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ABSTRACT 

Background:  African Americans (AAs) are an admixed population with portions of their genome 

derived from West Africans and Europeans.  In AAs, the proportion of West African ancestry 

(WAA) can vary widely and may explain the genetic drivers of disease, specifically those that 

disproportionately affect this understudied population.  To examine the relationship between 

the proportion of WAA and gene expression, we used high dimensional data obtained from AA 

primary hepatocytes, a tissue important in disease and drug response. 

Methods:  RNA sequencing (Illumina HiSeq Platform) was conducted on 60 AA-derived primary 

hepatocytes, with methylation profiling (Illumina MethylationEPIC BeadChip) of 44 overlapping 

samples.  WAA for each sample was calculated using fastSTRUCTURE and correlated to both 

gene expression and DNA methylation.  The GTEx consortium (n = 15) was used for replication 

and a second cohort (n = 206) was using used for validation using differential gene expression 

between AAs and European-Americans. 

Results: We identified 131 genes associated with WAA (FDR< 0.1), of which 28 gene expression 

traits were replicated (FDR<0.1) and enriched in angiogenesis and inflammatory pathways 

(FDR<0.1).  These 28 replicated gene expression traits represented 257 GWAS catalog 

phenotypes.  Among the PharmGKB pharmacogenes, VDR, PTGIS, ALDH1A1, CYP2C19 and 

P2RY1 were associated with WAA (p < 0.05) with replication of CYP2C19 and VDR in GTEx.  

Association of DNA methylation with WAA identified 1037 differentially methylated regions 

(FDR<0.05), with hypomethylated genes enriched in drug response pathways.  Overlapping of 

differentially methylated regions with the 131 significantly correlated gene expression traits 
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identified 5 genes with concordant directions of effect:  COL26A1, HIC1, MKNK2, RNF135, SNAI1 

and TRIM39.  

Conclusions:   We conclude that WAA contributes to variability in hepatic gene expression and 

DNA methylation with identified genes indicative of diseases disproportionately affecting AAs.  

Specifically, WAA-associated genes were linked to previously identified loci in cardiovascular 

disease (PTGIS, PLAT), renal disease (APOL1) and drug response (CYP2C19).   

Keywords: African-American, pharmacogenomics, liver, hepatocytes, RNA-Seq, DNA 

methylation, health disparity 
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Background 

African Americans (AAs) are an admixed population, having varying proportions of 

African and European ancestry between individuals [1].   As a consequence of their West 

African ancestry (WAA), AAs have more genetic variation and shorter extent of linkage 

disequilibrium (LD) than European Ancestry populations, with the proportion of WAA varying 

greatly between self-identified AAs [2].  It is this genetically driven variability that may aid in 

explaining differences in hepatic gene expression and DNA methylation patterns, which cannot 

be elucidated in homogenous populations such as those of European-only ancestry.  For 

example, WAA has been shown to predict a stronger inflammatory response to pathogens 

compared to those of European ancestry due to recent selective pressures specific to this 

population [3]. 

 

Furthermore, AAs suffer disproportionately from many chronic diseases and adverse 

drug reactions, as compared to other populations [4, 5] as well as are protected from some 

conditions.  AAs have a higher risk of cardiovascular events and negative outcomes therapy [6].  

They have higher incidences of death and disability from cardiovascular diseases (CVDs), 

thrombosis, renal dysfunction and pathologies, diabetes, cancers, and other metabolic 

disorders [7-15].  Conversely, they have lower prevalence of disease such as testicular cancer 

[16].  Differences in gene expression may help explain these observed differences.  

 

Due to the key role of the liver in biosynthesis, drug metabolism and complex human 

diseases, genetic and epigenetic differences in the liver may uncover the underlying causal 
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genes responsible for chronic diseases that disproportionately affect AAs [17, 18].  The first 

comprehensive mapping of liver expression quantitative trait loci (eQTLs) proposed several 

candidate susceptibility genes associated with type I diabetes, coronary artery disease and 

plasma cholesterol levels in a white cohort [19].  More recently, finer-resolution mapping of 

liver eQTLs, combining both gene expression data with histone modification-based annotation 

of putative regulatory elements, identified 77 loci found to associate with at least one complex 

phenotype [20].  In addition, our group has previously shown that studies specifically 

investigating the unique genetic variants of AAs can reveal population-specific risk factors that 

may explain differences in drug response, such as African ancestry-specific genetic risk factors 

associated to a higher risk of bleeding from warfarin therapy in AAs [12] as well as population 

specific variants associated with increased risk of thrombotic disease [21]. 

 

 Rather than identifying disease susceptibilities through genome-wide association 

studies (GWAS), here we use variability in genetic ancestry to uncover potential drivers of 

disease and drug response that may potentially explain differences in disease and drug 

response in AAs.  In this study we correlated WAA to both gene expression and differentially 

methylated regions to determine the contribution of WAA admixture in hepatic gene 

expression traits.  We identify genes are known to be dysregulated in diseases, which affect AAs 

disproportionately and may also be responsible for adverse drug responses in AA populations.  

 

Materials and methods 

Cohorts 
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A total of 68 African American (AA) primary hepatocyte cultures were used for this 

study. Cells were either purchased from commercial companies (BioIVT, TRL, Life technologies, 

Corning and Xenotech), or isolated from cadaveric livers using a modified two-step collagenase 

perfusion procedure [77]. Liver specimens were obtained through collaborations with Gift of 

Hope, which supplies non-transplantable organs to researchers. In addition, we used GWAS 

data for 153 subjects from Genotype-Tissue Expression Project (GTEx) release version 7, of 

which 15 samples were used as a replication set. 

 

Primary Hepatocyte Isolation  

Briefly, cadaveric livers obtained from Gift of Hope were transferred to the perfusion 

vessel Büchner funnel (Carl Roth) and the edge was carefully examined to locate the various 

vein and artery entries that were used for perfusion. Curved irrigation cannulae with olive tips 

(Kent Scientific) were inserted into the larger blood vessels on the cut surface of the liver piece. 

The liver was washed by perfusion of 1 L Solution 1 (HEPES buffer, Sigma-Aldrich), flow rate 

100-400 mL/min, with no recirculation, followed by perfusion with 1 L of Solution 2 (EGTA 

buffer, Sigma-Aldrich), flow rate 100-400 mL/min, with no recirculation. The tissue was washed 

to remove the EGTA compound by perfusion of 1 L Solution 1, flow rate 100-400 mL/min, with 

no recirculation. The liver was digested by perfusion with Solution 3 (collagenase buffer, Sigma-

Aldrich), flow rate 100-400mL/min, with recirculation. Following perfusion, liver section was 

placed in a crystallizing dish (Omnilab) containing 100-200 ml of Solution 4 (Bovine Serum 

Albumin, Sigma-Aldrich). The Glisson’s capsule was carefully removed and the tissue was gently 

shaken to release hepatocytes. The cell suspension was then filtered by a 70 μm nylon mesh 
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(Fisher Scientific), and centrifuged at 72 x g for 5 min at 4 °C. The pellets contained hepatocytes 

that was washed twice with solution 4 and resuspended in plating medium (Fisher Scientific). 

 

For primary hepatocyte cultures, cell viability was determined by trypan blue (Lonza) 

exclusion using a hemocytometer (Fisher Scientific) [78].  If viability was low, Percoll gradient 

(Sigma-Aldrich) centrifugation of cell suspensions was carried out to improve yield of viable 

cells.  Cell were plated at a density of 0.6 x 10
6
 cells/well in 500 µL InVitroGro-CP media (BioIVT, 

Baltimore, MD) in collagen-coated plates with matrigel (Corning, Bedford, MA) overlay and 

incubated overnight at 37° C. Cultures were maintained in InVitroGro-HI media (BioIVT) 

supplemented with Torpedo antibiotic mix (BioIVT) per the manufacturer’s instructions. The 

media was replaced every 24 hours for three days.  RNA was extracted after three days using 

the RNAeasy Plus mini-kit (Qiagen) per manufacturer’s instructions. 

 

Genotyping and quality control 

DNA was extracted from each hepatocyte line using Gentra Puregene Blood kit (Qiagen) 

as per manufacturer’s instructions from 1-2 million cells.  All DNA samples were then bar-coded 

for genotyping.  SNP genotyping was conducted using the Illumina Multi-Ethnic Genotyping 

array (MEGA) at the University of Chicago’s Functional Genomics Core using standard protocols. 

 

Quality control (QC) steps were applied as previously described including an w 

imputation info metric threshold of > 0.4 [21].  Briefly, a sex check was performed on genotypes 

using PLINK (version 1.9) to identify individuals with discordant sex information.  Duplicated or 
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related individuals were identified using identity-by-descent (IBD) method with a cutoff score of 

0.125 indicating third-degree relatedness.  A total of five individuals were excluded after 

genotyping QC analysis.  SNPs located on the X and Y chromosomes and mitochondrial SNPs 

were excluded.  SNPs with a missing rate of > 5% or those that failed Hardy-Weinberg 

equilibrium (HWE) tests (p < .00001) were also excluded. 

 

African ancestry measurement 

The genotypes of 68 primary hepatocytes and 153 GTEx subjects were merged with 

HapMap phase 3 reference data from four global populations;  Yoruba in Ibadan, Nigeria (YRI); 

Utah residents with Northern and Western European ancestry (CEU); Han Chinese in Beijing, 

China (CHB); and Japanese in Tokyo, Japan (JPT) [79].  Population structure of the merged data 

was inferred by the Bayesian clustering algorithm STRUCTURE deployed within fastStructure 

v1.0 and performed without any prior population assignment.  We employed the admixture 

model, and the burn in period and number of Markov Chain Monte Carlo repetition was set to 

20,000 and 100,000, respectively [80].  The number of parental populations (K) was set to 3, 

purporting three main continental groups (African, European, or Asian).  WAA percentages of 

the primary hepatocytes and GTEx subjects were calculated as the probability of being grouped 

as Yoruba African, Caucasian, and East Asian, respectively [80].  All individuals in our 60 AA 

cohort had WAA greater than 40%. 

 

 GTEx replication liver cohort 
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Of the 144 GTEx liver IDs extracted from “GTEX_Sample_Attributes” file, five were 

replicates and were removed from the analysis.  Among the remaining 139 unique liver IDs, 118 

had available genotype information for ancestry determination.  Individuals with WAA greater 

than 40% were included in the GTEx AA Liver cohort.  After WAA estimation, normalized gene 

expression reads for 15 subjects meeting the ancestry inclusion criteria were extracted from 

GTEx expression file (GTEx_Liver.v7.normalized_expression.bed).  Age and sex information of 

these subjects were extracted from the subject phenotype file on the GTEx Portal site 

(GTEx_v7_Annotations_SubjectPhenotypesDS.txt). 

