other methods in correctly assigning ribosome density 416 

to the glycine residue in PPG motifs and glutamic acid residue in PPE motifs, which are strong translation-417 

stalling sites in S. cerevisiae and mESCs, respectively. Our method is unique amongst existing methods 418 

because it (i) uses a probabilistic approach to identify the A-site location through Integer Programming 419 
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optimization and (ii) has an objective function rooted in the biology of translation – meaning that its 420 

optimization enforces the fact that the A-site location of most reads must have been between the second 421 

and stop codons of the CDSs. To be sure, several methods use biological features to assign the A-site 422 

(such as having more reads around the start and stop codons than in the UTR [2,11]). However, ours is the 423 

only method that also utilizes feature (i), which is beneficial because the stochastic nature of mRNA 424 

cleavage during the digestion-step of Ribo-Seq necessitates a probabilistic perspective. Our method is not 425 

entirely probabilistic since we have to set thresholds and apply a secondary criterion to arrive at a final 426 

offset value. These measures are unavoidable due to the variability in coverage between different genes. 427 

However, we find that the results are robust to variation in thresholds and mostly consistent across different 428 

Ribo-Seq datasets. Hence, the respective A-site offset tables provided for S. cerevisiae and mouse 429 

embryonic stem cells can be applied to any dataset from these organisms. 430 

Noteworthy about our test for accuracy is that it is based on results from orthogonal experimental 431 

techniques. The stalling of translation at glycine in PPG motifs is well-documented [33,46,51–53] and in S. 432 

cerevisiae the Integer Programming method assigns higher Ribo-Seq reads at the glycine codon at most 433 

instances of PPG compared to other A-site methods. In mESCs PPE is the strongest stalling motif [11]. 434 

The Integer Programming method outperforms other methods by assigning, on average, 176% more reads 435 

at the glutamic acid codon compared to other methods. These results indicate that the Integer Programming 436 

method presented in this study is more accurate than existing methods. One reason for this increase in 437 

accuracy, among many possible reasons, may be that most methods only use reads from around the start 438 

codon, while our method uses reads from around both the start and stop codons. 439 

A potential point of confusion may arise from the distributions shown in Fig 3 in which there are two 440 

highly probable offset values, raising the question of whether or not there are multiple A-site locations for a 441 

given fragment size and frame. In almost all cases, there is one unique most probable A-site location, but 442 

this ambiguity can arise from poor read coverage on a gene or stochastic fluctuations in the extent of 443 

digestion on one side of an mRNA fragment compared to the other. Consider fragment size 28 in frame 1. 444 

In the Pop data set (top, middle panel of Fig 3A), approximately half of the genes have ∆= 15 nt, while the 445 

others have ∆= 18 nt, meaning the A-site could be at either location. When we increase the read coverage 446 

of the genes, however, we see that the vast majority of the offsets shift to 15 nt (bottom, middle panel in 447 

Fig 3B). Thus, the original A-site ambiguity was not due to multiple, equally possible A-site locations, but 448 

rather the true A-site location was hard to detect without better coverage. Consider another example. For 449 

𝑆 = 27 and 𝐹 = 1 we observe in Fig 3A that 8% of genes have an optimal ∆= 0, seemingly suggesting that 450 

the A-site is located at the 5΄-end on a subset of fragments. Spot-checking the ribosome profiles of these 451 

genes, we find that these genes contain no reads in the 27 nt region upstream of the second codon and 27 452 

nt upstream of the stop codon (data not shown). Thus, the values of 𝑇(∆|𝑖, 𝑆, 𝐹)  for all ∆ were equal and 453 

the optimal ∆ was arbitrarily assigned a value of 0. In the higher coverage Pooled dataset, however, there 454 

are only 2% of genes with optimal ∆= 0 for 𝑆 = 27 and 𝐹 = 1. Hence, as we increase coverage, the 455 
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proportion of genes with spurious offsets decreases. Thus, offsets away from the most probable offset arise 456 

from sampling issues, not from multiple A-site locations.  457 

We note that we set a threshold of 70% to determine a most-probable offset for each fragment size and 458 

reading frame and demonstrated that the results are robust to variation with this threshold (Table Table). 459 

