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Abstract 

The identification of physical interactions between drug candidate chemical substances and target 

biomolecules is an important step in the process of drug discovery, where the standard procedure is the 

systematic screening of chemical compounds against pre-selected target proteins. However, 

experimental screening procedures are expensive and time consuming, therefore, it is not possible to 

carry out comprehensive tests. Within the last decade, computational approaches have been developed 

with the objective of aiding experimental studies by predicting novel drug-target interactions (DTI), via 

the construction and application of statistical models. In this study, we propose a large-scale DTI 

interaction prediction system, DEEPScreen, for early stage drug discovery, using convolutional deep 

neural networks. One of the main advantages of DEEPScreen is employing readily available simple 2-

D images of compounds at the input level instead of engineered complex feature vectors that displayed 

limited performance in DTI prediction tasks previously. DEEPScreen learns complex features 

inherently from the 2-D molecular representations, thus producing highly accurate predictions. 

DEEPScreen system was trained for 704 target proteins (using ChEMBL curated bioactivity data) and 

finalized with rigorous hyper-parameter optimization tests. We compared the performance of 

DEEPScreen against shallow classifiers such as the random forest, logistic regression and support 

                                                        
† A preliminary version of this study have been orally presented at ISMB 2018: 26th Annual International 
Conference on Intelligent Systems for Molecular Biology, MLCSB: Machine Learning in Computational and 
Systems Biology COSI, July 6-10, 2018, Chicago, USA 
(https://www.iscb.org/cms_addon/conferences/ismb2018/mlcsb.php). 
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vector machines, to indicate the effectiveness of the proposed deep learning approach. Additionally, we 

compared DEEPScreen with other deep learning based state-of-the-art DTI predictors on widely used 

benchmark datasets and showed that DEEPScreen produces better or comparable results to the top 

performers. The method proposed here can be employed to computationally scan a large portion of the 

recorded drug candidate compound and protein spaces to aid the experimentalists working in the field 

of drug discovery and repurposing by providing a preselection of interesting novel DTIs. 

 

Introduction 

One of the initial steps of drug discovery is the identification of novel drug-like compounds that interact 

with the predefined target proteins. In vitro and high-throughput screening experiments are performed 

to detect novel compounds with the desired interactive properties. However, high costs and temporal 

requirements makes it infeasible to scan massive target and compound spaces1. Due to this reason, the 

rate of the identification of novel drugs has substantially been decreased 2. Currently, there are more 

than 90 million drug candidate compound records in compound and bioactivity databases such as 

ChEMBL  3 and PubChem 4, whereas, the size estimation for the whole “drug-like” chemical space is 

around 1060 5. On the other hand, the current number of drugs (FDA approved or at the experimental 

stage) is around 10,000, according to DrugBank 6. In addition, out of the 20,000 proteins in the human 

proteome, less than 3,000 of them are targeted by known drugs 7,8. As the statistics indicates, the current 

knowledge about the drug-target space is limited, and novel approaches are required to widen our 

knowledge. Starting from the 2000s, developing computational methods to aid the drug discovery 

process by predicting the unknown interactions between drugs / drug candidate compounds and target 

biomolecules (i.e., drug target interaction -DTI- prediction or virtual screening) 9,10 started to become a 

main-stream research area. Most of the DTI prediction methodologies are based on the idea that similar 

structures have similar activities 11,12 and utilize the experimentally identified drug-target interaction 

information coming from bioassay results. DTI prediction methods usually employ supervised machine 

learning (ML) models to find new compounds (or targets) that possess features similar to the known 

drugs/targets 10,13,14.  