 

Validation analysis in an independent liver transcriptome dataset 

 Gene expression profiling in liver had previously been conducted in 206 samples using 

Agilent-014850 4×44 k arrays (GPL4133) [23, 81]. These samples had come from donor livers 

not intended for organ transplantation. Genotyping on these samples had been done using the 

Illumina Human 610 quad beadchip platform (GPL8887) at the Northwestern University Center 

for Genetic Medicine Genomics Core Facility and imputation was subsequently performed using 

bimbam [82]. Principal component analysis was used to quantify ancestry using the Human 

Genome Diversity Panel with African and European populations as reference, as previously 

described [23]. 

 

 We conducted differential expression analysis between the European samples and the 

African American samples using Linear Models for Microarray Data (limma) as implemented in 

the Bioconductor package [83]. This Bayesian methodology uses a “moderated” t-statistic from 
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the posterior variance assuming an inverse chi-squared prior for the unknown variance for a 

gene.  We used Bonferroni-adjusted p<0.05 based on the total number of genes that were 

tested for replication. 

 

RNA-sequencing and quality control 

Total RNA was extracted from each primary hepatocyte culture after three days in 

culture using the Qiagen Rneasy Plus mini-kit per manufacturer’s instructions.  RNA-QC was 

performed using an Agilent Bio-analyzer and samples with RNA integrity number (RIN) scores 

above 8 were used in subsequent sequencing.  RNA-Seq libraries were prepared for sequencing 

using Illumina mRNA TruSeq RNA Sample Prep Kit, Set A (Illumina catalog # FC-122-1001) 

according to manufacturer’s instructions. The cDNA libraries were prepared and sequenced 

using both Illumina HiSeq 2500 and HiSeq 4000 machines by the University of Chicago’s 

Functional Genomics Core to produce single-end 50 bp reads with approximately 50 million 

reads per sample (accession number GSE124076).  Batch effects were corrected for in quality 

control below. 

  

Quality of the raw reads was assessed by FastQC (version 0.11.2).  Fastq files with a per 

base sequence quality score > 20 across all bases were included in downstream analysis.  Reads 

were aligned to human Genome sequence GRCh38 and comprehensive gene annotation 

(GENCODE version 25) was performed using STAR 2.5.  Only uniquely mapped reads were 

retained and indexed by SAMTools (version 1.2).  Nucleotide composition bias, GC content 

distribution and coverage skewness of the mapped reads were further assessed using 
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read_NVC.py, read_GC.py and geneBody_coverage.py scripts, respectively, from RseQC 

(version 2.6.4).  Samples without nucleotide composition bias or coverage skewness and with 

normally distributed GC content were reserved.  Lastly, Picard CollectRnaSeqMetrics (version 

2.1.1) was applied to evaluate the distribution of bases within transcripts. Fractions of 

nucleotides within specific genomic regions were measured for QC and samples with > 80% of 

bases aligned to exons and UTRs regions were considered for subsequent analysis. 

 

RNA-seq data analysis 

Post alignment and QC, reads were mapped to genes referenced with comprehensive 

gene annotation (GENCODE version 25) by HTSeq (version 0.6.1p1) with union mode and 

minaqual = 20 [84].  HTSeq raw counts were supplied for gene expression analysis using 

Bioconductor package DESeq2 (version1.20.0) [85].  Counts were normalized using regularized 

log transformation and principal component analysis (PCA) was performed in DESeq2. PC1 and 

PC2 were plotted to visualize samples expression pattern.  Three samples with distinct 

expression patterns were excluded as outliers resulting in 60 samples used in RNA-seq analysis. 

We calculated TPM (transcript per million) by first normalizing the counts by gene length and 

then normalizing by read depth [86]. Gene expression values were filtered based on the 

expression thresholds > 0.1 TPM in at least 20% of samples and ≥ 6 reads in at least 20% of 

samples as done in the GTEx consortium (gtexportal.org, Analysis Methods, V7, updated 

09/05/2017). 
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WAA percentage, gender, age, platform and batch were used as covariates for 

downstream analysis.  Probabilistic estimation of expression residuals (PEER) method v1.3 was 

used to identify PEER factors and linear regression was run on inverse normal transformed 

expression data using five PEER factors, based on GTEx’s determination of number of factors as 

a function of sample size [88, 89].  WAA-associated genes were identified from a genome-wide 

list of 18,854 genes for our hepatocyte-derived AA cohort samples and replicated in 21,730 

genes from the GTEx-derived AA cohort at FDR cutoff of 0.10.  The top 131 genes with an FDR < 

0.10 were also replicated in the independent Replication cohort obtained from Innocenti et al. 

(GEO accession number GSE26106) [23].  The 28 replicated genes were used to identify overlap 

with the NHGRI-EBI GWAS catalog reported genes to identify GWAS traits link to our replicated 

genes, v1.0.2 [24].  FDR calculations from linear regressions on gene expression were 

conducted with the “p.adjust” function in R and the default method of “fdr” was used. 

 

In addition, we also conducted a subset analysis with 64 PharmGKB “very important 

pharmacogenes”.  These genes have extensive literature support for association to drug 

responses.  We analyzed this subset for association with WAA using the same linear regression 

method at a nominal p-value cutoff of 0.05 due to the smaller number of genes being tested, 

64, our smaller sample sizes of 60 in our AA cohort and 15 in the GTEx replication cohort. 

 

Methylation sample preparation and data analysis 

 DNA was isolated from hepatocytes or liver tissue.  Liver tissue was homogenized in a 

bead mill (Fisher Scientific) using 2.8 mm ceramic beads.  Then, DNA from hepatocytes or liver 
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was extracted with the Gentra Puregene Blood kit (Qiagen) as per manufacturer instructions.  

One microgram of DNA was bisulfite converted at the University of Chicago Functional 

Genomics Core using standard protocols.  CT-conversion was performed using Zymo-Research 

EZ DNA Methylation kits and further processed for array hybridization using Illumina provided 

array reagents. Following hybridization the arrays were stained pre manufacturer’s protocol 

and analysed using an Illumina HiSCAN.  Of the 60 available hepatocyte cultures only 56 

produced sufficient bisulfite converted DNA for analysis. 

 

Illumina MethylationEPIC BeadChip microarray (San Diego, California, USA), consisting of 

approximately 850,000 probes, predefined and annotated [90], and containing 90% of CpGs on 

the HumanMethylation450 chip and with more than 350,000 CpGs regions identified as 

potential enhancers by FANTOM5 [91] and the ENCODE project [92], was used for methylation 

profiling of DNA extracted from 56 AA hepatocytes, which overlapped the samples used for 

gene expression analysis (accession number GSE123995).  Raw probe data was analyzed using 

the ChAMP R package for loading and base workflow [26], which included the following R 

packages: BMIQ for type-2 probe correction method [93]; ComBat for correction of multiple 

batch effects including Sentrix ID, gender, age, slide and array [94, 95]; svd for singular value 

decomposition analysis after correction [96]; limma to calculate differential methylation using 

linear regression on each CpG site with WAA as a numeric, continuous variable [97]; DMRcate 

for identification of DMRs, using default parameters, and the corresponding number of CpGs, 

minimum FDR (minFDR); Stouffer scores, and maximum and mean Beta fold change values [98]; 
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minfi for loading and normalization [99]; missMethyl for gometh function for GSEA analysis 

[100]; and FEM for detecting differentially methylated gene modules [28].   

 

Methylation data quality control in ChAMP’s champ.load() and champ.filter() function 

removed the following probes: 9204 probes for any sample which did not have a detection p-

value < 0.01, and thus considered as a failed probe,  1043 probes with a bead count < 3 in at 

least 5% of samples,  2975 probes with no CG start sites, 78,753 probes containing SNPs [101], 

49 probes that align to multiple locations as identified in by Nordlund et al. [102], and 17,235 

probes located on X and Y chromosomes.  Threshold for significantly differentially methylated 

probes was set at an adjusted p-value of 0.05 using Benjamini-Hochberg correction for multiple 

testing in the limma package.  Significance for DMRs was set at adjusted FDR[<[0.05 in the 

DMRcate package using default parameters.  Analysis was performed with R statistical software 

(version 3.4.3 and version 3.5 for ChAMP (version 2.10.1)). Three outliers and nine samples 

from young subjects, less than five years old were excluded due to known differences in 

methylation profiles associated with age [103] leaving 44 samples in the analysis.  

 

Gene ontology analysis was performed using g:Profiler (biit.cs.ut.ee/gprofiler) using 

g:GOSt to provide statistical enrichment analysis of our significantly HypoM and HyperM genes, 

and significantly expressed genes associated with African ancestry [104].  We filtered for 

significance at a Benjamini-Hochberg adjusted p-value < 0.05, we set hierarchical sorting by 

dependencies between terms on the strongest setting, “best per parent group”, and only 

annotated genes were used as the statistical domain size parameter to determine 
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hypergeometrical probability of enrichment.  We considered ontology terms to be statistically 

significance at a BH-adjusted p-value < 0.01. 

 

Correlation of log fold change in DNA methylation of DM CpG sites by genomic feature 

was performed on significantly DM probes identified by limma and plotted using ggplot2 v3.1.0.  

Genomic feature and transcriptionally-regulated regions were subset for terms “island”, 

“opensea”, “shelf”, “shore” and “5’UTR”, “TSS1500”, “Body”, “3’UTR”, respectively.  A chi 

square test was used for all categorical comparisons.  Correlation with methylation and gene 

expression was performed using the ggscatter function in ggpubr v0.2, with the correlation 

method set to Pearson, confidence interval set at 95% and regression calculations included for 

the following subsets:  HypoM, HyperM and cumulative CpG sites.  Gene name conversions and 

annotated gene attributes were determined by BioMart v2.38.0.  The Circos plot was created 

using Circos tool v0.69-6. 

 

Results 

Cohorts 

60 primary hepatocyte cultures, procured from self-identified AAs, passed all quality 

control steps and were used for RNA-sequencing (RNA-seq) analysis.  56 hepatocyte cultures 

were assayed for DNA methylation, with 44 used in the final methylation analysis.  We obtained 

genome-wide genotyping data of 153 subjects from GTEx liver cohort, version 7 [22].   All 60 of 

our AA hepatocyte cohort were confirmed as having WAA ranging from 41.8% to 93.7%, and 15 

subjects in the GTEx liver cohort met the WAA inclusion criteria with WAA ranging from 75.6% 
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to 99.9% (Supplementary Figure 1). Table 1 shows the demographics of each cohort.  In 

general, the GTEx and the replication cohorts were older and had a lower percentage of 

females than the primary hepatocyte cohort. 

 

Hepatic genes and pharmacogenes associated with African ancestry 

Analysis of RNA-seq gene expression traits in the AA hepatocyte cohort with percentage 

WAA identified 131 genes, in which gene expression traits are significantly associated with WAA 

(Supplementary Table 1; Figure 1A, FDR < 0.10).  We were able to replicate 28 of these genes in 

an independent dataset as differentially expressed (DE) between AAs and European-Americans 

(EAs) in liver [23] (Table 2; Figure 1D, p < 0.05).  These 28 replicated gene expression traits are 

reported as trait-associated genes in 257 previous GWAS studies within the NCBI GWAS catalog 

[24].  These represent 119 unique traits (Supplementary Table 2) [24].  The phenotypic disease 

and biological GWAS traits associated with WAA include blood and blood pressure measures, 

coronary heart and artery disease, diabetic blood measures, chronic inflammatory disease, 

chronic kidney disease and various cancers. 

