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Abstract 19 

Identifying the A- and P-site locations on ribosome-protected mRNA fragments from Ribo-Seq 20 

experiments is a fundamental step in the quantitative analysis of transcriptome-wide translation properties 21 

at the codon level. Many analyses of Ribo-Seq data have utilized heuristic approaches applied to a 22 

narrow range of fragment sizes to identify the A-site. In this study, we use Integer Programming to identify 23 

A-site by maximizing an objective function that reflects the fact that the ribosome’s A-site on ribosome-24 

protected fragments must reside between the second and stop codons of an mRNA. This identifies the A-25 

site location as a function of the fragment’s size and its 5� end reading frame in Ribo-Seq data generated 26 

from S. cerevisiae and mouse embryonic stem cells. The correctness of the identified A-site locations is 27 

demonstrated by showing that this method, as compared to others, yields the largest ribosome density at 28 

established stalling sites. By providing greater accuracy and utilization of a wider range of fragment sizes, 29 

our approach increases the signal-to-noise ratio of underlying biological signals associated with 30 

translation elongation at the codon length scale. 31 
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Introduction 32 

Translation is a fundamental cellular process and an important step of gene expression resulting in the 33 

production of proteins in cells1. In the past decade the advent of Ribo-Seq (also known as Ribosome 34 

profiling), a high-throughput Next-Generation Sequencing method2,3, has enabled the transcriptome-wide 35 

study of translation. Ribo-Seq involves rapidly halting translation in cells through the use of antibiotics or 36 

flash freezing followed by cell lysis and then digestion of the lysate using an RNase enzyme4. The 37 

resulting pool of ribosome-protected mRNA fragments is then amplified and sequenced. The number and 38 

length of mRNA fragments that map to the coding sequences (CDSs) of transcripts is a function of the 39 

location and number of ribosomes that were sitting at a particular location on different copies of the same 40 

transcript. Where the ribosome’s A- and P-sites were located on a fragment during the digestion step is 41 

not known a priori, additional information and assumptions must be introduced to estimate their locations. 42 

Since translation occurs at the A- and P-sites, the identification of these sites is critical to address 43 

translation-related questions. If the A- and P-sites are not accurately identified, then systematic or random 44 

error can diminish the statistical power of any underlying biological signal that might exist. The 45 

identification of the A- and P-sites within ribosome footprints is therefore fundamental to quantitatively 46 

understanding translation at the codon length scale. 47 

Because of the importance of this assignment problem, a number of methods for identifying the A- and 48 

P-sites have been created2,5–13. Many of these approaches utilize the biological fact that only the P-site is 49 

permitted to occupy the start codon during translation initiation and only the A-site is permitted to occupy 50 

the stop codon during termination. Using such approaches, the A-site location in S. cerevisiae Ribo-Seq 51 

datasets, for example, has been estimated to be 15 nt from the 5� end of ribosome-protected mRNA 52 

fragments of size 28 nt2,14; 16 nt for fragment size 29 nt14; 15 nts from the 5� end of fragments that are 30 53 

nt in length15 and frame-specific offsets of 14 to 17 nts from the 5� end for fragments between 28 and 30 54 

nt in length12,16. The P-site location offset is 3 nt prior to the A-site.  Similarly, in mouse embryonic stem 55 

cells (mESCs), such approaches have yielded specific offsets for different fragment lengths11. 56 

Here, we utilize the fundamental biological fact that the A-site on ribosome-protected fragments must 57 

reside within the CDS of a gene under normal growth conditions and without any upstream open reading 58 

frames. We use this fact to create an objective function that, when maximized, identifies where the 59 

ribosome’s A- and P-sites are most likely to be located on a ribosome-protected mRNA fragment. We 60 

apply our method to S. cerevisiae and mESCs Ribo-Seq datasets and show that, compared to other 61 

methods, our approach has greater accuracy and statistical power in identifying A- and P-site locations 62 

and assigning read density.  63 

Methods 64 

Integer Programming Algorithm 65 
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In the analysis of Ribo-Seq data, mRNA fragments are initially aligned onto the reference transcriptome 66 

and their location is reported with respect to their 5� end. This means that one fragment will contribute 67 

one read that is reported on the genome coordinate to which the 5� end nucleotide of the fragment is 68 

aligned (Fig. 1A). In Ribo-Seq data, fragments of different lengths are observed that can arise from 69 

incomplete digestion of RNA and from the stochastic nature of mRNA cleavage by the RNase used in the 70 

experiment (Figs. 1C-D, Supplementary Fig. S1). A central challenge in quantitatively analyzing Ribo-Seq 71 

data is to identify from these Ribo-Seq reads where the A- and P-sites were located at the time of 72 

digestion. It is non-trivial to do this since incomplete digestion and stochastic cleavage can occur at both 73 

ends of the fragment. For example, mRNA digestion resulting in a fragment of size 29 nt can occur in 74 

different ways, two of which are illustrated in Fig. 1B. The quantity that we need to accurately estimate is 75 

the number of nucleotides that separate the codon in the A-site from the 5� end of the fragment, which we 76 

refer to as the offset and denote ∆. Knowing ∆ determines the position of the A-site as well as the P-site 77 

since the P-site will always be at ∆ minus 3 nt.  78 

Our solution to this problem relies on the biological fact that for canonical transcripts with no upstream 79 

translation the A-site of actively translating ribosomes must be located between the second codon and 80 

stop codon of the CDS of a transcript17. Therefore, the optimal offset value ∆ for fragments of a particular 81 

size (�) and reading frame (�) that map onto gene � is the one that maximizes the total number of 82 

reads ��∆|�, �, �
 between these codons. The size of an mRNA fragment � is measured in nucleotides, 83 

and the frame � has values of 0, 1 or 2 and corresponds to the frame in which the 5� end nucleotide of 84 

the fragment is located. The 5� end frame � is a result of RNase digestion and it is distinct from the 85 

reading frame of the ribosome that is typically translating in-frame (frame 0 of A-site). This concept can be 86 

expressed in terms of Integer Programming18, a mathematical optimization procedure in which an 87 

objective function is maximized  subject to integer and linear restraints. With ∆ as the integer variable to 88 

optimize, the objective function in this case is ��∆|�, �, �
 � ∑ ��, ∆|�, �, �

��,�

���
, where ��,�  is the number of 89 

nucleotides in the CDS of gene � and ��, ∆|�, �, �
 is the number of reads from fragments of size � and 90 

frame � mapped onto gene � whose 5� end is at nucleotide position � on the CDS after being shifted 91 

along the transcript by ∆ nucleotides. The optimal ∆, denoted ∆�, for a given (�, �) for gene � is determined 92 

as max���∆|�, �, ��� subject to the constraints (i) that 0 � ∆ � �, and (ii) that the modulus of  
∆