Therefore, the A-site assignments reported in Table 1 represent the most likely location of the A-site relative 460 

to the 5΄ end of mRNA fragments produced from Ribo-Seq experiments on S. cerevisiae. 461 

Some (𝑆, 𝐹) combinations (such as 𝑆 = 32 and 𝐹 = 0, in Table 1) appear to be inherently ambiguous, 462 

that is, increasing their coverage does not lead to a unique A-site assignment (Fig 4D). We do not know 463 

the reason for this result, but we speculate that these are situations where there are truly multiple equally 464 

probable A-site locations. Another possibility is that the ribosome adopts different conformations in these 465 

situations that result in different read lengths and offsets, leading to ambiguity [14]. The important point is 466 

that the A-site cannot be accurately assigned in these situations. We therefore recommend that researchers 467 

discard reads from these (𝑆, 𝐹) combinations to minimize chances of erroneous A-site assignments. We 468 

believe it will have negligible effect on the A-site profiles since these combinations contribute only 2.9% of 469 

total reads in the Pooled dataset. 470 

We have found that the Integer Programming algorithm is sensitive to reads arising from outside the 471 

boundaries of annotated CDS regions from non-canonical sources like upstream ORFs (uORFs) or Internal 472 

Ribosome Entry Sites (IRES). Specifically, applying our method to Ribo-Seq data from mESCs yielded few 473 

unique offsets. It was only after removing genes that had multiple translation initiation sites, some arising 474 

from uORFs, that the number of unique offsets increased more than four-fold. The reason for this 475 

improvement was that by removing the uORFs, our method’s assumption was met that the reads within 40 476 

nt of the start codon only arise from the annotated CDS. Our method was not able to identify any unique 477 

offsets in E. coli Ribo-Seq data even after we controlled for multiple translation initiation sites. We observed 478 

in E. coli a high enrichment of reads before the start codon after applying the conventional 12 nt offset from 479 

3′ end [33] (Fig S3) which we speculate may be due to protection of mRNA segments involved in binding 480 

of the Shine-Dalgarno sequence to the ribosome [56] and could limit the accuracy of our method. 481 

The next best method to the Integer Programming method is the Hussmann approach [12]. Besides 482 

more frequently assigning greater ribosome density to glycine in PPG motifs and exhibiting strong 483 

correlation with cognate tRNA abundances, the Integer Programming method is also superior because it 484 

provides greater statistical power and is based on biological features of translation rather than heuristic 485 

assumptions. Specifically, Hussmann’s method only uses reads that are 28, 29 and 30 nt in length, whereas 486 

our method uses reads between 24 to 34 nt in length. This greater coverage results in greater statistical 487 

power for our method. Hussmann’s method uses a nearest-neighbour heuristic to determine frame-specific 488 

offsets of +14, 15 or 16 for lengths 28 and 29 and offset of +15, 16 or 17 for length 30, whereas our method 489 

is based on the feature that the A-site be located within the CDS. The reason Hussman’s method yields 490 

comparable results is that its offset table is highly similar to Table 1. If the reading frame is maintained after 491 
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applying the offset from the 5΄ end, then 8 out of 9 of Hussmann’s offsets are the same as in Table 1 with 492 

the 9th offset of (29,1) being ambiguous in our method.  493 

Our method preserves the original 3 nt periodicity found in the original 5′-end aligned mRNA fragments. 494 

Therefore, it is not designed for detecting frame-shifting, translation of upstream ORFs, or novel short 495 

peptides. Nevertheless, correct assignment of reads to the A-site codon is essential in a variety of other 496 

analyses, such as determining translation kinetics, and our method provides the most accurate assignment 497 

of ribosome density compared to other methods (Fig. 6 and Table S9). 498 

In summary, we have created a method for A-site identification that is more accurate than existing 499 

methods in S. cerevisiae and mouse embryonic stem cells, utilizes a fundamental feature of translation to 500 

identify the A-site, and has revealed how the A-site location changes based on the size of the mRNA 501 

fragment and its frame. By increasing the accuracy and range of fragments for which the A-site can be 502 

identified, our approach can help future studies to measure translation elongation properties at the length 503 

scale of individual codons. 504 
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 669 