 

In the GTEx cohort of 15 AAs, we were able to replicate 8 of the 131 significant WAA-

associated genes: COL26A1 (effect size = -7.13, p = 0.037), DHODH (effect size = 3.19, p = 0.048), 

GPI (effect size = -3.46, p = 0.048), HSD17B7P2 (effect size = -9.22, p = 0.027), PLCL2 (effect size 

= -5.76, p = 0.046), SLC2A3 (effect size = -5.95, p = 0.032), TRIM39 (effect size = 5.53, p = 0.030)  

and VEGFA (effect size = -4.74, p = 0.032) in the GTEx liver cohort (Supplementary Table 2).  
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Due to the importance of the liver in pharmacologic drug response, we also tested the 

association of gene expression levels with percentage West African ancestry in a subset of 

genes belonging to the very important pharmacogenes (VIP) in PharmGKB, consisting of 64 

genes known to be expressed in hepatocytes.  These represent drug-metabolizing enzyme, 

transporters and drug target genes that are well-established for their role in drug response [25].  

Testing the association between WAA and gene expression in the VIP genes identified five 

genes which were significantly associated to WAA: VDR (effect size = 0.35, p = 0.003), PTGIS 

(effect size = -0.57, p = 0.002), ALDH1A1 (effect size = 1.03, p = 0.032), CYP2C19 (effect size = -

1.36, p = 0.032) and P2RY1 (effect size = 1.61, p = 0.002 (Figure 1B). 

 

DNA methylation patterns are associated with African ancestry in human liver 

To identify differentially methylated (DM) regions (DMRs) and CpGs associated with 

WAA, we conducted linear regression on each CpG site to find African ancestry-related 

differential methylation [26].  We identified 23,317 significant DM CpG sites, out of a total of 

approximately 867,531 probes on the Illumina EPIC BeadChip microarray, annotated to 11,151 

unique genes (Supplementary Figure 2A; BH-adjusted p < 0.05).  These DM CpGs correspond to 

1037 DMRs annotated to 1034 unique genes (Supplementary Figure 2B; minimum FDR < 

0.0001).  Each DM CpG site was categorized into hyper- (HyprM) and hypomethylated (HypoM) 

sites: 15,404 HyprM CpG sites constituted 435 HyprM DMRs, mapping to 432 unique genes, 

7913 HypoM CpG sites constituted HypoM 602 DMRs, mapping to 602 unique genes, and seven 

annotated genes had both HyprM and HypoM DMRs. 
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 As compared to all CpG sites tested, the gene body (45.0% vs 40.9%, p < 0.0001, chi-

square test) and shelf (8.4% vs 6.9%, p = 0.011, chi-square test) had significantly higher 

proportion of DM CpGs, while the promoter (18.4% vs 20.3%, p < 0.002, chi-square test), 

intergenic regions (IGR) (24.2% vs 27.7%, p < 0.0001, chi-square test) and shore regions (16.3% 

vs 18.2%, p < 0.0022, chi-square test) had significantly lower proportion of DM CpGs. In our 

analysis of DM loci associated with WAA, 75.9% of DM CpG sites within islands were HypoM, 

while the shore, shelf and open sea were predominantly HyperM (65.5%, 81.7% and 78.9% 

respectively) (Supplementary Figure 2C).  Within transcriptionally-regulated promoter regions, 

54.0% of CpG sites were HypoM.  Within the promoter, 71.5% of DM CpGs were HypoM 200 kb 

upstream of the transcription start site (TSS), while 42.9% of DM CpGs were HypoM 1500 kb 

upstream of the TSS. (Supplementary Figure 2D).  DNA methylation around TSS is an 

established predictor of gene expression, with increased methylation leading to decreased 

expression [27, 28].  In the gene body, 73.0% of DM sites were HyprM (Supplementary Figure 

2D). Intergenic, 5’-UTR and 3’-UTR regions were predominantly HyperM (67.5%, 64.0%, 79.6% 

respectively). 

 

 Next, we characterized the locations of WAA-associated CpGs by genomic features and 

gene annotations.  Within the 7913 HypoM CpG sites associated with WAA, there was a greater 

proportion of CpGs located in islands.  Within the 15,404 HyperM CpGs associated with WAA, 

there was a greater proportion in the shelf and open sea regions (Supplementary Figure 2E), 5’-

UTR, promoter regions and gene body (Supplementary Figure 2F). 
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Gene expression trait correlation to DNA methylation patterns 

To determine the relationship of DMRs associated to WAA to gene expression traits, we 

next looked at the association of the 1034 unique genes corresponding to the 1037 DMRs with 

their respective gene expression profiles.  Although there was no correlation of WAA-

associated HyprM gene regions with gene expression (Figure 1C, Pearson’s r = 0.036, p = 0.55), 

HypoM gene regions associated with WAA were negatively correlated with gene expression 

(Figure 1C, Pearson’s r = -0.14, p = 0.009).  In general, all genes within DMR associated with 

WAA also showed negative correlation between gene expression and methylation (Pearson’s r 

= -0.1, p = 0.013).  From the 131 genes with gene expression significantly associated with WAA 

identified, we identified an overlap of ten DM gene regions:  COL26A1 (minFDR = 3.99 x 10
-45

, 

mean Beta = -0.0816, consisting of 16 CpGs), HIC1 (minFDR = 5.35 x 10
-8

, mean Beta = 0.0011, 

consisting of 35 CpGs), MKNK2 (minFDR = 8.40 x 10
-6

, mean Beta = 0.0404, consisting of 9 

CpGs), RNF135 (minFDR = 3.17 x 10
-84

, mean Beta = -0.2504, consisting of 18 CpGs) and TRIM39 

(minFDR = 4.20 x 10
-8

, mean Beta = 0.0444, consisting of 14 CpGs), with concordant directions 

of effect (e.g. increased methylation leading to decreased gene expression).  A comprehensive 

Circos plot summarizes the 23,317 HypoM and HyprM CpG sites, the 1037 DMRs, the 131 genes 

significantly associated with WAA and the 257 GWAS studies associated with the 28 genes 

replicated gene expression traits found in the validation dataset of Innocenti et al. (Figure 2, 

Supplemental Table 2). 

 

Functional representation of WAA associated genes and DM genes associated with African 

ancestry 
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 To understand the biological relevance of differentially HyprM and HypoM genes 

associated with African ancestry, we performed Gene Ontology (GO) analysis of the 432 unique 

genes comprised of the 435 HyprM DMRs and 602 unique genes comprised of the 602 HypoM 

DMRs using a gene panel of all annotated genes in the GO database.  HyprM genes are enriched 

for “cell development” (BH-adjusted p = 0.0016) and “apoptotic process” (BH-adjusted p = 

0.0076) within the category of biological processes (Figure 3A). HypoM genes were enriched for 

“system development” (BH-adjusted p = 4.0 x 10
-6

), “response to drug” (BH-adjusted p = 1.7 x 

10
-4

), and “response to hypoxia” (BH-adjusted p = 0.0068) within the category of biological 

processes (Figure 3B). In addition, HypoM genes are enriched for “sequence-specific DNA 

binding” (BH-adjusted p = 4.4 x 10
-5

) and “RNA polymerase II transcription factor activity” (BH-

adjusted p = 4.4 x 10
-5

) within the category of molecular function (Figure 3B). 

 

With respect to GO analysis of the 131 WAA-associated gene expression traits (FDR < 

0.10), “angiogenesis” (BH-adjusted p = 4.5 x 10
-5

), “leukocyte activation involved in immune 

response” (BH-adjusted p = 4.5 x 10
-4

), “acute-phase response” (BH-adjusted p = 0.0011), 

“positive regulation of endothelial cell proliferation” (BH-adjusted p = 0.0055), “zymogen 

activation” (BH-adjusted p = 0.0059) and “cell proliferation” (BH-adjusted p = 0.0085) were 

biological processes that are enriched in hepatocytes (Figure 3C). Molecular functions, such as 

“oxidoreductase activity” (BH-adjusted p = 9.6 x 10
-4

), “signaling receptor binding” (BH-adjusted 

p = 0.0023), “glucocorticoid receptor binding” (BH-adjusted p = 0.0045) and the KEGG pathway 

“HIF-1 signaling pathway” (BH-adjusted p = 8.2 x 10
-4

) were also enriched (Figure 3C). 
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Discussion 

 Several studies have shown that the first several principal components of methylation 

data can capture population structure in cohorts composed of European and African individuals 

[29].   Recently, it was shown that genetic ancestry can be used as a proxy, not only for 

uncovering unknown covariates contributing to epistatic and gene-environment interactions 

from gene expression data, but also from DNA methylation data [30].  Indeed, approximately 

75% of variation in methylation was attributable to shared genomic ancestry [31].  Moreover, 

clinically meaningful measures can be associated to the proportion of WAA as has been shown 

for lung-function prediction [32]. 

 

In our study, we investigated population-specific gene expression and DNA methylation 

in AAs, an admixed population.  We found HypoM hepatic genes, which indicate increased gene 

expression, are enriched for “system development” and “response to drug”.  HypoM, or 

demethylation, may be a better predictor of gene expression than methylation which, in 

contrast to demethylation, may or may not affect gene expression, depending on the gene 

region methylated. Methylation within the TSS of the promoter is well known to repress gene 

expression while methylation within the gene body results in more variable expression [28, 33]. 

 

 Among gene expression traits associated with WAA, we identified hepatic genes that are 

enriched for “angiogenesis” as the primary ontology term, followed by inflammatory response 

categories including “leukocyte activation in immune response”, “acute-phase response”, 

“positive regulation of vascular endothelial proliferation”, “zymogen activation” and “cell 
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proliferation”.  Angiogenesis and inflammatory response terms may underlie conditions that 

AAs may be more susceptible to, such as CVD and other chronic inflammatory disease.  In 

particular, APOL1, PTGIS and PLAT expression, which we show to be associated with WAA, have 

been shown to increase CVD risk and renal disease in AAs [13, 34, 35].  Other genes associated 

with WAA include ALDH1A1, which is involved in alcohol and aldehyde metabolism disorders 

and cancer risk [11, 36, 37], IL-33, which is involved in beneficial immune response [38-40], and 

VEGFA, which has been linked to renal disease and microvascular complications of diabetes [7, 

14, 41, 42]. 

 

 Of the 131 genes associated with WAA, we were able to replicate a quarter within our 

replication and validation cohorts (Table 2).  We also identified an overlap with five significantly 

DM genes in concordant directions of effect, COL26A1, HIC1, MKNK2, RNF135, SNAI1 and 

TRIM39. HIC1 is a potential tumor suppressor that has been linked to poorer outcomes in 

laryngeal cancer in AAs [43, 44].  RNF135 is a ring finger protein that is regulated by several 

population-specific variants [45].  RNF135, itself, then regulates other genes at distant loci and 

has been implicated in glioblastomas and autism [45-47].  Of particular interest for African 

ancestry populations, RNF135 has been found to be under selective pressure specifically in 

African populations [48, 49]. 