� 0. 93 

Constraint (i) enforces the requirement that the A-site is located between the first and last nucleotide of 94 

the fragment of size � nts. Constraint (ii) maintains the frame of the 5�-most nucleotide of the fragment as 95 

the Ribo-Seq reads are shifted by an amount ∆. We enforce Constraint (ii) because we are interested in 96 

the assignment of reads to the A-site at the resolution of a codon, not an individual nucleotide. If we did 97 

not enforce constraint (ii), our algorithm would simply yield equal ��∆|�, �, �
 scores for the two other 98 

values of  ∆ that would still map the reads on the A-site codon, but in the two frames where the 5� end 99 

was not in. Therefore, to simplify the determination of offsets we implemented constraint (ii). Thus, by 100 

maximizing ��∆|�, �, �
 for the CDS of each gene in a data set of �� genes, we will obtain a set of  �� 101 
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values of ∆�. From this distribution of ∆� values, the A-site location corresponds to the most probable ∆� 102 

value. 103 

While identifying the ∆� value for each gene in our data set, we also minimize the occurrence of false 104 

positives by ensuring that the highest score, ��∆�|�, �, �
, is significantly higher than the next highest 105 

score, ��∆��|�, �, �
, which occurs at a different offset  ∆��. If the difference between the top two scores is 106 

less than the average number of reads per codon, we apply the following additional selection criteria. To 107 

choose between ∆� and ∆��, we select the one that yields a number of reads at the start codon that is at 108 

least one-fifth less than the average number of reads at the second, third and fourth codons. We further 109 

require that the second codon have a greater number of reads than the third codon. The biological basis 110 

for these additional criteria are that the true offset (i.e., the actual location of the A-site) cannot be located 111 

at the start codon, and that the number of reads at the second codon should be higher on average than 112 

the third codon due to contributions from the initiation step of translation, during which the ribosome is 113 

assembling on the mRNA with the start codon in the P-site. In the Results section, we demonstrate that 114 

the results from our method are largely robust to changes in these thresholds. 115 

Ribo-Seq datasets  116 

S. cerevisiae. Published Ribo-Seq data from S. cerevisiae were obtained from GSM1557447 used in the 117 

study of Pop and co-workers19. The raw reads were pre-processed according to the method stated in the 118 

original study. Raw fastq files were downloaded and preprocessed using Fastx-toolkit (v0.013) 119 

(http://hannonlab.cshl.edu/fastx_toolkit/index.html) as stated in the methods of the original study. The 120 

adapter sequence CTGTAGGCACCATCAAT was stripped using FastQ clipper and low-quality reads 121 

were filtered by FastQ quality filter. The processed reads were aligned first to the ribosomal RNA 122 

sequences using Bowtie 2 (v2.2.3)20. The reads which did not align to the ribosomal sequences were then 123 

aligned to the Saccharomyces cerevisiae assembly R64-2-1 (UCSC: sacCer3) using Tophat (v2.0.13)21 124 

with up to two mismatches allowed. Gene annotations were obtained from Saccharomyces Genome 125 

Database (http://www.yeastgenome.org/) on May 4, 2016 for 6,572 protein-coding genes. Reads were 126 

assigned to the nucleotide positions according to the 5� end.  127 

  The pooled Ribo-Seq dataset was formed by combining reads from all replicates of S. cerevisiae 128 

Ribo-Seq data published in studies in which cycloheximide (CHX) was not used to induce translation 129 

arrest14–16,19,22–28. It has been demonstrated that CHX pre-treatment leads to distortion of ribosome 130 

profiles due to ribosome slippage even after CHX treatment12,22. The distorted ribosome profiles can spill 131 

across the CDS boundaries thus limiting the application of Integer Programming algorithm. Hence, our 132 

analysis only used those datasets without CHX pre-treatment. The list of all the utilized datasets is 133 

reported in Supplementary Table S1. The raw reads from each study were processed according to the 134 

reported method in the original study. If the method is not reported in the original study, we used cutadapt 135 

(v1.14)29 to pre-process the raw reads. The alignment and assignment of reads to gene transcripts was 136 

done as above for the Pop dataset19.  137 
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Mouse embryonic stem cells. The “no drug” sample for mouse embryonic stem cells (mESCs) 138 

measured by Ingolia and co-workers11 was utilized in this study. Since CHX treatment has been shown to 139 

artificially alter ribosome profiles in S. cerevisiae, we believed it prudent to not use mESC samples pre-140 

treated with CHX.  To increase the coverage we pooled reads from another untreated Ribo-Seq sample 141 

of mESCs published in the study of Hurt and co-workers30. The linker sequence 142 

CTGTAGGCACCATCAATTCGTATGCCGTCTTCTGCTTGAA for Ingolia’s dataset and the poly-A adapter 143 

sequence for Hurt’s dataset were trimmed using cutadapt (v1.14)29. The trimmed reads were first aligned 144 

to ribosomal RNA sequences using Bowtie2 (v2.2.3)20 and the filtered reads were subsequently aligned to 145 

mm10 reference transcriptome consisting of 21,185 genes obtained from UCSC knownGene database 146 

using Tophat (v2.0.13)21 with up to two mismatches allowed. For a gene with multiple isoforms, only the 147 

isoform with the longest CDS was included in the reference transcriptome. For transcripts with no 148 

information on the 5� UTR region, we included 40 nt of genomic sequence upstream from the start codon 149 

for successful alignment of reads around start codon and effective application of Integer Programming 150 

algorithm.  Translation initiation site data was obtained from Table S3 of study of Ingolia and co-151 

workers11. We selected genes that have only one translation initiation site coding for only a canonical 152 

CDS product. From these genes, only genes containing a single isoform were selected, resulting in 430 153 

genes in our final dataset. 154 

Escherichia coli. Wild-type Ribo-Seq data for E.coli were obtained from studies of Li and co-workers 155 

(2012)31, Li and co-workers (2014)32 and Woolstenhulme and co-workers33. The accession numbers of 156 

the samples used are provided in Supplementary Table S1. The respective linker sequences in each 157 

sample were trimmed using cutadapt (v1.14)29. Reads were initially aligned to ribosomal RNA sequences 158 

using Bowtie2 (v2.2.3)20 and the rest of reads aligned to the E.coli reference genome build NC_000913.3 159 

using Tophat (v2.0.13)21 with up to two mismatches allowed. Gene annotations were obtained for 4314 160 

genes from RefSeq database corresponding to NC_000913.3. 161 

Gene selection, analyses and statistical tests 162 

Selection of genes. To obtain good sampling statistics, we selected for analysis only those genes that 163 

have on average greater than 1 read per codon per fragment length per reading frame. This means that 164 

different sets of genes can be used in the Integer Programming algorithm depending on the fragment 165 

length and frame under scrutiny. The average number of reads per codon was calculated on the CDS 166 

region of the gene and an additional upstream region corresponding to the size of the fragment length 167 

being considered. Genes in which more than 1% of the total number of mapped reads, for a given 168 

� and �, mapped to multiple locations across the genome were discarded from further analysis. 169 

Identifying unique offsets. We defined the most probable offset  ∆ to have a unique, unambiguously 170 

identified A-site if at least 70% of genes in the dataset had an offset equal to  ∆�, and further require that 171 

there be at least 10 genes in the dataset. Otherwise, the A-site location is defined as ambiguous for the 172 
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fragment size and frame under scrutiny. In the Results section, we show the A-site location is largely 173 

robust to moderate variation in this 70% threshold. 174 

High coverage test. To test for the effect of depth of coverage on the A-site location we increased the 175 

average number of reads per codon required for a gene to be included in the analyzed dataset from 1 to 176 

values up to 50. Three requirements have to be met for an ambiguous offset to be identified as unique as 177 

coverage is increased. As before, 70% of the genes had to have the most probable offset with at least 10 178 

genes in the dataset. In addition, there must to be a statistically significant increasing trend in the most 179 

probable offset with increasing coverage. This requirement prevents fluctuations above 70% due to 180 

statistical error as being counted as a unique offset. This trend is calculated using Linear Regression 181 