In DTA prediction methods, feature vectors correspond to fixed-dimensional quantitative 

representations/descriptors of the input samples (drugs and/or targets), used to characterize the 

molecular properties that play role in the interactions, so that the machine learning algorithm can learn 

from these features to accurately predict unknown DTIs. One of the essential steps in ML method 

development is the feature engineering, which constitutes designing, pre-processing and extracting 

meaningful features to be used for system training. In computational drug discovery studies, feature 

engineering is generally performed using computationally intensive third party methods/tools, where 

the main limitation is the constructed features not generalizing well to the whole proteochemical space 
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15, also, they often suffer from the curse of dimensionality 16. Numerous different types of compound 

and protein descriptors have been employed for the generation of feature vectors in DTI prediction so 

far 10,17, though benchmarking studies have indicated that there is no consensus on what are the sole 

best compound and target protein descriptors 18,19. On the compound side, fingerprints are widely used 

which are binary feature vectors where each dimension represents the presence or absence of sub-

structures on a compound. For example, ECFPs 20 are one of the most widely used fingerprints. To 

develop DTI prediction methods, a diverse set of ML techniques are employed (together with the feature 

vectors generated using abovementioned descriptors) such as random forest (RF) 21,22, support vectors 

machines (SVM) 22,23, logistic regression (LR) 24. 

The term "deep learning" (DL) is coined for the novel ML techniques that perform significantly better 

compared to conventional classifiers especially in the fields of computer vision and natural language 

processing, mainly due to multiple layers of data abstraction 25. Deep neural networks (DNN), a group 

of DL techniques, are artificial neural networks with high complexity, composed of multiple hidden 

layers 26. Lately, deep learning based classifiers are also started to be applied for DTI prediction. In one 

of the earliest applications, Ma et al. constructed feed-forward DNN Models using molecular compound 

descriptors to predict diverse interactions in Merck’s QSAR challenge data sets, and showed that DNNs 

perform better compared to conventional ML techniques27. Lenselink et al. proposed a 

proteochemometric modelling (PCM) based method for DTI prediction, where both compound and 

target features (i.e., molecular fingerprints for compounds and a custom built composite descriptor -

mainly including physicochemical properties- for targets as described by van Westen et al.18) were 

employed as 1-D vectors for the training within a multi-layered perceptron DNN architecture 28. 

AtomNet, a structure-based virtual screening method, uses convolutional neural networks (CNNs) for 

drug-target interaction prediction. This method incorporates 3D structural features of known 

compound-target complexes to model DTIs 29. Gonczarek et al. developed a method that uses specific 

binding pockets of targets along with fingerprints extracted using the 3-D structural features of 

compounds 30. Altae-tran et al. proposed a deep learning based method called "iterative refinement long 

short-term memory" using graph convolutions, where the input of the system is 2D graph structure of 

compounds 31. They employed one-shot learning methodology, where the aim is to create predictors for 

the targets having low number of training samples. Kearnes et al. employed graph convolutions to learn 

features using graph structures of compounds 32. The field of the deep learning based DTI prediction is 

still in its infancy and the studies published so far were mostly focused on the applicability of deep 

learning algorithms and prototyping 27,28,30,32. The results of these studies have indicated that deep 

learning has a great potential to advance the field by identifying unknown DTIs at large-scale 28–33. 

Apart from the high predictive performance, another advantage of employing deep learning based DTI 

predictors is the minimal requirement of feature engineering as these algorithms are able to extract 

complex and meaningful features from the raw data, automatically 34. 
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The studies published so far have indicated that DTI prediction is an open problem, where not only 

novel machine learning algorithms but also new data representation approaches are required to shed 

light on the un-charted parts of the drug-target interaction space. This effort comprises the identification 

of novel drug candidate compounds, as well as the repurposing of the existing drugs on the market  35. 

Additionally, in order for the DTI prediction methods to be useful in real-world drug discovery and 

development research (especially non-profit), they should be made available to the research community 

as tools and/or services via open access repositories. The lack of open access tool/service availability is 

especially valid for deep learning based DTI predictors. 