 

In PharmGKB VIP genes, we identified five genes associated with WAA:  ALDH1A1, 

CYP2C19, P2RY1, PTGIS and VDR [22, 25].  Of particular importance, we found that for every 1% 

increment in African ancestry, there was a corresponding 1.36% decrement in CYP2C19 
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expression and 1.61% increment in P2RY1 expression. CYP2C19 is involved in the metabolism of 

many commonly prescribed drugs including clopidogrel, an antiplatelet therapy widely used for 

thrombo-prophylaxis of CVDs and linked to substantial inter-patient differences in drug 

response.  It is also known to inhibit the P2RY family of receptor proteins on the surface of 

platelets [34, 35, 50, 51].  By inhibiting P2RY12 function, clopidogrel indirectly suppresses 

platelet clustering and clot formation and prevents clots contributing to heart attack, stroke 

and deep vein thrombosis [52-54].  P2RY1 works in concert with P2RY12 to promote platelet 

activation and aggregation [55].  Consequently, P2YR1 variants have been associated with 

increased platelet response to adenosine 5'-diphosphate (ADP) stimulation [56] and increased 

expression may be linked to thrombotic disease [57]. 

 

Clopidogrel requires CYP2C19-mediated conversion to its active form, but it has been 

shown that different populations have different levels of CYP2C19 activity [12, 58-61].  The 

underlying mechanism is multifactorial and genetic polymorphisms are one of the main causes 

of variable drug response within an individual and across populations [6, 62, 63].  A study 

conducted across 24 U.S. hospitals showed one-year mortality rates of 7.2% in clopidogrel-

treated AAs, compared to 3.6% for Caucasians on clopidogrel [6].  This study also found that 

AAs were at a higher risk of cardiovascular events and mortality from poor antiplatelet 

response to clopidogrel.  Our finding that CYP2C19 expression is reduced with WAA while 

P2RY1 expression is inversely increased, suggests that clopidogrel resistance and susceptibility 

of AAs to thrombotic disease may be due to ancestry-associated gene expression. 
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Another WAA-associated gene was PLAT, for which expression is decreased with 

increased WAA.  The PLAT gene, which is involved in plasminogen activation and encodes tissue 

plasminogen activator (t-PA), is linked to thrombosis and increased risk of CVD [64, 65].  In AAs, 

polymorphisms in PLAT have been linked to CVD and higher levels of t-PA antigen seen in both 

myocardial infarction and venous thromboembolism [66].  In addition, increased plasma 

fibrinogen level, which is involved in the fibrinolytic pathway and regulated by t-PA, has been 

linked to increased venous thrombosis risk in AAs [67, 68]. 

 

VDR is also important in health and disease because Vitamin D and its active metabolite 

1,25(OH)2D are exogenous hormones created by sun exposure or through diet, with established 

deficiencies in both Vitamin D and its bioactive metabolites in AAs [69, 70].  Those of African 

ancestry are known to have lower plasma 1,25(OH)2D levels and our findings support this, 

suggesting that this may lead to an upregulation of VDR with increased WAA that may 

compensate for these lower levels.  Additionally, VDR single nucleotide polymorphisms (SNPs) 

have been implicated in CVDs and various cancer susceptibilities in AAs [8, 9, 15, 71, 72].  SNPs 

within VDR may exacerbate an already deficient vitamin D environment in AAs. 

 

Several limitations exist in this study.  First, we only had 60 primary hepatocyte cultures 

included in this analysis, which limits our power to detect small changes in gene expression 

associated with ancestry.  Second, the GTEx replication liver cohort, with 15 AA livers, also 

severely lacked power to replicate our findings.  Third, while most of the genes found in the 

PharmGKB VIP subset analysis were not statistically significant in the complete genome-wide 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 1, 2019. ; https://doi.org/10.1101/491225doi: bioRxiv preprint 

https://doi.org/10.1101/491225


 25

set, we found ALDH1A1 and PTGIS to be significantly associated to WAA in both the genome-

wide and in the 64 PharmGKB VIP analysis, and we replicated 8 of the 131 significant WAA-

associated genes in a GTEx liver cohort of 15 AAs.  More importantly, and the reason for the 

low power of our dataset and any other dataset available for AAs, there are very few genome-

wide datasets of both genotype and gene expression in AAs, and those that exist have similarly 

under-powered cohort sizes. 

 

Another differentiation, though not considered a limitation, was that we used cultured 

hepatocytes as opposed to frozen liver tissues, as was the case with GTEx.  Primary cultures 

may show differences in gene expression profiles from those seen in the intact organ, which 

consist of only 60% hepatocytes [73].  However, our study design has the advantage of only 

assaying the gene expression of a single cell type as opposed to the multiple cell types found in 

liver.  Previous studies have shown that primary human hepatocytes show similar gene 

expression levels for both Phase I (CYPs) and Phase II (e.g. UGTs) drug-metabolizing enzymes to 

those obtained from frozen liver tissue [74, 75].  Also, the use of primary hepatocyte cultures 

reduces the effect of the environmental confounders inherent in liver tissue (i.e. there is less 

effect of previous drug/disease exposure) through the controlled tissue culture processes 

following hepatocyte isolation).  The artifact of previous disease/drug exposures is present in all 

transcriptome studies conducted in post-mortem human liver tissue. 

Conclusion 

 Currently, genome-wide genetic, epigenetic, and multi-omics datasets of AAs are lacking 

in both the scientific literature and in public databases and repositories. Since genomics studies 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 1, 2019. ; https://doi.org/10.1101/491225doi: bioRxiv preprint 

https://doi.org/10.1101/491225


 26

should be inclusive of all populations to comprehensively unravel disease etiology, the dearth 

of genetic data in minorities and underrepresented populations poses a major scientific and 

medical dilemma in new drug development, precision medicine, and public health policies.  An 

archetypal example is the rs12777823 SNP in CYP2C9, which was found to associate with 

decreased warfarin dose requirement, but only in AAs [76].  Findings, such as these, were only 

made possible due to focused studies in a minority patient population. 

 

In conclusion, our study has important implications in the use of genetic ancestry in 

understanding phenotypic differences and health disparities in AAs. Our study also has 

implications in determining inter-individual genetic factors and drug response outcomes in 

admixed populations for precision medicine.  As evidenced by limited genome-wide data in AAs 

within public databases and biobanks, such as in GTEx, our study further stresses the need for 

genome-wide studies in minority and under-represented populations.  
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Figure 1.  Gene expression traits and methylation patterns associated with West African 

ancestry in hepatocytes.  Enhanced volcano plot of gene expression associated with increasing 

WAA plotted against – log10 p-values of (A) all 18,854 genes expressed in hepatocytes resulting 

in 131 genes significantly associated with WAA represented as red and blue dots (red circles: 

FDR < 0.05 and logFC > 1.5 and < -1.5; blue circles: FDR < 0.05 and logFC < 1.5 and > -1.5; green 

circles: FDR > 0.05 and logFC > 1.5 and < -1.5, grey circles: FDR > 0.05 and logFC < 1.5 and > -1.5) 

and (B) within subset of 64 PharmGKB “very important genes” (red circles: p < 0.05 and logFC > 
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1.0; blue circles: p-value < 0.05 and logFC < 1.0; grey circles: p-value > 0.05).  (C) Correlation of 

1034 unique genes containing DMRs significantly associated with WAA (mean Beta fold change 

from DMRcate) with coefficient of gene expression at each gene (indicating the direction of 

association to ancestry).  Each point represents a gene, with grey triangles representing 

hypomethylated genes (Pearson’s r = -0.014, p = 0.009) and maroon red circles representing 

hypermethylated genes (Pearson’s r = 0.036, p = 0.55).  Grey and maroon hash marks on the x- 

and y-axis axis represent genes plotted with both expression and methylation values.  Grey and 

maroon shading around each regression line represents the 95% confidence interval.  (D) Q-Q 

plot of the observed versus expected – log10 p-values in the replication cohort (n = 206).  Each 

point represents a gene with the colored lines representing different FDR thresholds of 

significance. 
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Figure 2.  A Circos plot of significantly associated CpGs, DMRs, gene expression traits 

associated with WAA and GWAS catalog traits associated with replicated gene expression 

traits.  The innermost ring represents the 257 GWAS catalog trait associated with the 28 genes 

replicated in the Innocenti et al. dataset (p < 0.05) with each purple circle represents the scaled, 

-log(p-value) of a study from the GWAS catalog.  The second ring represents 83 negatively 
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expressed genes associated with WAA (red bars represent fold change, ranging from 0 to -6).  

The third ring represents 48 positively expressed genes associated with WAA  (blue bars 

represent fold change > 1.5, ranging from 0 to +6).  The fourth ring represents 1037 DMRs 

significantly associated with WAA (purple tiles represents, where some DMRs are stacked when 

overlapping). The fifth ring represents 23,317 significantly differentially methylated CpGs (black 

squares represent 7913 hypomethylated CpG sites; orange circles represent 15,404 

hypermethylated CpG sites; not all CpGs are depicted due to reduced crowding implemented in 

the Circos program).  The next ring represents the karyotype of the human genome (reference 

hg38) and the outermost ring corresponds to the gene names of the 131 WAA-associated gene 

expression traits identified. 
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Figure 3. Enrichment of biological processes and molecular functions of differentially 

methylated genes and genes expression signatures associated with West African ancestry. 

Gene ontology terms that are enriched for biological processes (BP) and molecular functions 

(MF) for (A) 432 genes annotated to differentially hypermethylated regions, (B) 602 genes 

annotated to differentially hypomethylated regions and (C) 131 genes with gene expression 

A B

C
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traits associated to WAA (FDR < 0.10). p-values are BH-adjusted p-values obtained from 

gProfiler. 