Analysis.  182 

Test using Artificial Ribo-Seq data: To construct artificial ribosome occupancies, we used Gillespie’s 183 

algorithm34 to simulate translation across S. cerevisiae mRNA transcripts. During the simulations, we 184 

saved snapshots every X steps recording the A-site codon location and creating a histogram of ribosome 185 

occupancies across the transcript. To be consistent with the sampling statistics of the experimental 186 

Pooled S. cerevisiae data, we carried out our analysis on the same 4,487 transcripts that met our filtering 187 

criteria for ��, �
  �  �28, 0
, and normalized our simulated ribosome occupancies such that they sum up 188 

to the total number of reads mapped to that transcript in the experimental data. We then created different 189 

fragment size and 5� end reading frame distributions (Supplementary Fig. S3A, B). Specifically, since the 190 

reads are counts, we use Poisson statistics by treating each ��, �
 as an event in the order: 191 

�20, 0
, �20, 1
, �20, 2
, … , �35, 0
, �35, 1
 and �35, 2
. Six Poisson distributions of different variances 192 

(� � 4, 8, 16, 24, 48, 80) were generated. The distributions were shifted such that the mode of the 193 

distribution was at ��, �
  �  �28, 0
, which is typically found in experiments, with probabilities summing up 194 

to 1 between �20, 0
 and �35, 2
. Two additional read length distributions were also considered with 195 

modes at ��, �
  �  �24, 0
 and ��, �
  �  �32, 0
 with � � 8. Four different sets of offset tables were used 196 

as an input to generate the artificial Ribo-Seq reads from the simulated ribosome occupancies for each of 197 

these distributions. These four offset sets are i) a constant offset of 15 nucleotides for all ��, �
s, ii) a 198 

constant offset of 18 for all ��, �
s  iii) a constant offset of 12 for � � 20, 21, … , 26, 27 and constant offset 199 

of 18 for � � 28, 29, … , 34, 35 iv) the “top offset” values for ��, �
 combinations identified using our 200 

algorithm in the experimental Pooled S. cerevisiae data (i.e., the offset values of Table 1). These input 201 

offset tables were compared to the ‘output’ offset table generated by applying the IP algorithm on the 202 

artificial Ribo-Seq data to test the correctness of our method. 203 

Statistical significance of PPX and XPP motifs. To test if the normalized read density distribution of a 204 

PPX or XPP motif is not due to random chance, we calculated the P-value using a permutation test35. For 205 

the total number of instances of a PPX/XPP motif, we randomly selected an equal number of instances of 206 

any other three-residue motif and determined the median normalized read density at the third codon 207 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/490755doi: bioRxiv preprint 

https://doi.org/10.1101/490755
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

position of the motif, thereby creating a random distribution. We repeated this procedure 10,000 times 208 

and calculated the fraction of iterations that had a median density equal to or greater than the one 209 

observed for that PPX/XPP motif. This fraction is equal to the P-value. The instances of PPX and XPP 210 

motifs are identified from those transcripts that have at least 50% of codon positions with 1 read or more. 211 

Comparison with other A-site mapping methods. We compared the performance of Integer 212 

Programming algorithm with other methods by calculating the difference in normalized read density 213 

between the Integer Programming A-site value and the compared method’s A-site value at the third 214 

codon of PPG and PPE motifs, which are associated with ribosome pausing in S. cerevisiae and mESCs 215 

respectively.   216 

In S. cerevisiae, A-site ribosome profiles were obtained for Integer Programming method by applying 217 

the offsets listed in Table 1 for fragment sizes 24 to 34 nt. For methods used by Martens and co-workers5 218 

and Hussmann and co-workers12 specifically in S. cerevisiae, A-site profiles were obtained by applying 219 

the offsets for specific fragment sizes as stated in the Methods sections of those studies. We included a 220 

constant heuristic offset of 15 nt which has been used in several studies of S. cerevisiae  Ribo-Seq 221 

data2,36–38. The constant offset of 15 nt has been applied to a wide range of fragment lengths across 222 

studies including 22-32 nt2, 27-30 nt36, 28 nt37, 27-34 nt38. To be conservative, we apply a constant offset 223 

of 15 nt to fragments between 27 and 30 nt only. Similarly, we also include a method where a constant 224 

offset of 18 nt is applied to fragments between 27 and 30 nt to compare to the performance of the Integer 225 

Programming method.  226 

For mESCs, Ingolia and co-workers11 implemented length specific offsets of 15, 16 and 17 nts from 227 

the 5� end, respectively, for fragments of size 29-30 nt, 31-33 nt and 34-35 nt. Several studies have also 228 

implemented a constant offset of 15 for range of fragment sizes 25-35 nt39,40. Similar to S. cerevisiae, we 229 

also implement a constant offset of 18 nt to fragment size range of 25-35 nt. 230 

Few general methods have been proposed to determine A-site locations in any organism. We 231 

implemented the methods Plastid7, RiboProfiling8 and riboWaltz9 which are publicly available as R 232 

packages. The A-site offset tables generated using these methods for our analyzed datasets in S. 233 

cerevisiae and mESCs are presented in Supplementary Table S9. To determine the A-site profiles using 234 

the ‘ribodeblur’ method created by Wang and co-workers6, we ran the source code available in GitHub 235 

(https://github.com/Kingsford-Group/ribodeblur-analysis/releases/tag/v0.1) on our datasets and added a 236 

custom Python script to generate the ‘deblurred’ A-site profiles. For Rpbp41, the publicly available 237 

software was downloaded and run locally to obtain the A-site offsets. We also applied the center-238 

weighted method as described by Becker and co-workers42; for reads greater than 23 nt, we trim 11 nt 239 

from both ends of the fragment and distribute the read equally among the remaining nucleotides. For 240 

scikit-ribo method10, the source code was downloaded and was successfully run for S. cerevisiae 241 

datasets to obtain the A-site profiles. Scikit-ribo could not be run on mouse ESC data as the current 242 

available version of the source code contains bugs resulting in inaccurate annotation assignments for 243 

higher eukaryotic genomes. 244 
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Instances of PPG motifs (in S. cerevisiae) and PPE motifs (in mESCs) used for analysis are selected 245 

from genes in which at least 90% of codon positions have at least 1 read in their 5� aligned ribosome 246 

profiles in the CDS region and an upstream region of 18 nt. An instance of a motif is included for analysis 247 

only if its ribosome density is greater than 1.5 of average ribosome density at the third codon position in 248 

the A-site profile of any compared methods. We use the Wilcoxon signed rank test to determine if there is 249 

a statistically significant difference between the normalized read density at the third codon of motif 250 

instances obtained by Integer Programming and other methods. 251 

Results 252 

Illustrating the Integer Programming optimization procedure 253 

To illustrate this Integer Programming algorithm in action we provide an example using the hypothetical 254 

mRNA shown in Figure 2. The algorithm is as follows: First, for gene �, consider !��, ∆� 0|�, �, �
 255 

composed of those fragments of size � �� "20,21, … ,35# nt) and whose 5� end has been aligned to 256 

reading frame � (� 0, 1 or 2). Second, for this ribosome profile, determine the ∆ that 257 

maximizes ��∆|�, �, �
. Do this by starting from the 5�-end-aligned ribosome profile (∆=0) and shift it three 258 

nucleotides at a time (i.e., obey Constraint 2 described in Methods) towards the 3� end of the transcript 259 

such that ∆ � 0, 3, 6, 9, … , � �. At each value of ∆, calculate ��∆|�, �, �
 and record its value. Third, after all 260 