In this study, we propose DEEPScreen, a convolutional deep neural network based DTI prediction 

system that utilizes readily available 2-D structural compound images as input features. The main 

advantages of DEEPScreen is reducing the effort spent on generating complex compound features (i.e., 

feature engineering) and letting the high-performance deep convolutional neural networks to learn the 

complex features inherently from the 2-D structural drawings, to produce highly accurate novel drug-

target interaction predictions at large scale. Image-based representations of drugs and drug candidate 

compounds reflect the natural molecular state of these small molecules (i.e., atoms and bonds), which 

correspond to the features determining their physical interactions with their targets. Recently, image-

based or similar structural representations of compounds have been incorporated as input for predictive 

tasks under different contexts (e.g., toxicity, solubility, and other selected biochemical and physical 

properties) in the general field of drug discovery and development 36–39, but have never been 

investigated in terms of the large-scale prediction of physical interactions between target proteins and 

drug candidate compounds, which is one of the fundamental steps in early drug discovery. In this work, 

we aimed to provide such investigation, and as output, we propose a highly-optimised and practical 

DTI prediction system that covers a significant portion of the known bio-interaction space, with a 

performance that surpass the state-of-the-art in some tests, and comparable in others. 

The proposed system, DEEPScreen, is composed of 704 predictive models, each one is independently 

optimized to accurately predict interacting small molecule compounds for a unique target protein. 

DEEPScreen has been validated and tested using various benchmarking datasets, and compared with 

the state-of-the-art DTI predictors using both conventional and deep ML models.  

 

Results 

Drug-Target Interaction Prediction with DEEPScreen 

In this study, we approached DTI prediction as a binary classification problem. DEEPScreen is a 

collection of deep convolutional neural networks (CNN), each of which is an individual predictor for a 

target protein. The system takes drugs or drug candidate compounds in the form of SMILES 
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representations as query, generates 200-by-200 pixel 2-D structural/molecular images using SMILES, 

run the predictive CNN models on the input 2-D images, and generates binary predictions as active (i.e., 

interacting) or inactive (i.e., non-interacting) independently for the corresponding target protein (Figure 

1). In order to train the target specific predictive models of DEEPScreen with a reliable learning set, 

manually curated bio-interaction data points are collected from the ChEMBL bioactivity database, and 

extensively filtered (Figure 2). The technical details regarding both the methodology and the data is 

given in the Methods section. 

 

DEEPScreen’s Predictive Performance on ChEMBL Validation and Test Datasets 

Hyper-parameter optimization and performance validation of DEEPScreen were accomplished under 

the same test scheme. For this, several predictive models were trained for each target protein by 

selecting arbitrary DNN model hyper-parameter values (please refer to the Methods section) and using 

the corresponding training datasets (i.e., target based interacting and non-interacting compound 

information) as input. After that, the trained models were run on the validation datasets to obtain the 

predictive performance (i.e., accuracy, precision, recall, F1-score and MCC), which indicates the 

effectiveness of the pre-selected hyper-parameters. At the end of the validation procedure, the best 

performing model (in terms of MCC) of each target was selected, resulting in a total of 704 finalized 

models. Next, the test performances were calculated by running the finalized models on their 

corresponding independent test datasets, which have never been used before this point. Figure 3 

displays the overall ranked target based predictive performance curves for DEEPscreen (along with 

other classifiers), with more than 600 of the target protein models (out of 704) received an F1-score 

higher than 0.8 (average F1-Score and MCC of 0.85 and 0.71, respectively). We also calculated high-

level target protein family based average model performances, where results indicated that DEEPScreen 

performs sufficiently well on all target families (Table 1). 

 

Performance Comparison Between DEEPScreen and Conventional/Shallow ML Classifiers 

We compared the performance of DEEPScreen against conventional classifiers that are frequently 

employed in DTI prediction (e.g., random forest, SVM and logistic regression) using the exact same 

training/test sets and input features. These conventional classifiers generally accept 1-D (column type) 

feature vectors, therefore, we flattened our 200-by-200 images to be used as input to all of the 

conventional classifiers. Thus, the performance comparison solely reflects the gain of employing deep 

convolutional networks as opposed to conventional classifiers. The models parameters of the shallow 

classifiers were optimized on the validation dataset and the finalized performances were measured using 

the independent test set, similar to the evaluation of DEEPScreen. Figure 3 displays the overall results 

in accuracy, F1-score and MCC, respectively; where DEEPScreen performed significantly better 
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compared to all conventional classifiers employed in the test. According to our results, the sole best 

classifier was DEEPScreen for 642 targets (LR for 42, RF for 4, SVM for 2 targets), out of the total 

704. Figure 4 shows target protein based predictive performance (in terms of MCC) z-score heatmap 

for DEEPScreen and the shallow classifiers, where each horizontal block corresponds to a target family. 