 

 

 

Table 1. Demographics and clinical characteristics of hepatocyte/liver cohorts 

 

Variable 

RNA-Seq 
Cohort 

Methylation 
Cohort 

GTEx 
Liver Cohort 

Validation 
Liver Cohort 

AA 
(n = 60) 

AA 
(n = 44) 

AA 
(n = 15) 

AA and EA 
(n = 206) 

Percent AA subjects 
(%) 

100 100 100 11.1 

Age, years 
(mean ± SD) 

39 ± 20.5 46 ± 12.2 52 ± 11.6 46 ± 22 

Sex (Female %) 48.3 52.3 33.3 36.4 

West African 
ancestry (%) 
(mean ± SD) 

78.17 ± 12.86 79.83 ± 11.86 84.04 ± 7.13 NA 

AA: African American greater than 40% YRI 

EA: European American of CEU descent 
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Table 2. Significant and replicated DE genes between AAs and EAs (p < 0.05) from a genome-

wide discovery of genes associated with West African Ancestry (FDR < 0.10) 

 

 AA Hepatocyte Cohort DE in AA vs EA ‡ 

Gene Coefficient p FDR < 0.10 *p < 0.05 

IL18 3.152 7.25E-05 0.0471 0.00000126 

APOL1 -2.848 3.83E-05 0.0380 0.000202 

VEGFA -2.246 4.91E-05 0.0421 0.000502 

PARD3 0.437 1.86E-04 0.0773 0.000696 

SAP30 -1.945 2.93E-04 0.0788 0.00167 

LRRC37A2 -0.306 6.73E-04 0.0988 0.00249 

ENO1 -1.007 1.89E-04 0.0773 0.00266 

PGK1 -0.929 5.29E-04 0.0882 0.00268 

DGCR5 2.192 1.62E-04 0.0751 0.00278 

MRO 1.131 2.57E-05 0.0380 0.00282 

GREM2 -2.191 6.86E-04 0.0988 0.00327 

CYP21A2 -2.986 3.17E-04 0.0790 0.00385 

CEBPB -1.454 6.36E-04 0.0967 0.00445 

MAD2L1BP -0.505 3.04E-04 0.0790 0.00605 

GPR4 -1.316 3.08E-04 0.0790 0.00706 

RNF149 -0.833 2.37E-04 0.0788 0.00743 

GPI -1.453 4.58E-05 0.0411 0.0123 

SLC22A15 -1.271 6.86E-04 0.0988 0.0125 

HIC1 -1.567 9.64E-06 0.0307 0.013 

APOL2 -1.643 1.06E-04 0.0583 0.0134 

MME 2.640 3.94E-04 0.0854 0.0137 

MKNK2 -1.545 3.44E-04 0.0811 0.0262 

MGRN1 -1.010 2.76E-04 0.0788 0.0313 

C3orf33 0.506 6.45E-04 0.0973 0.0314 

PTPN4 0.484 5.37E-04 0.0882 0.0321 

NPR2 1.235 6.11E-05 0.0471 0.0444 

MSX1 1.432 2.90E-04 0.0788 0.0448 
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PDK1 -2.038 6.30E-04 0.0966 0.0498 

 

*      Replication p-value (p < 0.05) based on 131 discovery genes (Supplemental Table 1) 

‡      Replication in differentially expressed (DE) genes between 23 African-Americans (AAs) and 

183 European-Americans (EAs) [23] 

Genes with FDR < 0.1 in the Replication Cohort are shown in Bold.  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 1, 2019. ; https://doi.org/10.1101/491225doi: bioRxiv preprint 

https://doi.org/10.1101/491225


 37

References 

1. Baharian S, Barakatt M, Gignoux CR, Shringarpure S, Errington J, Blot WJ, Bustamante 

CD, Kenny EE, Williams SM, Aldrich MC et al: The Great Migration and African-American 

Genomic Diversity. PLoS Genet 2016, 12(5):e1006059. 

2. Campbell MC, Tishkoff SA: African genetic diversity: implications for human 

demographic history, modern human origins, and complex disease mapping. Annu Rev 

Genomics Hum Genet 2008, 9:403-433. 

3. Nedelec Y, Sanz J, Baharian G, Szpiech ZA, Pacis A, Dumaine A, Grenier JC, Freiman A, 

Sams AJ, Hebert S et al: Genetic Ancestry and Natural Selection Drive Population 

Differences in Immune Responses to Pathogens. Cell 2016, 167(3):657-669 e621. 

4. De T, Park CS, Perera MA: Cardiovascular Pharmacogenomics: Does It Matter If You're 

Black or White? Annu Rev Pharmacol Toxicol 2018. 

5. Daw J: Contribution of Four Comorbid Conditions to Racial/Ethnic Disparities in 

Mortality Risk. Am J Prev Med 2017, 52(1S1):S95-S102. 

6. Cresci S, Depta JP, Lenzini PA, Li AY, Lanfear DE, Province MA, Spertus JA, Bach RG: 

Cytochrome p450 gene variants, race, and mortality among clopidogrel-treated 

patients after acute myocardial infarction. Circ Cardiovasc Genet 2014, 7(3):277-286. 

7. Sivaskandarajah GA, Jeansson M, Maezawa Y, Eremina V, Baelde HJ, Quaggin SE: Vegfa 

protects the glomerular microvasculature in diabetes. Diabetes 2012, 61(11):2958-

2966. 

8. Sarkissyan M, Wu Y, Chen Z, Mishra DK, Sarkissyan S, Giannikopoulos I, Vadgama JV: 

Vitamin D receptor FokI gene polymorphisms may be associated with colorectal 

cancer among African American and Hispanic participants. Cancer 2014, 120(9):1387-

1393. 

9. Mishra DK, Wu Y, Sarkissyan M, Sarkissyan S, Chen Z, Shang X, Ong M, Heber D, Koeffler 

HP, Vadgama JV: Vitamin D receptor gene polymorphisms and prognosis of breast 

cancer among African-American and Hispanic women. PLoS One 2013, 8(3):e57967. 

10. Boulter AC, Quinlan J, Miro-Herrans AT, Pearson LN, Todd NL, Committee HS, Gravlee 

CC, Mulligan CJ: Interaction of Alu Polymorphisms and Novel Measures of 

Discrimination in Association with Blood Pressure in African Americans Living in 

Tallahassee, Florida. Hum Biol 2015, 87(4):295-305. 

11. Scott DM, Taylor RE: Health-related effects of genetic variations of alcohol-

metabolizing enzymes in African Americans. Alcohol Res Health 2007, 30(1):18-21. 

12. De T, Alarcon C, Hernandez W, Liko I, Cavallari LH, Duarte JD, Perera MA: Association of 

Genetic Variants With Warfarin-Associated Bleeding Among Patients of African 

Descent. JAMA 2018, 320(16):1670-1677. 

13. Kruzel-Davila E, Wasser WG, Skorecki K: APOL1 Nephropathy: A Population Genetics 

and Evolutionary Medicine Detective Story. Semin Nephrol 2017, 37(6):490-507. 

14. Liu CT, Garnaas MK, Tin A, Kottgen A, Franceschini N, Peralta CA, de Boer IH, Lu X, 

Atkinson E, Ding J et al: Genetic association for renal traits among participants of 

African ancestry reveals new loci for renal function. PLoS Genet 2011, 7(9):e1002264. 

15. Li YC: Vitamin D receptor signaling in renal and cardiovascular protection. Semin 

Nephrol 2013, 33(5):433-447. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 1, 2019. ; https://doi.org/10.1101/491225doi: bioRxiv preprint 

https://doi.org/10.1101/491225


 38

16. Ghazarian AA, Trabert B, Graubard BI, Schwartz SM, Altekruse SF, McGlynn KA: 

Incidence of testicular germ cell tumors among US men by census region. Cancer 2015, 

121(23):4181-4189. 

17. Wang FS, Fan JG, Zhang Z, Gao B, Wang HY: The global burden of liver disease: the 

major impact of China. Hepatology 2014, 60(6):2099-2108. 

18. Ongen H, Brown AA, Delaneau O, Panousis NI, Nica AC, Consortium GT, Dermitzakis ET: 

Estimating the causal tissues for complex traits and diseases. Nat Genet 2017, 

49(12):1676-1683. 

19. Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, 

Suver C et al: Mapping the genetic architecture of gene expression in human liver. 

PLoS Biol 2008, 6(5):e107. 

20. Caliskan M, Manduchi E, Rao HS, Segert JA, Beltrame MH, Trizzino M, Park YS, Baker SW, 

Chesi A, Johnson ME et al: Genetic And Epigenetic Fine Mapping Of Complex Trait 

Associated Loci In The Human Liver. bioRxiv doi: https://doiorg/101101/432823 2018. 

21. Hernandez W, Gamazon ER, Smithberger E, O'Brien TJ, Harralson AF, Tuck M, Barbour A, 

Kittles RA, Cavallari LH, Perera MA: Novel genetic predictors of venous 

thromboembolism risk in African Americans. Blood 2016, 127(15):1923-1929. 

22. Consortium GT: The Genotype-Tissue Expression (GTEx) project. Nat Genet 2013, 

45(6):580-585. 

23. Innocenti F, Cooper GM, Stanaway IB, Gamazon ER, Smith JD, Mirkov S, Ramirez J, Liu 

W, Lin YS, Moloney C et al: Identification, replication, and functional fine-mapping of 

expression quantitative trait loci in primary human liver tissue. PLoS Genet 2011, 

7(5):e1002078. 

24. MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, Junkins H, McMahon A, 

Milano A, Morales J et al: The new NHGRI-EBI Catalog of published genome-wide 

association studies (GWAS Catalog). Nucleic Acids Res 2017, 45(D1):D896-D901. 

25. Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF, Altman RB, 

Klein TE: Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol 

Ther 2012, 92(4):414-417. 

26. Morris TJ, Butcher LM, Feber A, Teschendorff AE, Chakravarthy AR, Wojdacz TK, Beck S: 

ChAMP: 450k Chip Analysis Methylation Pipeline. Bioinformatics 2014, 30(3):428-430. 

27. Doi A, Park IH, Wen B, Murakami P, Aryee MJ, Irizarry R, Herb B, Ladd-Acosta C, Rho J, 

Loewer S et al: Differential methylation of tissue- and cancer-specific CpG island shores 

distinguishes human induced pluripotent stem cells, embryonic stem cells and 

fibroblasts. Nat Genet 2009, 41(12):1350-1353. 

28. Jiao Y, Widschwendter M, Teschendorff AE: A systems-level integrative framework for 

genome-wide DNA methylation and gene expression data identifies differential gene 

expression modules under epigenetic control. Bioinformatics 2014, 30(16):2360-2366. 

29. Barfield RT, Almli LM, Kilaru V, Smith AK, Mercer KB, Duncan R, Klengel T, Mehta D, 

Binder EB, Epstein MP et al: Accounting for population stratification in DNA 

methylation studies. Genet Epidemiol 2014, 38(3):231-241. 

30. Park DS, Eskin I, Kang EY, Gamazon ER, Eng C, Gignoux CR, Galanter JM, Burchard E, Ye 

CJ, Aschard H et al: An ancestry-based approach for detecting interactions. Genet 

Epidemiol 2018, 42(1):49-63. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 1, 2019. ; https://doi.org/10.1101/491225doi: bioRxiv preprint 

https://doi.org/10.1101/491225


 39

31. Galanter JM, Gignoux CR, Oh SS, Torgerson D, Pino-Yanes M, Thakur N, Eng C, Hu D, 

Huntsman S, Farber HJ et al: Differential methylation between ethnic sub-groups 

reflects the effect of genetic ancestry and environmental exposures. Elife 2017, 6. 

32. Kumar R, Seibold MA, Aldrich MC, Williams LK, Reiner AP, Colangelo L, Galanter J, 

Gignoux C, Hu D, Sen S et al: Genetic ancestry in lung-function predictions. N Engl J 

Med 2010, 363(4):321-330. 