∆ values have been tested, the ∆ that maximizes ��∆|�, �, �
 is denoted ∆�, which is the putative location of 261 

the A-site relative to 5� end of fragments of size � and frame � for gene �. Check if the secondary-262 

selection criteria are required and apply them when the scores for the top two offsets differ by less than 263 

the average number of reads per codon in the mRNA. Finally, repeat these steps for every fragment size 264 

between 20-35 nts in length and every reading frame. Thus, for one gene, this procedure yields 48 265 

(=16x3) independent values for ∆�, one for each fragment size and frame combination.  266 

The fragment-size and frame distributions of ribosome-protected fragments (Figs. 1C, D) in S. 267 

cerevisiae are not gene dependent (Supplementary Fig. S2), and therefore, neither should be the offset 268 

values. Thus, the location of the A-site, relative to the 5� end of a fragment of size � and frame �, 269 

corresponds to the most probable value of the offset across all the genes in the dataset.  270 

A-site locations in S. cerevisiae Ribo-Seq data are fragment size and frame 271 

dependent 272 

We first applied the Integer Programming method to Ribo-Seq data from S. cerevisiae published by Pop 273 

and co-workers19. For each combination of � and � we first identified those genes that have at least 1 274 

read per codon on average in their corresponding ribosome profile. The number of genes meeting this 275 

criterion is reported in Supplementary Table S2. We then applied the Integer Programming method to this 276 

subset of genes. The resulting distributions of  ∆ values are shown in Fig. 3A for different combinations of 277 

fragment length and frame. We only show results for fragment sizes between 27 and 33 nt because 278 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/490755doi: bioRxiv preprint 

https://doi.org/10.1101/490755
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

greater than 90% of reads map to this range (Fig. 1C). The most probable offset value for all fragment 279 

sizes between 20 to 35 nt is reported as an offset table (Supplementary Table S4). 280 

We see that the optimal ∆ value - that is, the A-site location - changes for different combinations of � 281 

and  �, with the most probable values either at 15 or 18 nt. Thus, the location of the A-site depends on � 282 

and �. In most cases, there is one dominant peak for a given pair of � and � values. For example, for 283 

fragments of size 27 through 30 nt in frame 0, greater than 70% of their per-gene optimized ∆ values are 284 

15 nt from the 5� end of these fragments. Similar results are found for other combinations such as sizes 285 

30, 31 and 32 nt in frame 1 and 28 through 32 nt in frame 2, where optimized ∆ values are 18 nt. Thus, 286 

across the transcriptome, the A-site codon position on these fragments is uniquely identified. 287 

   There are, however, � and � combinations that have ambiguous A-site locations based on these 288 

distributions. For example, for fragments of size 27 nt in frame 1, 47% of the gene-optimized ∆ values are 289 

at 15 nt while 30% are at 18 nt. Similar results are observed for fragments 28 and 29 nt in frame 1, and 290 

31 and 32 nt in frame 0.  Thus, for these � and � combinations there is a similar probability of the A-site 291 

being located at one codon or another, and therefore we cannot uniquely identify the A-site’s location.  292 

Higher coverage leads to more unique offsets 293 

We hypothesized that ambiguity in identifying the A-site for particular � and � combinations may be due 294 

to low coverage (i.e., sampling poor statistics). To test this hypothesis we pooled the reads from different 295 

published Ribo-Seq datasets into a single dataset with consequently higher coverage and more genes 296 

that meet our selection criteria (Supplementary Table S2). Application of our method to this Pooled 297 

dataset gives unique offsets for more � and � combinations compared to the original Pop dataset (Fig. 3B 298 

and Supplementary Table S4), supporting our hypothesis. For example, for fragments of size 27 and 299 

frame 1, now we have the unique offset of 15 nt with 72% of gene-optimized ∆ values at 15 nt (Fig. 3B). 300 

However, we still see the ambiguity present for certain ��, �
 combinations.  301 

We employed an additional strategy to increase coverage by restricting our analysis to genes with 302 

greater and greater average reads per codon. If the hypothesis is correct, then we should see a 303 

statistically significant trend of an increase in the most probable ∆ value with increasing read depth. We 304 

applied this analysis to the Pooled dataset and find that some initially ambiguous � and � combinations 305 

become unambiguous as coverage increases. For example, at an average of 1 read per codon, ��, �
 306 

combinations of �25, 0
, �27, 2
 and �30,1
 are ambiguous as they fall below our 70% threshold. However, 307 

we see a statistically significant trend ($%&'( � 0.5, ' �  3.94 * 10��) for fragments of �25, 0
 that the 15 308 

nt offset becomes more probable upon increasing the coverage, eventually crossing the 70% threshold 309 

(Fig. 4A). Similarly, for �27, 2
 ($%&'( � 0.58, ' � 5.77 * 10��) and  �30,1
 ($%&'( � 0.25, ' � 0.009) there 310 

is a trend towards an offset of 18 nt, with more than 70% of genes having this offset at the highest 311 

coverage (Figs. 4B, C). Hence, for these fragments, increasing coverage uniquely identifies ∆� and hence 312 

the A-site location. For a few combinations of ��, �
, like �32, 0
, the ambiguity is not resolved even upon 313 
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very high coverage (Fig. 4D), which we speculate may be due to inherent features of nuclease digestion 314 

being equally likely for more than one offset. 315 

Thus, high enough coverage yields the optimal offset table represented in Table 1, where the offset is 316 

the most probable location of the A-site relative to the 5� end of the mRNA fragments generated in S. 317 

cerevisiae. 318 

Consistency across different datasets 319 

Ribo-Seq data is sensitive to experimental protocols that can introduce biases in the digestion and 320 

ligation of ribosome-protected fragments. Pooling datasets together offers the advantage of higher 321 

coverage but it may mask the biases specific to an individual dataset. To determine whether our unique 322 

offsets (Table 1) are consistent with results from individual data sets we applied the Integer Programming 323 

algorithm to each individual dataset. Most of these datasets have low coverage resulting in fewer genes 324 

meeting our filtering criteria (Supplementary File S1). For each unique offset in Table 1, we classify it as 325 

consistent with an individual data set provided that the most probable offset from the individual dataset 326 

(even if it does not reach the 70% threshold due to limitations in the depth of coverage) is the same as in 327 

Table 1. We find that the vast majority of unique offsets (18 out of 20) in Table 1 are consistent across 328 