Considering the results in Figure 4, DEEPScreen performed significantly better for all families, LR was 

the second (LR’s enzyme family performance was better compared to other protein families), RF and 

SVM came at the last two places. Overall, the target models with low performance (MCC < 0.5) were 

mostly belong to the enzyme family. An interesting observation here is that, except from a few target 

models from each protein family where multiple classifiers performed well, DEEPScreen and LR 

models display opposite trends in predictive performance. Despite being a widely used conventional 

classifier in DTI prediction, RF performed poorly, compared to both DEEPScreen and LR, when 

employed with image-based features. For most of the cases where LR was the best classifier, 

DEEPScreen came second and RF the third. There was no significant difference between the protein 

families in terms of the classifiers rankings, though, DEEPScreen’s superiority was more pronounced 

on the families of nuclear receptor, ion channel and others. Finally, SVM was unable to learn the data 

in many target models, and classify all instances into just one class. 

 

State-of-the-art DNN-based Methods Performance Comparison 

We compared the results of DEEPScreen with five other deep learning based DTI prediction methods 

that represent the current state-of-the-art (please refer to the Introduction section) by employing the 

same datasets used in the corresponding studies. For this analysis, we re-trained and tested DEEPScreen 

using the exact same experimental settings and evaluation metrics that were described in the respective 

articles 28–32. A total of 3 different benchmark datasets were employed for this purpose (please refer to 

the Methods section). Two of these datasets (i.e., MUV and DUD-E) are frequently employed in DTI 

prediction studies and the performance results of DEEPScreen on these datasets are directly comparable 

with any study in the literature, where the same benchmark sets are used. The results of this analysis 

reflect both the effectiveness of employing 2-D images of compounds as the input and the constructed 

CNN-based architecture. Table 2 shows the results of DEEPScreen along with the state-of-the-art 

performances reported in the respective articles. As shown, DEEPScreen performed significantly better 

compared to one method, comparable to another two, and its score is slightly lower than the methods 

that employ 3-D structural information. It is important to note that the methods employing 3-D structural 

features of the target proteins may provide better representations to model DTIs; however, they are 

highly computationally intensive. Also, 3-D structural information (especially the target-ligand 

complexes) is only available for a small portion of the DTI space, as a result, their coverage is low. 
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Discussion 

In this work, we have shown that deep convolutional neural networks can be utilized to successfully 

predict the drug-target interactions, using only the 2-D structural images of drugs and drug candidate 

compounds. The proposed method, DEEPScreen, has been tested on various benchmarking datasets 

and compared with both conventional and the state-of-the-art DTI prediction methodologies to reveal 

that it performs well. 

In DEEPScreen, we modelled the interactive properties of each target protein independently in a 

separate convolutional network. This allowed the target based optimization of hyper-parameters, as 

well as the regular models parameters. In most of the ML method development studies, hyper-

parameters are arbitrarily pre-selected without further optimization (especially when there are high 

number of models as in DEEPScreen), due to extremely high computational burden. However, hyper-

parameters are an important part of the model architecture and significantly contribute to the predictive 

performance. Using the hyper-parameter value alternatives given in Table 3 (and considering their 

combinations with each other), we evaluated hundreds of models for each target on average, resulting 

in more than 100,000 model training and evaluation jobs in total.  The main advantage of this approach 

is the elevated predictive performance, which was indicated by the results of the performance 

comparison tests. One important concern in ML method development is the problem of overfitting. We 

employed the neuron drop-out technique in order to prevent overfitting, which is a widely accepted 

approach for DNN training. The results of the independent tests confirmed that overfitting was not a 

problem for DEEPScreen. 