Fig 1: The A-site location can be defined as an offset from the 5΄ end of ribosome-protected 670 

fragments. (A) A schematic representation of a ribosome beginning translation (top drawing) and of the 671 

offset between the Ribo-Seq reads mapped with respect to the 5΄ end of footprints and centered on the A-672 

site (orange bar plots). The ribosome is shown protecting a 28 nt fragment with its 5΄ end in reading frame 673 

0. The start codon of a gene can only occupy the P-site and hence the A-site was determined to be at an 674 

offset of 15 nt from the 5΄ end for  fragment size 28 in frame 0 [2]. The P-site and A-site within the fragment 675 

are indicated. The reads are then shifted from the 5΄ end to the A-site by the offset value. (B) The boundaries 676 

of the 28 nt ribosome-protected footprint are indicated by red bars. Stochastic nuclease digestion can result 677 

in different fragment sizes. Two variants of a 29 nt footprint with the 5΄ end in frame 1 are shown with 678 

dashed arrows which can result in offsets of 15 nt (top) and 18 nt (bottom), respectively. (C-D) mRNA 679 

fragment size distribution for S. cerevisiae Ribo-Seq dataset from Pop and co-workers (C) and the Pooled 680 

dataset (D)  681 

 682 

 683 
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 684 

Fig 2:  An illustration of the application of the Integer Programming algorithm to a Ribosome profile.  685 

For a hypothetical transcript that is 60 nt in length the first panel shows the ribosome profile originating from 686 

reads assigned to the 5΄ end of fragments of size 33 in frame 0. The start and the stop codon are indicated 687 

while the rest of the CDS region is colored light peach. The algorithm shifts this ribosome profile by 3 nt 688 

and calculates the objective function 𝑇(∆│𝑖, 𝑆, 𝐹) .  The extent of the shift is the offset Δ. Values of 689 

𝑇(∆|𝑖, 𝑆, 𝐹) for ∆= 12, 15, 18, 21 nts are indicated. In this example, the average number of reads per codon 690 

is 7.85. The difference between the top two offsets, 18 (𝑇=222) and 15 (𝑇=215), is less than the average. 691 

Hence, we check the secondary criteria (Methods). Offset 18 meets the criteria that the number of reads in 692 

the start codon is less than one-fifth of the average of reads in second, third and fourth codons and also 693 

that number of reads in the second codon is greater than reads in third codon. Hence, ∆=18 nt is the optimal 694 

offset for this transcript. 695 

 696 
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 697 

Fig 3: Distribution of offset values from the Integer Programming algorithm applied to transcripts 698 

from S. cerevisiae. The data plotted in (A) are from the Pop dataset, and (B) the Pooled dataset. The 699 

distributions are plotted as a function of the offset value and for fragment sizes of 27 to 33 nt, are shown, 700 

from left to right, for frames 0, 1 and 2. For a given fragment size and frame, the A-site location is at the 701 

most probable Δ value in the distribution, provided the offset occurs for more than 70% of the genes (dashed 702 

lines in panels). Error bars represent 95% Confidence intervals calculated using Bootstrapping. Sample 703 

sizes are reported in Table S2.  704 
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 716 

Fig 4: Increasing coverage identifies A-site locations for 𝑺 and 𝑭 combinations that were initially 717 

ambiguous. Plotted is the percentage of transcripts with a particular Δ value for different 𝑆 and 𝐹 718 

combinations from the Pooled dataset of S. cerevisiae. In each panel, multiple distributions are plotted 719 

corresponding to transcripts with increasing coverage, indicated by the legend on the right. For example, 720 

the distributions in blue and red arise from transcripts with, respectively, at least 1 or 2 reads per codon on 721 

average. We observe the A-site location tends towards 15 nt for 𝑆 = 25, 𝐹 = 0 (A) and towards 18 nt for 722 