75% or more of the individual datasets (statistics reported in Supplementary Table S5). Just two ��, �
 329 

combinations show frequent inconsistencies. ��, �
 combinations �27, 1
 and �27,2
 are inconsistent in 330 

33% or more of the individual datasets (Supplementary Table S5). This suggests that researchers who 331 

wish to minimize false positives should discard these ��, �
 combinations when creating A-site ribosome 332 

profiles. 333 

Robustness of the offset table to threshold variation 334 

The Integer Programming algorithm utilizes two thresholds to identify unique offsets. One is that 70% of 335 

genes exhibit the most probable offset, the other, designed to minimize false positives arising due to 336 

sampling noise in the Ribo-Seq data, is that the reads in the first codon be less than one-fifth of the 337 

average reads in the second, third and fourth codon. While there are good reasons to introduce these 338 

threshold criteria, the exact values of these thresholds are arbitrary. Therefore, we tested whether varying 339 

these thresholds changes the results reported in Table 1. We varied the first threshold to 60% and 80%, 340 

and recomputed the offset table. We report whether the unique offset changed by listing an ‘R’ or ‘S’ (for 341 

robust and sensitive, respectively) alongside the reported offset in Supplementary Table S5. We find that 342 

two-thirds of the unique ��, �
 combinations do not change (Supplementary Table S5). ��, �
 343 

combinations �25, 0
, �25, 2
, �27,0
, �27, 1
,  �28, 1
, �31, 0
, �33, 0
   and �33, 2
 become ambiguous when 344 

we increased the threshold to 80%.  345 

We varied the second, aforementioned threshold from one-fifth up to one and down to one-tenth, and 346 

we find that all unique ��, �
 combinations except �25, 2
, �33,0
, �33, 2
  and �34, 1
 remain unchanged 347 
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(reported as ‘R’ in Supplementary Table S5). Thus, in summary, in the vast majority of cases, the unique 348 

offsets reported in Table 1 depend very little on specific values of these thresholds. 349 

Testing the Integer Programming algorithm against artificial Ribo-Seq data 350 

To test the correctness and robustness of our approach we generated a dataset of simulated ribosome 351 

occupancies across 4,487 S. cerevisiae transcripts and asked whether our method could accurately 352 

determine the A-site locations. Artificial Ribo-Seq reads were generated from these occupancies 353 

assuming a Poissonian distribution in their ��, �
 values using random footprint lengths similar to that 354 

found in experiments (see Methods and Supplementary Fig. S3A, B). We investigated the ability of our 355 

method to correctly determine the true A-site locations for four different sets of pre-defined offset values 356 

(see Methods). The Integer Programming algorithm was then applied to the resulting artificial Ribo-Seq 357 

data. We find the offset table generated from the algorithm reproduces the input offsets used 358 

(Supplementary Fig. S3C and Supplementary Table S6). This procedure was repeated for different read 359 

length distributions as well as with different input offsets and we find that the offset tables generated by 360 

our algorithm reproduce the input offset tables in greater than 93% of all ��, �
 combinations 361 

(Supplementary Fig. S3B, C and Supplementary File S2). The method identifies a small number of 362 

ambiguous offsets due to the low read coverage at the tails of the distributions. A finding that emphasizes 363 

further the importance of read coverage as a critical factor in accurately identifying the A-site. 364 

A-site offsets in mouse embryonic stem cells 365 

The biological fact that A-site of a ribosome resides only between the second and stop codon is not 366 

limited to S. cerevisiae and hence the Integer Programming algorithm should be applicable to Ribo-Seq 367 

data from any organism. Therefore, we applied our method to a Pooled Ribo-Seq dataset of mouse 368 

embryonic stem cells (mESCs). The resulting A-site offset table exhibited ambiguous offsets at all but 369 

three ��, �
 combinations (Supplementary Table S7). In mESCs there is widespread translation 370 

elongation that occurs beyond the boundaries of annotated CDS regions in upstream open reading 371 

frames (uORFs)39. Enrichment of ribosome-protected fragments from these translating uORFs can make 372 

it difficult for our algorithm to find unique offsets because they can contribute reads around the start 373 

codon of canonical annotated CDSs. Therefore, we hypothesized that if we apply our algorithm to only 374 

those transcripts devoid of uORFs and possessing a single initiation site then our algorithm should 375 

identify more unique offsets. Ingolia and co-workers11 have experimentally identified for well-translated 376 

mESCs transcripts its number of initiation sites and whether uORFs are present using translation-initiation 377 

inhibiting drug Harringtonine. Therefore, we selected those genes that have only one translation initiation 378 

site near the annotated start codon and further restricted our analysis to transcripts with a single isoform, 379 

as multiple isoforms can have different termination sites. 380 

 Application of Integer Programming algorithm to this set of genes increases the number of unique 381 

offsets from 3 to 13 (�, �
 combinations (Supplementary Table S8). Applying the same robustness and 382 

consistency tests as we did in S. cerevisiae reveals that 77% of the unique offsets are robust to threshold 383 
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variation, and a similar percentage is consistent across both individual datasets used to create the Pooled 384 

data (Supplementary Table S8). Thus, the unique offsets we report for mESCs are robust and consistent 385 

in the vast majority of datasets. This result also indicates that successful identification of A-site locations 386 

requires analysing only those transcripts that do not contain uORFs. 387 

Integer Programming does not yield unique offsets for E.coli  388 

As a further test of how widely we can apply our algorithm, we applied it to a Pooled Ribo-Seq data from 389 

the prokaryotic organism E. coli. The number of genes meeting our filtering criteria is reported in 390 

Supplementary Table S3. MNase, the nuclease used in the E. coli Ribo-Seq protocol, digests mRNA in a 391 

biased manner - favoring digestion from the 5� end over the 3� end33,43. Therefore, as done in other 392 

studies33,43,44, we applied our algorithm such that we identified the A-site location as the offset from the 3� 393 

end instead of the 5� end. Polycistronic mRNAs (i.e., transcripts containing multiple CDSs) can cause 394 

problems for our algorithm due to closely spaced reads at boundaries of contiguous CDS being scored for 395 

different offsets in both the CDSs. To avoid inaccurate results, we restrict our analysis to the 1,915 396 

monocistronic transcripts that do not have any other transcript within 40 nt upstream or downstream of 397 

the CDS. Based on our experience in the analysis of mESCs dataset, we filter out transcripts with multiple 398 

translation initiation sites as well as transcripts whose annotated initiation sites have been disputed. 399 

Nakahigashi and co-workers45  have used tetracycline as translation inhibitor to identify 92 transcripts in 400 

E.coli with different initiation sites from the reference annotation and we exclude these transcripts from 401 

our analysis. However, for this high coverage pooled dataset, we find ambiguous offsets for all ��, �
 402 

combinations (Supplementary Table S7). A meta-gene analysis of normalized ribosome density in the 403 

CDS and 30 nt  region upstream and downstream reveal signatures of translation beyond the boundaries 404 

of the CDS (Supplementary Fig. S4), especially a higher than average enrichment of reads a few 405 

nucleotides before the start codon. We speculate that the base-pairing of the Shine-Dalgarno (SD) 406 

sequence with the complementary anti-SD sequence in 16S rRNA46 protects these few nucleotides 407 

before the start codon from ribonuclease digestion and hence results in an enrichment of Ribo-Seq reads. 408 

