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ABSTRACT

Genome diagnostics have gradually become a prevailing

routine for human healthcare. With the advances in

understanding the causal genes for many human

diseases, targeted sequencing provides a rapid, cost-

efficient and focused option for clinical applications,

such as SNP detection and haplotype classification,

in a specific genomic region. Although nanopore

sequencing offers a perfect tool for targeted sequencing

because of its mobility, PCR-freeness, and long

read properties, it poses a challenging computational

problem of how to efficiently and accurately search and

map genomic subsequences of interest in a pool of

nanopore reads (or raw signals). Due to its relatively low

sequencing accuracy, there is no reliable solution to this

problem, especially at low sequencing coverage.

Here, we propose a brand new signal-based

subsequence inquiry pipeline as well as two novel

algorithms to tackle this problem. The proposed

algorithms follow the principle of subsequence dynamic

time warping and directly operate on the electrical

current signals, without loss of information in base-

calling. Therefore, the proposed algorithms can serve

as a tool for sequence inquiry in targeted sequencing.

Two novel criteria are offered for the consequent signal

quality analysis and data classification. Comprehensive

experiments on real-world nanopore datasets show the

efficiency and effectiveness of the proposed algorithms.

We further demonstrate the potential applications of the

proposed algorithms in two typical tasks in nanopore-

based targeted sequencing: SNP detection under low

sequencing coverage, and haplotype classification

under low sequencing accuracy.

INTRODUCTION

Benefited from the deeper understanding of disease-gene
associations, targeted sequencing (TS) becomes a much
preferred option than whole-genome sequencing (WGS) or
whole-exome sequencing because it can significantly reduce the
cost, turnaround time, and data processing burden, yet provide
a more focused analysis for the regions of interest typically
ranging from several thousands to millions of bp. Along with
the next generation sequencing, TS has been revolutionizing the
way of diagnosis, prognosis, and treatment of human diseases.
Oxford nanopore sequencing is a rapidly developing third
generation sequencing technology that is able to generate 10-
50k bp ultra-long reads in real time on a portable device at
low-cost, thus provides a perfect tool for TS (Jain et al., 2016;
Deamer et al., 2016; Stancu et al., 2017). The key innovation of
nanopore sequencing is the direct measurement of the electrical
current signal (denoted as the raw signal) when a single-
strand DNA passes through the nanopore. These raw signals are
transferred to reads by base-calling for further analysis.

To analyze the reads generated by nanopore-based TS, most
of the bioinformatics tools follow a ‘read-to-reference’ pipeline
inherited from WGS. That is, they map the base-called reads
to the reference genome to locate the local genomic region
of interest (Fig. 1(A)). An alternative, inverse approach is
to perform subsequence inquiry of local reference genomic
sequence in the ultra-long nanopore reads (Fig. 1(B)). As
those reference subsequences are often known in advance
with prior knowledge about the associated genes or genomic
regions for the diseases, such ‘reference-to-read’ approach may
overcome some challenging issues in the read-to-reference
approach. For instance, in diagnostic metagenomics to detect
16S rRNA for bacteria classification, it is not necessary and very
difficult to assemble the whole genomes, but TS can still detect
hypervariable 16S regions in the generated reads (Fiannaca
et al., 2018). Also, in targeted locus amplification (TLA), a TS
approach to selectively amplify and sequence entire genes on
the basis of the cross linking of physically proximal sequences
(De Vree et al., 2014), the sequenced reads are reshuffled,
therefore it is challenging for the canonical read mappers to map
those reshuffled reads to the reference genome (De Vree et al.,
2014).

———————————————————————————–
The program introduced in this manuscript is available at https://

github.com/icthrm/cwSDTWnano.git

c©2019 All rights reserved by the authors.
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Figure 1. Illustration of two approaches for nanopore-based targeted sequencing. (A) The classic read-to-reference approach. In this approach, the nanopore
electrical current signal sequences (i.e. raw signals) are transferred to reads by base-calling, and then the base-called reads are searched and mapped to the reference
genome for further analysis (i.e., read-based analysis). (B) Our proposed reference-to-signal approach. In this approach, the local reference genomic sequence is
translated to the expected signal sequence by the k-mer pore model, and then the expected signal sequence is searched and mapped to a pool of raw signals (i.e.,
signal-based analysis). The translation from the genomic sequence to the expected signals is completely reversible, while the base-calling procedure will introduce
error and cause information loss in the raw signals.