𝑆 = 27, 𝐹 = 2 (B), and 𝑆 = 30, 𝐹 = 1 (C). For 𝑆 = 32, 𝐹 = 0 (D), there is no trend even at higher coverage. 723 

Note that for  𝑆 = 27, 𝐹 = 2 (panel B), there are less than 10 genes with an average greater  724 

than 50 reads per codon and hence we do not include the data point beyond average greater than 45  725 

reads per codon (see Methods). Error bars represent 95% Confidence intervals calculated using  726 

Bootstrapping. 727 

 728 
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 731 

Fig 5: Several PPX and XPP motifs lead to ribosomal stalling in S. cerevisiae. The median normalized 732 

ribosome density is obtained for all instances of (A) PPX and (B) XPP motifs in which X corresponds to any 733 

one of the 20 naturally occurring amino acids. Using a permutation test, we determine if the median 734 

ribosome density is statistically significant or occurs by random chance. Statistically significant motifs are 735 

highlighted in dark red. This analysis was carried out on the Pop dataset for transcripts in which at least 736 

50% of codon positions have reads mapped to them. Error bars are 95% Confidence Intervals for the 737 

median obtained using Bootstrapping. 738 

 739 

 740 

 741 

 742 

 743 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 17, 2018. ; https://doi.org/10.1101/490755doi: bioRxiv preprint 

https://doi.org/10.1101/490755
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

Fig 6: The Integer Programming algorithm correctly assigns greater ribosome density than other 744 

methods to the Glycine in PPG motifs in S. cerevisiae and to Glutamic acid in PPE motifs in mESCs. 745 

(A) Normalized ribosome density obtained using the various methods used to identify the A-site is shown 746 

for an instance of PPG motif in gene YLR374W with G at codon position 303 in the Pooled dataset of S. 747 

cerevisiae (see Legend and Main Text for details about methods). (B) The fraction of PPG instances (𝑛 =748 

 224) at which the Integer Programming method yields greater ribosome density at glycine compared to 749 

every other method. The color-coding is the same as shown in the legend in panel (A). Our method does 750 

better if it assigns greater ribosome density in more than half the instances (horizontal line in panel B). The 751 

Integer Programming method does better than all other methods (𝑃 <  0.0005) except for Hussmann, which 752 

is not statistically different (𝑃 = 0.164). (C) Normalized ribosome density is shown for an instance of PPE 753 

motif in gene uc007zma.1 with E at codon position 127 in the Pooled dataset of mouse ESCs (see Legend 754 

and main text for details about methods). (D) The fraction of PPE instances at which the Integer 755 

Programming method yields greater ribosome density at glutamatic acid compared to every other method. 756 

The color-coding is same as shown in the legend of panel (C). The Integer Programming method does 757 

better than all other methods (𝑃 <  10−15) in accurately assigning ribosome density to Glutamic Acid in 758 
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PPE motifs (𝑛 =  104). For both analyses, two-sided p-values were calculated using the Wilcoxon signed 759 

rank test. Error bars represent the 95% Confidence Interval about the median calculated using 760 

Bootstrapping.  761 

Table 1: A-site locations (nucleotide offsets from 5΄ end) determined by applying the Integer 762 

Programming algorithm to the Pooled dataset in S. cerevisiae are shown as a function of fragment 763 

size and frame. The top two offset values are listed for those 𝑆 and 𝐹 combinations in which the A-site 764 

location could not be uniquely determined. For unique offsets, the most-probable offset value is listed. 765 

 766 

Fragment Size Frame 0 Frame 1 Frame 2 

24 15 15/12 18/12 

25 15 12/15 18 

26 15/12  18/15 18/15 

27 15 15 18 

28 15 15 18 

29 15 15/18 18 

30 15 18 18 

31 15 18 18 

32 18/15 18 18 

33 18 18 18 

34 18 18 18/21 
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