Since these “pseudo” ribosome-protected fragments cannot be differentiated from actual ribosome-409 

protected fragments containing a codon with the ribosome’s A-site on it, our algorithm is limited in its 410 

application for this data.   411 

Reproducing known PPX and XPP motifs that lead to translational slowdown 412 

In S. cerevisiae47 and E. coli33,48 certain PPX and XPP polypeptide motifs (in which X corresponds any 413 

one of the 20 amino acids) can stall ribosomes when the third residue is in the A-site.  Elongation factors 414 

eIF5A (in S. cerevisiae) and EF-P (in E. coli) help relieve the stalling induced by some motifs but not 415 

others47. Even in mESCs, Ingolia and co-workers11 detected PPD and PPE as strong pausing motifs. 416 

Therefore, we examined whether our approach can reproduce the known stalling motifs. We did this by 417 

calculating the normalized read density at the different occurrences of a PPX and XPP motif. 418 
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In S. cerevisiae, we observed large ribosome densities at PPG, PPD, PPE and PPN (Fig. 5A), all of 419 

which were classified as strong stallers in S. cerevisiae47 and also in E. coli48. In contrast, there is no 420 

stalling, on average, at PPP, consistent with other studies47. This is most likely due to the action of eIF5A. 421 

For the XPP motifs, the strongest stalling was observed for GPP and DPP motifs, which are consistent 422 

with the results in S. cerevisiae and in E. coli (Fig. 5B). In mESCs, we see the strongest stalling at PPE 423 

and PPD, reproducing the results of Ingolia and co-workers11 (Supplementary Fig. S5A). For XPP motifs, 424 

we observed very weak stalling only for DPP (Supplementary Fig. S5B). Thus, our approach to map the 425 

A-site on ribosome footprints enables the accurate detection of established translation pausing at 426 

particular PPX and XPP nascent polypeptide motifs.  427 

A study of Ribo-Seq data of mammalian cells49 observed a sequence-independent translation pause 428 

when the 5th codon of the transcript is in the P-site. This post-initiation pausing was also observed in an in 429 

vitro study of poly-phenylalanine synthesis where stalling was observed when the 4th codon was in the P-430 

site50.  With the A-site profiles obtained using our offset tables for S. cerevisiae and mESCs; we also 431 

observe these pausing events when both the 4th and 5th codons are at the P-site (Supplementary Fig. S6).   432 

Greater A-site location accuracy than other methods 433 

There is no independent experimental method to verify the accuracy of identified A-site locations using 434 

our method or any other method4,5,52–55,6,8–10,12,41,42,51. We argue that the well-established ribosome 435 

pausing at particular PPX sequence motifs is the best available means to differentiate the accuracy of 436 

existing methods. The reason for this is that these stalling motifs have been identified in E.coli56,57 and S. 437 

cerevisiae58 through orthogonal experimental methods (including enzymology studies and toe printing), 438 

and the exact location of the A-site during such a slowdown is known to be at the codon encoding the 439 

third residue of the motif56. Thus, the most accurate A-site identification method will be the one that most 440 

frequently assigns greater ribosome density to X at each occurrence of the PPX motif. 441 

We applied this test to the strongest stalling PPX motifs, i.e., PPG in S. cerevisiae and PPE in mESCs. 442 

In S. cerevisiae, the Integer Programming method yields the greatest ribosome density at the glycine 443 

codon of PPG motif when applied to both the Pooled (Fig. 6A) and Pop datasets (Supplementary Fig. 444 

S7A). Examining each occurrence of PPG in the transcriptome, we find that in a majority of instances our 445 

method assigns more ribosome density to glycine than every other method when applied to both the 446 

Pooled (Fig. 6B, Wilcoxon signed-rank test (+ � 224
, ! ,  0.0005 for all methods except Hussmann 447 

(! � 0.164)) and Pop datasets (Supplementary Fig. S7B, Wilcoxon signed-rank test �+ � 35
, ! ,448 

 10�� for all methods except Hussmann (! � 0.026) and Ribodeblur �! � 0.01

. The same analyses 449 

applied to mESCs at PPE motifs shows that our method outperforms the other nine methods (Figs. 6C-D) 450 

with our method assigning greater ribosome density at glutamic acid for at least 85% of the PPE motifs in 451 

our dataset as compared to all other methods (Fig. 6D, Wilcoxon signed-rank test (+ � 104
, ! ,  10��� 452 

for all methods). Thus, for S. cerevisiae and mESCs our Integer Programming approach is more accurate 453 

than other methods in identifying the A-site on ribosome-protected fragments.  454 
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A large number of molecular factors influence codon translation rates and ribosome density along 455 

transcripts59. One factor is the cognate tRNA concentration, as codons decoded by  cognate tRNA with 456 

higher concentrations should have on average lower ribosome densities15,16,60. Therefore, as an additional 457 

qualitative test, we expect that the most accurate A-site method will yield the largest anti-correlation 458 

between the ribosome density at a codon and its cognate tRNA concentration. This test is only qualitative 459 

as the correlation between codon ribosome-density and cognate tRNA concentration may be affected by 460 

other factors, including codon usage and reuse of recharged tRNAs in the vicinity of the ribosome 461 

influence the relationship61,62. Using tRNA abundances previously estimated from RNA-Seq experiments 462 

on S. cerevisiae16, we find that our Integer Programming method yields the largest anti-correlation 463 

compared to the eleven other methods considered (Supplementary Table S10), further supporting the 464 

accuracy of our method. We were unable to run this test in mESCs as measurements of tRNA 465 

concentration have not been reported in the literature.  466 

Discussion  467 

We have introduced a method to determine the A- and P-site locations on ribosome-protected mRNA 468 

fragments, and shown that it is more accurate than other methods in correctly assigning ribosome density 469 

to the glycine residue in PPG motifs and glutamic acid residue in PPE motifs, which are strong 470 

translation-stalling sites in S. cerevisiae and mESCs, respectively. Our method is unique amongst existing 471 

methods because it (i) uses a probabilistic approach to identify the A-site location through Integer 472 

Programming optimization and (ii) has an objective function rooted in the biology of translation – meaning 473 

that its optimization enforces the fact that the A-site location of most reads must have been between the 474 

second and stop codons of the CDSs. To be sure, several methods use biological features to assign the 475 

A-site (such as having more reads around the start and stop codons than in the UTR2,11). However, ours 476 

is the only method that also utilizes feature (i), which is beneficial because the stochastic nature of mRNA 477 

cleavage during the digestion-step of Ribo-Seq necessitates a probabilistic perspective. Our method is 478 

not entirely probabilistic since we have to set thresholds and apply a secondary criterion to arrive at a 479 

final offset value. These measures are unavoidable due to the variability in coverage between different 480 

genes. However, we find that the results are robust to variation in thresholds and mostly consistent 481 

across different Ribo-Seq datasets. Hence, the respective A-site offset tables provided for S. cerevisiae 482 