33. Yang X, Han H, De Carvalho DD, Lay FD, Jones PA, Liang G: Gene body methylation can 

alter gene expression and is a therapeutic target in cancer. Cancer Cell 2014, 26(4):577-

590. 

34. Nagareddy P, Smyth SS: Inflammation and thrombosis in cardiovascular disease. Curr 

Opin Hematol 2013, 20(5):457-463. 

35. Notarangelo MF, Bontardelli F, Merlini PA: Genetic and nongenetic factors influencing 

the response to clopidogrel. J Cardiovasc Med (Hagerstown) 2013, 14 Suppl 1:S1-7. 

36. Wang Y, Freedman JA, Liu H, Moorman PG, Hyslop T, George DJ, Lee NH, Patierno SR, 

Wei Q: Associations between RNA splicing regulatory variants of stemness-related 

genes and racial disparities in susceptibility to prostate cancer. Int J Cancer 2017, 

141(4):731-743. 

37. Vasiliou V, Pappa A: Polymorphisms of human aldehyde dehydrogenases. 

Consequences for drug metabolism and disease. Pharmacology 2000, 61(3):192-198. 

38. Chalubinski M, Luczak E, Wojdan K, Gorzelak-Pabis P, Broncel M: Innate lymphoid cells 

type 2 - emerging immune regulators of obesity and atherosclerosis. Immunol Lett 

2016, 179:43-46. 

39. Liew FY, Girard JP, Turnquist HR: Interleukin-33 in health and disease. Nat Rev Immunol 

2016, 16(11):676-689. 

40. Ndaw VS, Abebayehu D, Spence AJ, Paez PA, Kolawole EM, Taruselli MT, Caslin HL, 

Chumanevich AP, Paranjape A, Baker B et al: TGF-beta 1 Suppresses IL-33-Induced Mast 

Cell Function. J Immunol 2017, 199(3):866-873. 

41. Boger CA, Heid IM: Chronic kidney disease: novel insights from genome-wide 

association studies. Kidney Blood Press Res 2011, 34(4):225-234. 

42. Majumder S, Advani A: VEGF and the diabetic kidney: More than too much of a good 

thing. J Diabetes Complications 2017, 31(1):273-279. 

43. Stephen JK, Chen KM, Shah V, Havard S, Kapke A, Lu M, Benninger MS, Worsham MJ: 

DNA hypermethylation markers of poor outcome in laryngeal cancer. Clin Epigenetics 

2010, 1(1-2):61-69. 

44. Rathi A, Virmani AK, Harada K, Timmons CF, Miyajima K, Hay RJ, Mastrangelo D, Maitra 

A, Tomlinson GE, Gazdar AF: Aberrant methylation of the HIC1 promoter is a frequent 

event in specific pediatric neoplasms. Clin Cancer Res 2003, 9(10 Pt 1):3674-3678. 

45. Park L: Evidence of Recent Intricate Adaptation in Human Populations. PLoS One 2016, 

11(12):e0165870. 

46. Tastet J, Decalonne L, Marouillat S, Malvy J, Thepault RA, Toutain A, Paubel A, Tabagh R, 

Benedetti H, Laumonnier F et al: Mutation screening of the ubiquitin ligase gene 

RNF135 in French patients with autism. Psychiatr Genet 2015, 25(6):263-267. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 1, 2019. ; https://doi.org/10.1101/491225doi: bioRxiv preprint 

https://doi.org/10.1101/491225


 40

47. Liu Y, Wang F, Liu Y, Yao Y, Lv X, Dong B, Li J, Ren S, Yao Y, Xu Y: RNF135, RING finger 

protein, promotes the proliferation of human glioblastoma cells in vivo and in vitro via 

the ERK pathway. Sci Rep 2016, 6:20642. 

48. Grossman SR, Andersen KG, Shlyakhter I, Tabrizi S, Winnicki S, Yen A, Park DJ, Griesemer 

D, Karlsson EK, Wong SH et al: Identifying recent adaptations in large-scale genomic 

data. Cell 2013, 152(4):703-713. 

49. Barreiro LB, Laval G, Quach H, Patin E, Quintana-Murci L: Natural selection has driven 

population differentiation in modern humans. Nat Genet 2008, 40(3):340-345. 

50. Dean L: Prasugrel Therapy and CYP Genotype. In: Medical Genetics Summaries. Edited 

by Pratt V, McLeod H, Rubinstein W, Dean L, Kattman B, Malheiro A. Bethesda (MD); 

2012. 

51. Jarrar M, Behl S, Manyam G, Ganah H, Nazir M, Nasab R, Moustafa K: Cytochrome allelic 

variants and clopidogrel metabolism in cardiovascular diseases therapy. Mol Biol Rep 

2016, 43(6):473-484. 

52. Janicki PK, Eyileten C, Ruiz-Velasco V, Sedeek KA, Pordzik J, Czlonkowska A, Kurkowska-

Jastrzebska I, Sugino S, Imamura-Kawasawa Y, Mirowska-Guzel D et al: Population-

Specific Associations of Deleterious Rare Variants in Coding Region of P2RY1-P2RY12 

Purinergic Receptor Genes in Large-Vessel Ischemic Stroke Patients. Int J Mol Sci 2017, 

18(12). 

53. Timur AA, Murugesan G, Zhang L, Aung PP, Barnard J, Wang QK, Gaussem P, Silverstein 

RL, Bhatt DL, Kottke-Marchant K: P2RY1 and P2RY12 polymorphisms and on-aspirin 

platelet reactivity in patients with coronary artery disease. Int J Lab Hematol 2012, 

34(5):473-483. 

54. Li JL, Fu Y, Qin SB, Liang GK, Liu J, Nie XY, Chen J, Shi LW, Shao H, Lu Y: Association 

between P2RY12 gene polymorphisms and adverse clinical events in coronary artery 

disease patients treated with clopidogrel: A systematic review and meta-analysis. 

Gene 2018, 657:69-80. 

55. Gachet C: P2 receptors, platelet function and pharmacological implications. Thromb 

Haemost 2008, 99(3):466-472. 

56. Hetherington SL, Singh RK, Lodwick D, Thompson JR, Goodall AH, Samani NJ: 

Dimorphism in the P2Y1 ADP receptor gene is associated with increased platelet 

activation response to ADP. Arterioscler Thromb Vasc Biol 2005, 25(1):252-257. 

57. Maloney JP, Branchford BR, Brodsky GL, Cosmic MS, Calabrese DW, Aquilante CL, 

Maloney KW, Gonzalez JR, Zhang W, Moreau KL et al: The ENTPD1 promoter 

polymorphism -860 A > G (rs3814159) is associated with increased gene transcription, 

protein expression, CD39/NTPDase1 enzymatic activity, and thromboembolism risk. 

FASEB J 2017, 31(7):2771-2784. 

58. Zhang H, Ma K, Liu W, Yang F, Liu J, Zhou H: Impact of CYP2C19 gene polymorphism on 

warfarin maintenance doses in patients with non-valvular atrial fibrillation. Gene 

2016, 591(1):80-84. 

59. Simon T, Verstuyft C, Mary-Krause M, Quteineh L, Drouet E, Meneveau N, Steg PG, 

Ferrieres J, Danchin N, Becquemont L et al: Genetic determinants of response to 

clopidogrel and cardiovascular events. N Engl J Med 2009, 360(4):363-375. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 1, 2019. ; https://doi.org/10.1101/491225doi: bioRxiv preprint 

https://doi.org/10.1101/491225


 41

60. Shuldiner AR, O'Connell JR, Bliden KP, Gandhi A, Ryan K, Horenstein RB, Damcott CM, 

Pakyz R, Tantry US, Gibson Q et al: Association of cytochrome P450 2C19 genotype 

with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA 2009, 

302(8):849-857. 

61. Lane S, Al-Zubiedi S, Hatch E, Matthews I, Jorgensen AL, Deloukas P, Daly AK, Park BK, 

Aarons L, Ogungbenro K et al: The population pharmacokinetics of R- and S-warfarin: 

effect of genetic and clinical factors. Br J Clin Pharmacol 2012, 73(1):66-76. 

62. Pendyala LK, Torguson R, Loh JP, Devaney JM, Chen F, Kitabata H, Minha S, Barbash IM, 

Suddath WO, Satler LF et al: Racial disparity with on-treatment platelet reactivity in 

patients undergoing percutaneous coronary intervention. Am Heart J 2013, 166(2):266-

272. 

63. Nguyen TA, Diodati JG, Pharand C: Resistance to clopidogrel: a review of the evidence. J 

Am Coll Cardiol 2005, 45(8):1157-1164. 

64. Kathiresan S, Gabriel SB, Yang Q, Lochner AL, Larson MG, Levy D, Tofler GH, Hirschhorn 

JN, O'Donnell CJ: Comprehensive survey of common genetic variation at the 

plasminogen activator inhibitor-1 locus and relations to circulating plasminogen 

activator inhibitor-1 levels. Circulation 2005, 112(12):1728-1735. 

65. Huang J, Huffman JE, Yamakuchi M, Trompet S, Asselbergs FW, Sabater-Lleal M, 

Tregouet DA, Chen WM, Smith NL, Kleber ME et al: Genome-wide association study for 

circulating tissue plasminogen activator levels and functional follow-up implicates 

endothelial STXBP5 and STX2. Arterioscler Thromb Vasc Biol 2014, 34(5):1093-1101. 

66. Hooper WC, Lally C, Austin H, Renshaw M, Dilley A, Wenger NK, Phillips DJ, Whitsett C, 

Rawlins P, Evatt BL: The role of the t-PA I/D and PAI-1 4G/5G polymorphisms in 

African-American adults with a diagnosis of myocardial infarction or venous 

thromboembolism. Thromb Res 2000, 99(3):223-230. 

67. Mannucci PM, Mari D, Merati G, Peyvandi F, Tagliabue L, Sacchi E, Taioli E, Sansoni P, 

Bertolini S, Franceschi C: Gene polymorphisms predicting high plasma levels of 

coagulation and fibrinolysis proteins. A study in centenarians. Arterioscler Thromb Vasc 

Biol 1997, 17(4):755-759. 

68. Austin H, Hooper WC, Lally C, Dilley A, Ellingsen D, Wideman C, Wenger NK, Rawlins P, 

Silva V, Evatt B: Venous thrombosis in relation to fibrinogen and factor VII genes 

among African-Americans. J Clin Epidemiol 2000, 53(10):997-1001. 

69. Mondul AM, Weinstein SJ, Layne TM, Albanes D: Vitamin D and Cancer Risk and 

Mortality: State of the Science, Gaps, and Challenges. Epidemiol Rev 2017, 39(1):28-48. 

70. O'Connor MY, Thoreson CK, Ramsey NL, Ricks M, Sumner AE: The uncertain significance 

of low vitamin D levels in African descent populations: a review of the bone and 

cardiometabolic literature. Prog Cardiovasc Dis 2013, 56(3):261-269. 