One of the critical points in the computer vision tasks is the system robustness concerning the 

differences in the representations of the object of interest, such as the viewing angle or the scale. In 

DEEPScreen, input images are standardized by computationally generating them using SMILES 

representations, this way all images have similar representations in terms of rotation and scaling. In 

DEEPScreen, we selected a considerably loose threshold (i.e., 10 uM) bioactivity value to label training 

instances as active (i.e., interacting), which in turn resulted in high number of predictions. The true 

experimental bioactivity measurement of a pair that is accurately predicted as active can go as high as 

10 uM, which can be considered extremely high especially for certain target families (e.g., kinases and 

GPCRs). However, our aim in developing DEEPScreen was to aid experimental researchers in drug 

discovery and repurposing by providing all matches that would potentially raise an interest. We believe 

that the methodology proposed here can be employed to produce large-scale production of novel drug-

target interactions, which can be utilized by the experimental and computational researchers to aid their 

work on drug design and repurposing. 
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Methods 

Generation of the Training Datasets 

ChEMBL database (version 23) was employed to create the training dataset of DEEPScreen. There are 

14,675,320 data points (i.e., bioactivity measurements) in ChEMBL v23. We applied several filtering 

and pre-processing steps on this data to create a reliable training dataset. First of all, data points were 

filtered with respect to “target type” (i.e., single protein), “taxonomy” (i.e., human and selected model 

organisms), “assay type” (i.e., binding and functional assays) and “standard type” (i.e., IC50, XC50, 

EC50, AC50, Ki, Kd and Potency) attributes, which reduced the set to 3,919,275 data points. We 

observed that there were duplicate measurements inside this dataset that are coming from different 

bioassays (i.e., 879,848 of the bioactivity data points belonged to 374,024 unique drug-target pairs,). 

To handle these cases, we identified the median bioactivity value for each pair and assigned this value 

as the sole bioactivity measurement. At the end of this application, 3,413,451 bioactivity measurements 

were left. This dataset contained data points from both binding and functional assays. In order to 

eliminate a potential ambiguity considering the physical binding of the compounds to their targets, we 

discarded the functional assays and kept the binding assays with an additional filtering on “assay type”. 

Finally, we removed the bioactivity measurements without any pChEMBL value, which is a 

standardized value to obtain comparable measures of half-maximal response (e.g., IC50, EC50, Ki, Kd 

and Potency) on a negative logarithmic scale. The presence of a pChEMBL value for an activity point 

indicates that the corresponding record has been curated and thus reliable. After these processing steps, 

the number of bioactivity points were 769,935. 

Subsequently, we constructed positive (active) and negative (inactive) training datasets as follows: For 

each target, compounds with bioactivity values <= 10 µM were selected as positive training samples 

and compounds with bioactivity values >= 20 µM were selected as negative samples. In DEEPScreen 

only the target proteins with at least 100 active ligands we modelled in order not to lose the statistical 

power. This application provided models for 704 target proteins from multiple highly studied 

organisms. These organisms, together with the distribution of target proteins for each organism are: 

Homo sapiens (human): 523, Rattus norvegicus (rat): 88, Mus musculus (mouse): 34, Bos taurus 

(Bovine): 22, Cavia porcellus (Guinea pig): 13, Sus scrofa (Pig): 9, Oryctolagus cuniculus (Rabbit): 5, 

Canis familiaris (dog): 3, Equus caballus (horse): 2, Ovis aries (Sheep): 2, Cricetulus griseus (Chinese 

hamster): 1, Mesocricetus auratus (Golden hamster): 1 and Macaca mulatta (Rhesus macaque): 1. The 

UniProt accessions, encoding gene names, ChEMBL ids and the taxonomic information of these 

proteins are given in the repository of DEEPScreen. Each target’s training set contained a mixture of 

activity measurements with roughly comparable standard types (e.g., IC50, EC50, Ki, Kd and Potency).  