(Table 1) and mouse embryonic stem cells (Supplementary Table S8) can be applied to any dataset from 483 

these organisms. 484 

Noteworthy about our test for accuracy is that it is based on results from orthogonal experimental 485 

techniques. The stalling of translation at glycine in PPG motifs is well-documented33,47,56–58 and in S. 486 

cerevisiae the Integer Programming method assigns higher Ribo-Seq reads at the glycine codon at most 487 

instances of PPG compared to other A-site methods. In mESCs PPE is the strongest stalling motif11. The 488 

Integer Programming method outperforms other methods by assigning, on average, 1.76 times more 489 

reads at the glutamic acid codon compared to other methods. These results indicate that the Integer 490 
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Programming method presented in this study is more accurate than existing methods. One reason for this 491 

increase in accuracy, among many possible reasons, may be that most methods only use reads from 492 

around the start codon, while our method uses reads from around both the start and stop codons. 493 

A potential point of confusion may arise from the distributions shown in Fig. 3 in which there are two 494 

highly probable offset values, raising the question of whether or not there are multiple A-site locations for 495 

a given fragment size and frame. In almost all fragment length and frame combinations, there is one 496 

unique most probable A-site location, but this ambiguity can arise from poor read coverage on a gene or 497 

stochastic fluctuations in the extent of digestion on one side of an mRNA fragment compared to the other. 498 

Consider fragment size 28 in frame 1. In the Pop data set (top, middle panel of Fig. 3A), approximately 499 

half of the genes have ∆� 15 nt, while the others have ∆� 18 nt, meaning the A-site could be at either 500 

location. When we increase the read coverage of the genes, however, we see that the vast majority of the 501 

offsets shift to 15 nt (bottom, middle panel in Fig. 3B). Thus, the original A-site ambiguity was not due to 502 

multiple, equally possible A-site locations, but rather the true A-site location was hard to detect without 503 

better coverage. Consider another example. For � � 27 and � � 1 we observe in Fig. 3A that 8% of genes 504 

have an optimal ∆� 0, seemingly suggesting that the A-site is located at the 5�-end on a subset of 505 

fragments. Spot-checking the ribosome profiles of these genes, we find that these genes contain no 506 

reads in the 27 nt region upstream of the second codon and 27 nt upstream of the stop codon (data not 507 

shown). Thus, the values of ��∆|�, �, �
  for all ∆ were equal and the optimal ∆ was arbitrarily assigned a 508 

value of 0. In the higher coverage Pooled dataset, however, there are only 2% of genes with optimal ∆� 0 509 

for � � 27 and � � 1. Hence, as we increase coverage, the proportion of genes with spurious offsets 510 

decreases. Thus, offsets away from the most probable offset arise from sampling issues, not from 511 

multiple A-site locations. This result is also seen in the analysis of the artificial Ribo-Seq data where our 512 

algorithm correctly predicts the true offsets for a majority of ��, �
 combinations while ambiguous offsets 513 

occur only for those ��, �
 combinations with the lowest read coverage. 514 

We note that we set a threshold of 70% to determine a most-probable offset for each fragment size 515 

and reading frame and demonstrated that the results are robust to variation with this threshold 516 

(Supplementary Table S5). Therefore, the A-site assignments reported in Table 1 represent the most 517 

likely location of the A-site relative to the 5� end of mRNA fragments produced from Ribo-Seq 518 

experiments on S. cerevisiae. 519 

Some ��, �
 combinations (such as � � 32 and � � 0, in Table 1) appear to be inherently ambiguous, 520 

that is, increasing their coverage does not lead to a unique A-site assignment (Fig. 4D). We do not know 521 

the reason for this result, but we speculate that these are situations where there are truly multiple equally 522 

probable A-site locations. Another possibility is that the ribosome adopts different conformations in these 523 

situations that result in different read lengths and offsets, leading to ambiguity14. The important point is 524 

that the A-site cannot be accurately assigned in these situations. We therefore recommend that 525 

researchers discard reads from these ��, �
 combinations to minimize chances of erroneous A-site 526 
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assignments. We believe it will have negligible effect on the A-site profiles since these combinations 527 

contribute only 2.9% of total reads in the Pooled dataset. 528 

We have found that the Integer Programming algorithm is sensitive to reads arising from outside the 529 

boundaries of annotated CDS regions from non-canonical sources like upstream ORFs (uORFs) or 530 

Internal Ribosome Entry Sites (IRES). Specifically, applying our method to Ribo-Seq data from mESCs 531 

yielded few unique offsets. It was only after removing genes that had multiple translation initiation sites, 532 

some arising from uORFs, that the number of unique offsets increased more than four-fold. The reason 533 

for this improvement was that by removing the uORFs, our method’s assumption was met that the reads 534 

within 40 nt of the start codon only arise from the annotated CDS. Our method was not able to identify 535 

any unique offsets in E. coli Ribo-Seq data even after we controlled for multiple translation initiation sites. 536 

We observed in E. coli a high enrichment of reads before the start codon after applying the conventional 537 

12 nt offset from 3� end33 (Supplementary Fig. S4) which we speculate may be due to protection of 538 

mRNA segments involved in binding of the Shine-Dalgarno sequence to the ribosome63 and could limit 539 

the accuracy of our method. 540 

The next best method to the Integer Programming method is the Hussmann approach12. Besides more 541 

frequently assigning greater ribosome density to glycine in PPG motifs and exhibiting strong correlation 542 

with cognate tRNA abundances, the Integer Programming method is also superior because it provides 543 

greater statistical power and is based on biological features of translation rather than heuristic 544 

assumptions. Specifically, Hussmann’s method only uses reads that are 28, 29 and 30 nt in length, 545 

whereas our method uses reads between 24 to 34 nt in length. This greater coverage results in greater 546 

statistical power for our method. Hussmann’s method uses a nearest-neighbour heuristic to determine 547 

frame-specific offsets of +14, 15 or 16 for lengths 28 and 29 and offset of +15, 16 or 17 for length 30, 548 

whereas our method is based on the feature that the A-site be located within the CDS. The reason 549 

Hussman’s method yields comparable results is that its offset table is highly similar to Table 1. If the 550 

reading frame is maintained after applying the offset from the 5� end, then 8 out of 9 of Hussmann’s 551 

offsets are the same as in Table 1 with the 9th offset of �29,1
 being ambiguous in our method.  552 

Our method preserves the original 3 nt periodicity found in the original 5�-end aligned mRNA 553 

fragments. Therefore, it is not designed for detecting frame-shifting, translation of upstream ORFs, or 554 

novel short peptides. Nevertheless, correct assignment of reads to the A-site codon is essential in a 555 

variety of other analyses, such as determining translation kinetics, and our method provides the most 556 

accurate assignment of ribosome density compared to other methods (Fig. 6 and Supplementary Table 557 

S10). 558 

In summary, we have created a method for A-site identification that is more accurate than existing 559 

methods in S. cerevisiae and mouse embryonic stem cells, utilizes a fundamental feature of translation to 560 

identify the A-site, and have revealed how the A-site location changes based on the size of the mRNA 561 

fragment and its frame. By increasing the accuracy and range of fragment sizes for which the A-site can 562 
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be identified, our approach can help future studies to measure translation elongation properties at the 563 

length scale of individual codons. 564 

 565 
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Figure legends 764 

Figure 1: The A-site location can be defined as an offset from the 5� end of ribosome-protected 765 

fragments. (A) A schematic representation of a ribosome beginning translation (top drawing) and of the 766 

offset between the Ribo-Seq reads mapped with respect to the 5� end of footprints and centered on the 767 