Another key issue that is usually neglected in the classic read-
to-reference pipeline for nanopore resides in the base-calling
process, where the raw nanopore signals are translated into
the nucleotide reads (i.e., ‘signal-to-nucleotide’) based on a
trained machine learning model (Rang et al., 2018). However,
according to the recent study (Rang et al., 2018), the base-
calling in nanopore retains 10% to 15% error rate (Wick et al.,
2018), and heavily depends on the datasets that are used for
training. In addition, it was found that the non-standard events,
such as mutations or modifications (e.g., DNA methylation),
are contained in the raw signals but lost after base-calling
(Rang et al., 2018). All of these defects leave a high risk
of false dismissals and misalignment in local genomic region
mapping. On the contrary, instead of using the base-called reads,
an inverse signal-based analysis exists by first transforming
the local reference genomic sequence to the expected signal
sequence and then directly comparing it with the raw signals
(Fig. 1(B)). The advantage of this approach resides in two folds:
(i) there is no information loss in the base-calling procedure,
and (ii) the transformation from the genomic sequence to the
expected signal sequence is completely reversible.

In order to leverage the advantages of nanopore sequencing
while avoiding its drawbacks for targeted sequencing, we
propose a brand new signal-based subsequence inquiry (or
reference-to-signal) pipeline that directly searches and maps a
local reference genomic sequence to a pool of raw nanopore
signal sequences (Fig. 1(B)). As the proposed pipeline directly
operates on the raw signals but not base-called reads, and
directly focus on the local region of interest, it is a more natural
approach for nanopore-based targeted sequencing. There are
three main benefits in this novel pipeline: (i) as the local
reference genomic sequence is often known in advance, there
is no need to obtain the whole reference/exon genome; (ii)

because we do not perform base-calling on the raw signals,
our approach has no information loss and will not miss the raw
signals that contains mutations or epigenetic modifications; and
(iii) the inquiry of short reference sequences will not be affected
by reshuffling during TS or false dismissals caused by errors in
signal-to-nucleotide translation.

However, there are several technical challenges hampering
efficient reference-to-signal search: (i) the raw signal sequence
is very long, often ranging from 100k to 500k bp; (ii) there is
one order of magnitude scale difference between the sampling
rate of the two sequences; and (iii) the alignment of real-valued
sequences instead of the one of discrete letters requires accurate
yet sensitive scoring functions. To our knowledge, there is no
available solution to resolve these issues.

In this paper, we propose two novel algorithms to enable
the direct subsequence search and exact mapping in the
nanopore raw signal database (i.e., reference-to-signal). The
proposed algorithms follow the principle of subsequence
dynamic time warping (sDTW) and directly operate on the
nanopore raw signal level. The first algorithm is the Direct
Subsequence Dynamic Time Warping for nanopore raw signal
search (DSDTWnano), which ensures an output of highly
accurate query results and runs in an O(MN) time complexity
(M is the query length and N is the raw signal length).
The second algorithm is the continuous wavelet Subsequence
DTW for nanopore raw signal search (cwSDTWnano), which
is an accelerated version of DSDTWnano with the help of
seeding and multi-scale coarsening based on continuous wavelet
transform (CWT). For a typical similarity search with a 4000bp-
long query and a nanopore raw signal sequence of 2105 time
points, cwSDTWnano could finish the search in 600 ms. As a
tool for data inquiry in targeted sequencing, two novel criteria
are proposed to specify the mapping accuracy between a query
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genomic sequence and a raw signal sequence, which serve as the
similarity measurement for the discrimination of hit and non-hit
raw signals as well as the data classification.

To demonstrate the efficacy of the new approach, we make
a comprehensive comparison between our reference-to-signal
pipeline and the traditional reference-to-read one (using tools
like BLAST (Altschul et al., 1997) and minimap2 (Li, 2018)),
and show that our method outperforms the traditional one by a
large margin, especially when the length of the query sequence
is short. We further demonstrate the potential applications
of the proposed pipeline in two typical tasks in nanopore-
based targeted sequencing: SNP detection under low sequencing
coverage and haplotype classification under low sequencing
accuracy. Results show that our algorithms achieve a very high
detection and classification accuracy. Specifically, a simple SNP
detection approach based on the query result of our algorithms
achieves 90% detection rate under a low coverage (20×) on the
E. coli dataset.