The selection procedure explained above generated positive and negative training datasets with varying 

sizes for each target. In order to balance these datasets, we selected negative samples equal to the 
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number of positive instances. However, for many targets, the number of negative points were lower 

than the positives. In these cases, we applied a target similarity-based inactive dataset enrichment 

method to populate the negative training sets (instead of randomly selecting compounds), using the idea 

of similar targets have similar actives/inactives. For this, we first calculated pairwise similarities 

between all target proteins within a BLAST search. For each target having insufficient number of 

inactive compounds, we sorted all remaining target proteins with descending sequence similarity. Then, 

starting from the top of the list, we populated the inactive dataset of the corresponding target using the 

known inactive compounds of similar targets, until the active and inactive datasets are balanced. We 

applied 20% sequence similarity threshold, meaning that we did not consider the inactives of targets, 

whose sequence similarity to the query protein is less than 20%. The finalized training dataset for 704 

target proteins contained 512,966 active data points (< 10 uM) and the same number of inactive data 

points (> 20 uM). Before the negative dataset enrichment procedure, the total number of inactive 

instances for 704 targets were 35,567. Both the pre-processed ChEMBL dataset (769,935 data points) 

and the finalized active and inactive training datasets for 704 targets are given in the repository of 

DEEPScreen. We believe the resulting bioactivity dataset is reliable, and it can be used as a standard 

training/test sets in future DTI prediction studies. The training data filtering and pre-processing 

operations are represented in Figure 2. 

For each target protein model, 80% of the training samples (from the positives and the negatives 

datasets) were randomly selected for training/validation dataset, and the remaining 20% was reserved 

for later use in the independent performance test procedure. Also, 80% of the training/validation dataset 

was employed for system training and 20% of this dataset was used for validation, during which the  

hyper-parameters of the models were optimized. 

 

Representation of Input Samples and the Generation of Feature Vectors 

In DEEPScreen system, each compound is represented by a 200-by-200 pixel 2-D image displaying the 

molecular structure (i.e., skeletal formula). Although 2-D compound images are readily available in 

different chemical and bioactivity databases, there is no standardization in terms of the representation 

of atoms/bonds, functional groups and the stereochemistry. Due to this reason, we employed SMILES 

strings of compounds to generate the 2-D structural images, since SMILES is a standard representation 

that can be found in the open access bioactivity data repositories, which contain all of the necessary 

information to generate the 2-D images. We employed the RDkit tool Python package (v2016.09.4) for 

the image generation 40. A few examples from the generated images are shown in Figure 1. 
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Architecture of the DEEPScreen System 

Convolutional neural networks (CNN) are a specialized group of artificial neural networks consisting of 

alternating, convolution and pooling layers, which extracts features automatically 25,41. They run a small 

window over the input feature vector at both training and testing phases as a feature detector and learn 

various features from the input regardless of their absolute position within the input feature vector. 

Convolution layers compute the dot product between the entries of the filter and the input, producing an 

activation map of that filter. Whereas, pooling layers combine the outputs of neuron clusters at one layer 

into a single neuron in the next layer (i.e., a non-linear down-sampling operation). Although the most 

standard from of CNNs employ 2-D convolutions, 1-D or 3-D convolutions are applied as well. The 

CNNs have been dominating image processing area in the last few years, achieving significantly higher 

performances compared to the state-of-the-art of the time 25,42,43. 

In this study, we considered the DTI prediction as a binary classification problem, where the output can 

either be positive (i.e., active, interacting or "1") or negative (i.e., inactive, non-interacting or "0"), 

referring to the relation between the query compound and the modelled target protein. For this purpose, 

an individual model was created for each target protein (i.e., the single task approach). In terms of the 

employed CNN architectures, we chose 3 options: ImageNET 42, AlexNET 43; and an in-house built 

CNN composed of 5 convolutional + pooling and 1 fully-connected layer preceding the output layer. A 

generic representation of the constructed CNN models is given in Figure 1. 