A-site (orange bar plots). The ribosome is shown protecting a 28 nt fragment with its 5� end in reading 768 

frame 0. The start codon of a gene can only occupy the P-site and hence the A-site was determined to be 769 

at an offset of 15 nt from the 5� end for fragment size 28 which is in frame 0 (highlighted in yellow) 2. The 770 

P-site and A-site within the fragment are indicated. The reads are then shifted from the 5� end to the A-771 

site by the offset value. (B) The boundaries of the 28 nt ribosome-protected footprint are indicated by red 772 

bars. Stochastic nuclease digestion can result in different fragment sizes. Two most probable variants of 773 

a 29 nt footprint with the 5� end in frame 1 (highlighted in yellow) are shown with dashed arrows which 774 

can result in offsets of 15 nt (top) and 18 nt (bottom), respectively. (C-D) mRNA fragment size distribution 775 

for S. cerevisiae Ribo-Seq dataset from Pop and co-workers (C) and the Pooled dataset (D)  776 

Figure 2:  An illustration of the application of the Integer Programming algorithm to a Ribosome 777 

profile.  For a hypothetical transcript that is 60 nt in length the first panel shows the ribosome profile 778 

originating from reads assigned to the 5� end of fragments of size 33 in frame 0. The start and the stop 779 

codon are indicated while the rest of the CDS region is colored light peach. The algorithm shifts this 780 

ribosome profile by 3 nt and calculates the objective function ��∆/�, �, �
 .  The extent of the shift is the 781 

offset Δ. Values of ��∆|�, �, �
 for ∆� 12, 15, 18, 21 nts are indicated. In this example, the average number 782 

of reads per codon is 7.85. The difference between the top two offsets, 18 (�=222) and 15 (�=215), is 783 

less than the average. Hence, we check the secondary criteria (Methods). Offset 18 meets the criteria 784 

that the number of reads in the start codon is less than one-fifth of the average of reads in second, third 785 

and fourth codons and also that number of reads in the second codon is greater than reads in third 786 

codon. Hence, ∆�18 nt is the optimal offset for this transcript. 787 

Figure 3: Distribution of offset values from the Integer Programming algorithm applied to 788 

transcripts from S. cerevisiae. The data plotted in (A) are from the Pop dataset, and (B) the Pooled 789 

dataset. The distributions are plotted as a function of the offset value and for fragment sizes of 27 to 33 790 

nt, are shown, from left to right, for frames 0, 1 and 2. For a given fragment size and frame, the A-site 791 

location is at the most probable Δ value in the distribution, provided the offset occurs for more than 70% 792 

of the genes (dashed lines in panels). Error bars represent 95% Confidence intervals calculated using 793 

Bootstrapping. Sample sizes are reported in Supplementary Table S2.  794 

Figure 4: Increasing coverage identifies A-site locations for 2 and 3 combinations that were 795 

initially ambiguous. Plotted is the percentage of transcripts with a particular Δ value for different � and � 796 

combinations from the Pooled dataset of S. cerevisiae. In each panel, multiple distributions are plotted 797 
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corresponding to transcripts with increasing coverage, indicated by the legend at the bottom. For 798 

example, the distributions in blue and red arise from transcripts with, respectively, at least 1 or 2 reads 799 

per codon on average. We observe the A-site location tends towards 15 nt for � � 25, � � 0 (A) and 800 

towards 18 nt for � � 27, � � 2 (B), and � � 30, � � 1 (C). For � � 32, � � 0 (D), there is no trend even at 801 

higher coverage. Note that for  � � 27, � � 2 (panel B), there are less than 10 genes with an average 802 

greater  803 

than 50 reads per codon and hence we do not include the data point beyond average greater than 45  804 

reads per codon (see Methods). Error bars represent 95% Confidence intervals calculated using  805 

Bootstrapping. 806 

Figure 5: Several PPX and XPP motifs lead to ribosomal stalling in S. cerevisiae. The median 807 

normalized ribosome density is obtained for all instances of (A) PPX and (B) XPP motifs in which X 808 

corresponds to any one of the 20 naturally occurring amino acids. Using a permutation test, we determine 809 

if the median ribosome density is statistically significant or occurs by random chance. Statistically 810 

significant motifs are highlighted in dark red. This analysis was carried out on the Pop dataset for 811 

transcripts in which at least 50% of codon positions have reads mapped to them. Error bars are 95% 812 

Confidence Intervals for the median obtained using Bootstrapping. 813 

Figure 6: The Integer Programming algorithm correctly assigns greater ribosome density than 814 

other methods to the Glycine in PPG motifs in S. cerevisiae and to Glutamic acid in PPE motifs in 815 

mESCs. (A) Normalized ribosome density obtained using the various methods used to identify the A-site 816 

is shown for an instance of PPG motif in gene YLR374W with G at codon position 303 in the Pooled 817 

dataset of S. cerevisiae (see Legend and Main Text for details about methods). (B) The fraction of PPG 818 

instances (+ �  224) at which the Integer Programming method yields greater ribosome density at glycine 819 

compared to every other method. The color-coding is the same as shown in the legend in panel (A). Our 820 

method does better if it assigns greater ribosome density in more than half the instances (horizontal line 821 

in panel B). The Integer Programming method does better than all other methods (! ,  0.0005) except for 822 

Hussmann, which is not statistically different (! � 0.164). (C) Normalized ribosome density is shown for 823 

an instance of PPE motif in gene uc007zma.1 with E at codon position 127 in the Pooled dataset of 824 

mouse ESCs (see Legend and main text for details about methods). (D) The fraction of PPE instances at 825 

which the Integer Programming method yields greater ribosome density at glutamatic acid compared to 826 

every other method. The color-coding is same as shown in the legend of panel (C). The Integer 827 

Programming method does better than all other methods (! ,  10���) in accurately assigning ribosome 828 

density to Glutamic Acid in PPE motifs (+ �  104). For both analyses, two-sided p-values were calculated 829 

using the Wilcoxon signed rank test. Error bars represent the 95% Confidence Interval about the median 830 

calculated using Bootstrapping.  831 

 832 
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Tables 833 

Table 1: A-site locations (nucleotide offsets from 5′ end) determined by applying the Integer 834 

Programming algorithm to the Pooled dataset in S. cerevisiae are shown as a function of fragment 835 

size and frame. The top two offset values are listed for those � and � combinations in which the A-site 836 

location could not be uniquely determined. For unique offsets, the most-probable offset value is listed. 837 

 838 

Fragment Size Frame 0 Frame 1 Frame 2 

24 15 15/12 18/12 

25 15 12/15 18 

26 15/12  18/15 18/15 

27 15 15 18 

28 15 15 18 

29 15 15/18 18 

30 15 18 18 

31 15 18 18 

32 18/15 18 18 

33 18 18 18 

34 18 18 18/21 

 

 839 
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