71. Beydoun MA, Tajuddin SM, Dore GA, Canas JA, Beydoun HA, Evans MK, Zonderman AB: 

Vitamin D Receptor and Megalin Gene Polymorphisms Are Associated with 

Longitudinal Cognitive Change among African-American Urban Adults. J Nutr 2017, 

147(6):1048-1062. 

72. Beydoun MA, Hossain S, Tajuddin SM, Canas JA, Kuczmarski M, Beydoun HA, Evans MK, 

Zonderman AB: Vitamin D Metabolism-Related Gene Haplotypes and Their Association 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 1, 2019. ; https://doi.org/10.1101/491225doi: bioRxiv preprint 

https://doi.org/10.1101/491225


 42

with Metabolic Disturbances Among African-American Urban Adults. Sci Rep 2018, 

8(1):8035. 

73. Halpern KB, Shenhav R, Matcovitch-Natan O, Toth B, Lemze D, Golan M, Massasa EE, 

Baydatch S, Landen S, Moor AE et al: Single-cell spatial reconstruction reveals global 

division of labour in the mammalian liver. Nature 2017, 542(7641):352-356. 

74. Rodriguez-Antona C, Jover R, Gomez-Lechon MJ, Castell JV: Quantitative RT-PCR 

measurement of human cytochrome P-450s: application to drug induction studies. 

Arch Biochem Biophys 2000, 376(1):109-116. 

75. Andersen MR, Farin FM, Omiecinski CJ: Quantification of multiple human cytochrome 

P450 mRNA molecules using competitive reverse transcriptase-PCR. DNA Cell Biol 

1998, 17(3):231-238. 

76. Perera MA, Cavallari LH, Limdi NA, Gamazon ER, Konkashbaev A, Daneshjou R, 

Pluzhnikov A, Crawford DC, Wang J, Liu N et al: Genetic variants associated with 

warfarin dose in African-American individuals: a genome-wide association study. 

Lancet 2013, 382(9894):790-796. 

77. Lee SM, Schelcher C, Demmel M, Hauner M, Thasler WE: Isolation of human 

hepatocytes by a two-step collagenase perfusion procedure. J Vis Exp 2013(79). 

78. Keemink J, Oorts M, Annaert P: Primary Hepatocytes in Sandwich Culture. Methods Mol 

Biol 2015, 1250:175-188. 

79. Anderson CA, Pettersson FH, Clarke GM, Cardon LR, Morris AP, Zondervan KT: Data 

quality control in genetic case-control association studies. Nat Protoc 2010, 5(9):1564-

1573. 

80. Raj A, Stephens M, Pritchard JK: fastSTRUCTURE: variational inference of population 

structure in large SNP data sets. Genetics 2014, 197(2):573-589. 

81. Gamazon ER, Innocenti F, Wei R, Wang L, Zhang M, Mirkov S, Ramirez J, Huang RS, Cox 

NJ, Ratain MJ et al: A genome-wide integrative study of microRNAs in human liver. 

BMC Genomics 2013, 14:395. 

82. Scheet P, Stephens M: A fast and flexible statistical model for large-scale population 

genotype data: applications to inferring missing genotypes and haplotypic phase. Am J 

Hum Genet 2006, 78(4):629-644. 

83. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK: limma powers 

differential expression analyses for RNA-sequencing and microarray studies. Nucleic 

Acids Res 2015, 43(7):e47. 

84. Anders S, Pyl PT, Huber W: HTSeq--a Python framework to work with high-throughput 

sequencing data. Bioinformatics 2015, 31(2):166-169. 

85. Love MI, Huber W, Anders S: Moderated estimation of fold change and dispersion for 

RNA-seq data with DESeq2. Genome Biol 2014, 15(12):550. 

86. Wagner GP, Kin K, Lynch VJ: Measurement of mRNA abundance using RNA-seq data: 

RPKM measure is inconsistent among samples. Theory Biosci 2012, 131(4):281-285. 

87. Robinson MD, Oshlack A: A scaling normalization method for differential expression 

analysis of RNA-seq data. Genome Biol 2010, 11(3):R25. 

88. Consortium GT, Laboratory DA, Coordinating Center -Analysis Working G, Statistical 

Methods groups-Analysis Working G, Enhancing Gg, Fund NIHC, Nih/Nci, Nih/Nhgri, 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 1, 2019. ; https://doi.org/10.1101/491225doi: bioRxiv preprint 

https://doi.org/10.1101/491225


 43

Nih/Nimh, Nih/Nida et al: Genetic effects on gene expression across human tissues. 

Nature 2017, 550(7675):204-213. 

89. Stegle O, Parts L, Piipari M, Winn J, Durbin R: Using probabilistic estimation of 

expression residuals (PEER) to obtain increased power and interpretability of gene 

expression analyses. Nat Protoc 2012, 7(3):500-507. 

90. Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, Delano D, Zhang L, Schroth GP, 

Gunderson KL et al: High density DNA methylation array with single CpG site 

resolution. Genomics 2011, 98(4):288-295. 

91. Lizio M, Harshbarger J, Shimoji H, Severin J, Kasukawa T, Sahin S, Abugessaisa I, Fukuda 

S, Hori F, Ishikawa-Kato S et al: Gateways to the FANTOM5 promoter level mammalian 

expression atlas. Genome Biol 2015, 16:22. 

92. Siggens L, Ekwall K: Epigenetics, chromatin and genome organization: recent advances 

from the ENCODE project. J Intern Med 2014, 276(3):201-214. 

93. Teschendorff AE, Marabita F, Lechner M, Bartlett T, Tegner J, Gomez-Cabrero D, Beck S: 

A beta-mixture quantile normalization method for correcting probe design bias in 

Illumina Infinium 450 k DNA methylation data. Bioinformatics 2013, 29(2):189-196. 

94. Johnson WE, Li C, Rabinovic A: Adjusting batch effects in microarray expression data 

using empirical Bayes methods. Biostatistics 2007, 8(1):118-127. 

95. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD: The sva package for removing 

batch effects and other unwanted variation in high-throughput experiments. 

Bioinformatics 2012, 28(6):882-883. 

96. Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Gayther SA, Apostolidou S, 

Jones A, Lechner M, Beck S, Jacobs IJ et al: An epigenetic signature in peripheral blood 

predicts active ovarian cancer. PLoS One 2009, 4(12):e8274. 

97. Smyth GK: Linear models and empirical bayes methods for assessing differential 

expression in microarray experiments. Stat Appl Genet Mol Biol 2004, 3:Article3. 

98. Peters TJ, Buckley MJ, Statham AL, Pidsley R, Samaras K, R VL, Clark SJ, Molloy PL: De 

novo identification of differentially methylated regions in the human genome. 

Epigenetics Chromatin 2015, 8:6. 

99. Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, Irizarry 

RA: Minfi: a flexible and comprehensive Bioconductor package for the analysis of 

Infinium DNA methylation microarrays. Bioinformatics 2014, 30(10):1363-1369. 

100. Geeleher P, Hartnett L, Egan LJ, Golden A, Raja Ali RA, Seoighe C: Gene-set analysis is 

severely biased when applied to genome-wide methylation data. Bioinformatics 2013, 

29(15):1851-1857. 

101. Cancer Genome Atlas Research N, Linehan WM, Spellman PT, Ricketts CJ, Creighton CJ, 

Fei SS, Davis C, Wheeler DA, Murray BA, Schmidt L et al: Comprehensive Molecular 

Characterization of Papillary Renal-Cell Carcinoma. N Engl J Med 2016, 374(2):135-145. 

102. Nordlund J, Backlin CL, Wahlberg P, Busche S, Berglund EC, Eloranta ML, Flaegstad T, 

Forestier E, Frost BM, Harila-Saari A et al: Genome-wide signatures of differential DNA 

methylation in pediatric acute lymphoblastic leukemia. Genome Biol 2013, 14(9):r105. 

103. Slieker RC, Relton CL, Gaunt TR, Slagboom PE, Heijmans BT: Age-related DNA 

methylation changes are tissue-specific with ELOVL2 promoter methylation as 

exception. Epigenetics Chromatin 2018, 11(1):25. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 1, 2019. ; https://doi.org/10.1101/491225doi: bioRxiv preprint 

https://doi.org/10.1101/491225


 44

104. Reimand J, Arak T, Adler P, Kolberg L, Reisberg S, Peterson H, Vilo J: g:Profiler-a web 

server for functional interpretation of gene lists (2016 update). Nucleic Acids Res 2016, 

44(W1):W83-89. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 1, 2019. ; https://doi.org/10.1101/491225doi: bioRxiv preprint 

https://doi.org/10.1101/491225


 45

Supplementary Files 

 

 

 

Supplementary Figure 1.  West African ancestry estimation in the AA hepatocytes and GTEx 

cohorts.  An admixture plot showing the ancestry components of the 60 African-American 

hepatocyte and 15 GTEx cohorts was calculated using fastStructure v1.3.  A model with three 

parental ancestral components (K = 3) was used to estimate from three populations from 

HapMap phase 3 reference data: Han Chinese in Beijing, China (CHB) and Japanese in Tokyo, 

Japan (JPT) combined as Asian (ASN, pink); Utah residents with Northern and Western 

European ancestry (CEU, green); Yoruba in Ibadan, Nigeria (YRI) as African (AFR, blue).  Percent 

WAA is plotted on the y-axis.  Each sample is represented individually on the x-axis and 

partitioned into segments proportional to the contributions of the ancestral components to the 

individual’s genome.  The black line identified the threshold use for inclusion in the study.  
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Supplementary Figure 2. DNA methylation by genomic features and regions associated with 

West African ancestry. Venn diagrams of (A) unique genes comprised of 15,404 hyper- (pink) 

and 7913 hypomethylated (blue) CpG sites associated with WAA, and (B) unique genes 

comprised of 435 hyper- (pink) and 602 hypomethylated (blue) differentially methylated 

regions (DMRs) associated with WAA, (C) Bar graphs showing the proportion of hyper- and 

hypomethylated CpG sites by genomic features(islands, open sea, shelf and shore), and (D) 

proportion of hyper- and hypomethylated CpG sites by transcriptionally-regulated regions; 

promoter, gene body (with 200 or 1500 bp from the gene transcriptional start site [TSS]), 

intergenic region (IGR), and 5’ and 3’ untranslated regions (UTR).  Volcano plots showing the 

correlation of log fold change in DNA methylation of the 23,317 significant DM CpG sites (BH-

corrected p < 0.05) and -log10 p-value for the association of each CpG site to WAA by (E) 

genomic feature and by (F) transcriptionally-regulated regions. Colored lines indicate the 

relative trend by subcategory.  
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Supplemental Table 1. List of 131 West African Ancestry associated genes with p-values from 

the replication in DE gene analysis in a cohort of AAs and EAs or in the AA GTEx liver cohort. 