Subsequently, both positive (i.e., active) and negative (i.e., inactive) training datasets were prepared for 

each target protein according to the rules explained in the training dataset generation sub-section. Also, 

the input feature vectors (i.e., 200-by-200 pixel 2-D images) of the compounds in our dataset were 

automatically constructed via RDkit. For each model, we carried out comprehensive hyper-parameter 

optimization tests. The list of the hyper-parameters and the value selections  are given in Table 3. 

 

Independent Test Datasets for The Comparison with The State-of-the-art 

The first dataset was obtained from the study by Lenselink et al. 28. In this study, the authors created a 

high quality ChEMBL (v.20) bioactivity dataset that includes 314,767 bioactivity measurements 

corresponding to single protein targets with at least 30 data points. They used pChEMBL = 6.5 (roughly 

300 nM) bioactivity value threshold to create active and inactive compound datasets for each target. 

The authors evaluated their method with a test dataset created by a temporal split, where for each target 

protein, all the bioactivity data points reported in the literature prior to 2013 were used in the training, 

and the newer data points were gathered for the test dataset. This test dataset is more challenging for 

ML classifiers compared to any random-split dataset. 
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The second independent test dataset employed in this study was DUD-E, a well-known benchmarking 

set for DTI prediction, which includes curated active and inactive compounds for 102 targets. The active 

compounds for each target was selected by first clustering all active compounds based on the scaffold 

similarity and selecting representative actives from each cluster. The inactive compounds were selected 

to be similar to the active compounds in terms of the physicochemical descriptors, but dissimilar 

considering the 2-D fingerprints 44. The benchmark dataset consists of 102 targets, 22,886 actives (an 

average of 224 actives per target) and 50 property-matched decoys for each active, which were obtained 

from the ZINC database 44. 

The third and final test dataset was Maximum Unbiased Validation (MUV), another widely-used 

benchmark set, composed of active and inactive (decoy) compounds for 17 targets 45. MUV dataset was 

generated from the PubChem Bioassay database. The active compounds in this dataset was selected to 

be structurally different from each other, therefore, it is a challenging benchmark dataset, which avoids 

the bias rooting from highly similar compounds ending up in both train and test splits. There are 17 

targets in MUV dataset, together with 30 actives and 15000 decoys for each target. 

 

Performance Evaluation Metrics 

To evaluate the predictive performance of DEEPScreen and to compare our results with other DTI 

prediction methods we mainly used 3 evaluation metrics, which are F1-score, Matthews correlation 

coefficient (MCC) and area under receiver operating characteristic curve (AUROC). The formulas of 

these evaluation metrics are given below together with precision and recall that make up F1-score: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	 !"
!"#$"

																																																																																																											𝑅𝑎𝑛𝑔𝑒	[	0	, 1	]       (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 	 !"
!"#$%

																																																																																																																	𝑅𝑎𝑛𝑔𝑒	[	0	, 1	]       (2) 
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																																																																																𝑅𝑎𝑛𝑔𝑒	[	0	, 1	]       (3) 
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																																																										𝑅𝑎𝑛𝑔𝑒	[−1, 1]    (4) 

𝐴𝑈𝑅𝑂𝐶 = 	𝐴𝑟𝑒𝑎	𝑢𝑛𝑑𝑒𝑟	𝑡ℎ𝑒	𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟	𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔	𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐	𝑐𝑢𝑟𝑣𝑒											𝑅𝑎𝑛𝑔𝑒	[	0, 1	]    (5) 

In the above equations, TP (i.e., true positive) represents the number of correctly predicted interacting 

compound-target pairs, FN (i.e., false negative) represents the number of interacting compound-target 

pairs, that are predicted as non-interacting (i.e., inactive). TN (i.e., true negative) denotes the number 
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of correctly predicted non-interacting compound-target pairs, whereas FP (i.e., false positive) represents 

the number of non-interacting compound target pairs, which are predicted as interacting. 
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Figures and Figure Legends 

 

Figure 1 Illustration of the Convolutional Neural Network structure of the proposed DTI prediction 

system, where the sole input is the 2-D structural images of the drugs and drug candidate compounds 

(generated from the SMILES representation as a data pre-processing step). Each target protein has an 

individual prediction model with specifically optimized hyper-parameters (please refer to the Methods 

chapter). For a query compound, a trained model produces as binary output either as active or inactive 

for its corresponding target. 
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Figure 2 Data filtering and processing steps to create the training dataset of each target protein model. 