 

 AA Hepatocyte  

Cohort 

DE in  

AA vs EA ‡ 

AA GTEx Liver 

Cohort § 

Gene/ ID Coefficient p FDR < 0.10 *p < 0.05 *p < 0.05 

IL18 3.152 7.25E-05 0.0471 0.00000126 0.461 

APOL1 -2.848 3.83E-05 0.0380 0.000202 0.792 

VEGFA -2.246 4.91E-05 0.0421 0.000502 0.032 

PARD3 0.437 1.86E-04 0.0773 0.000696 0.445 

SAP30 -1.945 2.93E-04 0.0788 0.00167 0.844 

LRRC37A2 -0.306 6.73E-04 0.0988 0.00249 0.514 

ENO1 -1.007 1.89E-04 0.0773 0.00266 0.072 

PGK1 -0.929 5.29E-04 0.0882 0.00268 0.518 

DGCR5 2.192 1.62E-04 0.0751 0.00278 0.144 

MRO 1.131 2.57E-05 0.0380 0.00282 0.113 

GREM2 -2.191 6.86E-04 0.0988 0.00327 0.580 

CYP21A2 -2.986 3.17E-04 0.0790 0.00385 0.962 

CEBPB -1.454 6.36E-04 0.0967 0.00445 0.651 

MAD2L1BP -0.505 3.04E-04 0.0790 0.00605 0.179 

GPR4 -1.316 3.08E-04 0.0790 0.00706 0.176 

RNF149 -0.833 2.37E-04 0.0788 0.00743 0.288 

GPI -1.453 4.58E-05 0.0411 0.0123 0.048 

SLC22A15 -1.271 6.86E-04 0.0988 0.0125 0.943 

HIC1 -1.567 9.64E-06 0.0307 0.013 0.890 

APOL2 -1.643 1.06E-04 0.0583 0.0134 0.273 

MME 2.640 3.94E-04 0.0854 0.0137 0.384 

MKNK2 -1.545 3.44E-04 0.0811 0.0262 0.454 

MGRN1 -1.010 2.76E-04 0.0788 0.0313 0.220 

C3orf33 0.506 6.45E-04 0.0973 0.0314 0.475 

PTPN4 0.484 5.37E-04 0.0882 0.0321 0.541 

NPR2 1.235 6.11E-05 0.0471 0.0444 0.208 

MSX1 1.432 2.90E-04 0.0788 0.0448 0.845 

PDK1 -2.038 6.30E-04 0.0966 0.0498 0.389 

ADSSL1 -3.254 3.81E-04 0.0846 0.0553 0.962 

STAT3 -0.859 2.99E-04 0.0790 0.0561 0.366 

EXOC3L1 -1.518 4.67E-04 0.0868 0.0599 0.859 

ANO1 2.336 2.41E-04 0.0788 0.0637 0.372 

CCT6P1 -0.765 5.09E-04 0.0873 0.0642 0.345 
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SERPINA3 -3.379 2.79E-04 0.0788 0.071 0.493 

AGPS 0.894 5.31E-04 0.0882 0.0796 0.692 

ALDH1A1 2.077 6.56E-05 0.0471 0.0823 0.558 

PLAT -1.883 3.49E-05 0.0380 0.0984 0.823 

AKR1C1 2.026 5.38E-04 0.0882 0.102 0.397 

IL33 -1.069 6.76E-05 0.0471 0.103 0.922 

CAT 1.183 2.88E-04 0.0788 0.117 0.664 

IQGAP2 0.805 2.68E-04 0.0788 0.118 0.222 

TRIM39 -0.606 4.89E-04 0.0868 0.119 0.030 

LOX -4.029 2.81E-05 0.0380 0.125 0.860 

MEDAG -0.732 2.63E-04 0.0788 0.128 0.249 

PCAT7 1.141 4.04E-04 0.0856 0.128 NT 

MOB3A -1.408 2.62E-04 0.0788 0.135 0.933 

SCARB2 0.883 4.64E-04 0.0868 0.138 0.289 

POP7 -1.209 5.54E-04 0.0901 0.139 0.322 

PTPRB -0.725 2.73E-04 0.0788 0.151 0.227 

OSMR -2.193 9.69E-06 0.0307 0.156 0.856 

SLC39A11 0.491 3.02E-05 0.0380 0.159 0.404 

HILPDA -2.583 9.83E-06 0.0307 0.171 0.203 

NOVA2 -0.479 6.10E-04 0.0942 0.174 0.186 

BBOX1 3.049 8.23E-05 0.0485 0.195 0.843 

EFNA3 -1.606 1.63E-04 0.0751 0.203 0.314 

ENTPD5 1.265 4.65E-04 0.0868 0.222 0.744 

F3 -1.373 5.65E-04 0.0901 0.231 0.599 

GSDMD -1.104 3.50E-04 0.0814 0.235 0.502 

PTGIS -0.855 4.24E-06 0.0307 0.237 0.808 

ADM -3.147 1.71E-04 0.0770 0.241 0.430 

CRYM 1.573 3.69E-05 0.0380 0.249 0.213 

PPP1R16B -0.553 4.33E-04 0.0868 0.249 0.979 

SLC2A3 -1.961 2.99E-05 0.0380 0.255 0.032 

GALNT11 0.615 1.79E-04 0.0773 0.258 0.767 

C4orf47 -0.483 3.41E-04 0.0811 0.264 0.069 

ALDH3A2 1.196 3.93E-04 0.0854 0.265 0.765 

PFKFB4 -2.528 1.44E-04 0.0733 0.266 0.289 

EPO -6.104 4.75E-04 0.0868 0.272 0.116 

FAS 1.317 4.94E-04 0.0868 0.277 0.422 

DCHS1 -1.391 5.02E-04 0.0868 0.28 0.198 

ETS2 -2.109 4.33E-04 0.0868 0.282 0.597 

KIAA1586 0.919 3.25E-04 0.0796 0.314 0.470 

RNF135 1.801 2.67E-05 0.0380 0.318 0.620 

COL26A1 0.448 4.88E-04 0.0868 0.325 0.037 

PCDH12 -1.693 5.35E-04 0.0882 0.328 0.857 
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P4HA1 -2.038 2.29E-05 0.0380 0.377 0.717 

SAMD5 1.536 3.67E-04 0.0823 0.396 0.973 

TP53I11 -1.686 4.29E-04 0.0868 0.401 0.235 

PAH 1.446 2.76E-04 0.0788 0.43 0.149 

NARF -1.272 1.57E-04 0.0751 0.433 0.149 

CRKL -0.696 2.80E-04 0.0788 0.438 0.795 

LRG1 -2.859 2.52E-04 0.0788 0.444 0.949 

SIVA1 -2.137 5.42E-06 0.0307 0.449 0.361 

FUT11 -1.749 7.09E-05 0.0471 0.455 0.550 

BCL3 -1.860 4.01E-04 0.0856 0.474 0.966 

EFNA1 -3.540 7.23E-05 0.0471 0.476 0.970 

AKAP8 -0.812 1.07E-05 0.0307 0.48 0.764 

SPIN1 0.675 1.52E-05 0.0358 0.49 0.678 

HSD17B7P2 -1.548 1.96E-04 0.0785 0.491 0.027 

SEMA3F -1.230 5.74E-04 0.0901 0.532 0.311 

SNAI1 -1.791 1.11E-04 0.0583 0.55 0.360 

BCAS3 0.178 4.95E-04 0.0868 0.556 0.994 

RBBP9 0.911 4.12E-04 0.0862 0.562 0.473 

PLCL2 0.760 6.32E-05 0.0471 0.568 0.046 

EHD3 -0.769 1.89E-04 0.0773 0.572 0.720 

SCO1 0.528 4.77E-04 0.0868 0.583 0.150 

ELF3 -2.508 2.48E-04 0.0788 0.59 0.994 

PNRC1 -1.242 5.69E-04 0.0901 0.599 0.805 

CCDC107 -0.787 4.63E-04 0.0868 0.637 0.247 

FTO 0.280 6.79E-04 0.0988 0.651 0.120 

CNOT11 -0.915 1.11E-04 0.0583 0.672 0.409 

DHODH -1.893 2.38E-04 0.0788 0.678 0.048 

AGPAT2 -1.399 3.13E-04 0.0790 0.68 0.962 

KBTBD11 1.744 2.83E-04 0.0788 0.696 0.083 

KRTAP5-9 -2.298 2.33E-04 0.0788 0.746 0.691 

PDZK1 1.123 4.64E-04 0.0868 0.755 0.260 

HIST1H1E 1.981 4.98E-04 0.0868 0.792 0.133 

APLF 0.153 4.79E-04 0.0868 0.814 0.367 

CDK18 -1.805 2.48E-04 0.0788 0.89 0.686 

FLT1 -0.726 3.60E-04 0.0823 0.918 0.952 

CALHM5 -0.457 6.58E-04 0.0985 NT 0.486 

GGT1 2.155 8.14E-05 0.0485 NT 0.888 

GGT4P 0.914 2.32E-04 0.0788 NT NT 

GUCY1B1 1.015 3.43E-04 0.0811 NT 0.743 

KRT17P8 4.401 2.80E-04 0.0788 NT 0.647 

PPFIA4 -2.067 2.56E-04 0.0788 NT 0.509 

RFLNB -3.175 1.14E-05 0.0307 NT 0.275 
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SNORD38A -2.588 6.74E-04 0.0988 NT NT 

ENSG00000173727 -1.267 9.39E-05 0.0536 NT 0.910 

ENSG00000205622 -1.547 2.04E-05 0.0380 NT 0.174 

ENSG00000224093 -1.386 3.65E-04 0.0823 NT 0.324 

ENSG00000250764 -0.540 3.53E-05 0.0380 NT 0.944 

ENSG00000258377 1.180 3.18E-04 0.0790 NT NT 

ENSG00000259357 1.869 8.06E-05 0.0485 NT NT 

ENSG00000263843 1.158 5.99E-04 0.0933 NT 0.129 

ENSG00000264456 2.707 1.50E-04 0.0744 NT 0.747 

ENSG00000268230 -1.522 4.88E-04 0.0868 NT NT 

ENSG00000271239 5.823 4.16E-05 0.0392 NT 0.339 

ENSG00000273259 -2.002 5.71E-04 0.0901 NT NT 

ENSG00000275285 -2.328 4.17E-04 0.0863 NT NT 

ENSG00000281655 -4.148 2.19E-04 0.0788 NT NT 

 

 

*      Replication p-value based on 131 discovery genes in 60 AA Hepatocyte 

‡      Replication in differentially expressed (DE) genes between 23 African-Americans (AAs) and 

183 European-Americans (EAs) [23] 

§      Replication of genes expressed in 15 AA in GTEx liver cohort with greater than 40% West 

African ancestry 

NT – Not tested - were not present on the gene expression microarray 

Bolded gene names indicated those with p < 0.05 in the Replication Cohort. Genes in shaded 

rows were replicated in GTEx 
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Supplemental Table 2. Phenotypic traits associated with replicated genes in the GWAS 

Catalog 

 

Refer to Excel datasheet: Supp_Table_2_gwas_catalog.xls 
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