Predictive models were trained for 704 target proteins, each of which have at least 100 known active 

ligands in ChEMBL database. 
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Figure 3 DEEPScreen vs. shallow/conventional classifiers overall predictive performance curves. Each 

point in the horizontal axis represents a target, the vertical axis represents performance in Accuracy 

(A), F1-score (B) and MCC (C), respectively. For each classifier, targets are ranked in a descending 

performance order. Average performance values are given inside the plots. 
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Figure 4 Target-based (rows) maximum predictive performance (MCC-based) heatmap for 

DEEPScreen and shallow classifiers (columns) (LR: logistic regression, RF: random forest, SVM: 

support vector machine). For each target protein (row), classifier performances are shown in the shades 

of red (i.e., high performance) and blue (i.e., low performance) colours according to Z-scores, calculated 

individually for each target model (row). Rows are arranged in blocks according to target families. The 

length of a block is proportional to the number of targets in its corresponding family (enzymes: 374, 

GPCRs: 212, ion channels: 33, nuclear receptors: 27, others: 58). Within each block, targets are 

arranged according to descending performance from top down with respect to DEEPScreen. Grey 

colour signifies the models where learning was not possible. 
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Tables 

Table 1: Target family-based average predictive performance results of DEEPScreen. 

Family # of Targets Average F1-score Average MCC 

Enzyme 374   0.84 0.69 

GPCR 212 0.91 0.81 

Ion Channel 33 0.88 0.74 

Nuclear Receptor 27 0.89 0.77 

Other Families 58 0.84 0.67 

 

 

Table 2: The average predictive performance comparison between DEEPScreen and various state-of-

the-art deep learning based DTI predictors. 

Dataset Method Architecture Performance 

(Metric) 

ChEMBL Temporal-

split Dataset 

DEEPScreen  ConvNets with 2-D Images 0.45 (MCC) 

Lenselink et al. Feed-forward DNN PCM (best model) 0.33 (MCC) 

Directory of Useful 

Decoys -Enhanced 

(DUD-E) Dataset 

DEEPScreen ConvNets with Images 0.83 (AUROC) 

AtomNet 3D Structural Convolutional NNs 0.85 (AUROC) 

Gonczarek et al.  Feed-forward multi-task DNNs 0.90 (AUROC) 

Maximum Unbiased 

Validation (MUV) 

Dataset 

DEEPScreen ConvNet with Images 0.74 (AUROC) 

Kearnes et al. Graph convolution NNs 0.75 (AUROC) 

Altae-Tran et al. One shot learning + graph conv. 0.66 (AUROC) 
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Table 3: Hyper-parameter types and their values that were tested during the training of the DEEPScreen 

system. 

Hyper-parameter Name Range 

Input Normalization 
Yes 

No 

Learning rate 

0.0005 

0.0001 

0.005 

0.001 

0.01 

Number of neurons in the fully-connected layers NA* 

Optimizer 

Adam (default) 

Momentum (default) 

RMSprop (default) 

Mini-batch size 
32 

64 

Drop-out rate 

0.5 

0.6 

0.8 

Batch Normalization Yes 

* There are two fully-connected layers after the convolutional layers for the AlexNET model. The number of 

neurons that were tested these layers were (128,16), (256,128), (512,32), (1024,32), (2048,2048). For the in-house 

convolutional neural network architecture, there were one fully connected-layer and the number neurons tested 

for the corresponding layer was 16, 32, 128, 256, 512. 