PRELIMINARIES

Subsequence inquiry in nanopore sequencing

As discussed in the introduction, the subsequence inquiry
problem is to detect the segments of raw signals in the
database that are similar to a query genomic sequence (the
hit signals). On the contrary, the raw signals with no high-
similarity segment to the query sequence are denoted as non-
hit signals. Formally, let X = (x1,x2,··· ,xN) be a raw signal
sequence, and Y = (y1,y2,··· ,yM) be the expected query signal
sequence (abbr. query signal) that is translated from the query
genomic sequence based on the pore model (M<N). Our aim is
to find a subsequence X[ts : te]= (xts ,··· ,xte ) of X (1≤ ts< te≤N)
that minimizes the distance measurement between Y and all
possible subsequences of X:

E(topt
s ,topt

e )= argmin
(ts,te):1≤ts<te≤N

Dist(Y,X[ts : te]). (1)

Dynamic time warping (DTW) and subsequence DTW

Dynamic time warping (DTW) is an algorithm that measures
the similarity between two temporal sequences, which is a
dynamic programming technique similar to the alphabet-based
alignment algorithms such as Smith-Waterman (Smith and
Waterman, 1981) and Needleman-Wunsch (Needleman and
Wunsch, 1970), with the distance measured by difference of the
real values instead of the substitution matrix.

Given a query sequence Y and a database sequence X, the
DTW distance Dist(Y,X) is defined iteratively:

Dist(Y,X)= D(M,N);

D(i, j)=‖yi− x j‖+min{D(i−1, j),D(i, j−1),D(i−1, j−1)};

D(0,0)=0;D(i,0)= D(0, j)=∞.

(2)

It can be seen that the DTW distance can be solved exactly in
O(MN) time, resulting in the globally optimal alignment.

Figure 2. An example showing the distinguishing power of different distance
measures and different variants of DTW on subsequence search. (A)
Subsequence search by the Euclidean distance between the query Y and the
resampled signal sequence X′; (B) Subsequence search by the DTW distance
between the query Y and the raw signal sequence X; (C) Subsequence search by
sDTW between the query Y and the raw signal sequence X; (D) Subsequence
search by sDTW between the query Y and the resampled signal sequence X′.

For the local genome-to-signal search, a naive solution is to
open a sliding window for each time point in the raw signal
sequence and calculate the DTW distance for each sliding
window, which would result in O(M2N) time complexity, which
is prohibitively high considering the large values of M and N in
nanopore sequencing.

To find the optimal subsequences in an efficient way, the
subsequence DTW (sDTW) (Sakurai et al., 2007) is devised. By
padding the query to Y′= (y0,y1,y2,··· ,yM) and define ‖y0,xi‖=

0 for all xi, the minimum distance Dist(X[ts : te],Y) could be
derived as follows:

Dist(X[ts : te],Y′)= D(te,M)=min(D(t,M));

D(t, j)=‖xt−y j‖+min{D(t−1, j),D(t, j−1),D(t−1, j−1)};

D(t,0)=0,D(0,i)=∞.

(3)

After calculating the entire distance matrix, the optimal
mapping path could be traced from the end point te in D(t,M)
to the start point ts. Thus, the time complexity of this algorithm
is reduced to O(MN). However, it should be noted that sDTW
achieves the efficiency acceleration by giving up counting the
gaps in the alignment, which makes it infeasible to the local
genome-to-signal search problem in nanopore sequencing due
to an order of magnitude difference in the sampling speed. A
possible solution is to resample the raw signals first and then
solve the alignment problem with a multi-scale scheme.

An example of local genome-to-signal search in nanopore
raw signals

Here we design a simple experiment to show the effects of
different strategies on subsequence inquiry of nanopore signals.

As the raw signals have an average 8 to 9 times of redundant
sampling rate (Rang et al., 2018), we use the FIR (finite impulse
response filter) resampling technique (Saramaki and Bregovic,
2002) to generate a 8-times compressed signal sequence X′

from X (a brief introduction of FIR resampling is given in
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Section S1). A query sequence with 1000 nucleotides (Y) and
a nanopore raw signal sequence with ∼100000 time points (X),
which contains the query sequence, are selected to demonstrate
the results (Fig. 2).

As shown in Fig. 2(A), the Euclidean distance has no
distinguishing power to identify the raw signal subsequence that
is similar to the query sequence. On the contrary, Fig. 2(B)
shows that the DTW distance could pick up the region correctly,
but the sliding window based search strategy took half an hour
to get the result. The sDTW method fails to identify the region
(Fig. 2(C)), which is due to the massive amount of redundant
sampling in the raw signals. Finally, Fig. 2(D) shows that sDTW
is able to detect a sharp peak in the resampled signal sequence.

MATERIALS AND METHODS

Two novel algorithms are proposed for direct subsequence
searching and mapping in nanopore raw signals, including
the direct subsequence DTW algorithm, DSDTWnano, and its
accelerated algorithm, cwSDTWnano.

Direct subsequence dynamic time warping for nanopore
raw signal search

The main difficulty to apply subsequence DTW on the nanopore
raw signal data is the scale difference between the query
and the raw signal sequences. We propose to resolve this
issue by resampling the raw signal sequence first, aligning the
resampled signals to the query, remapping the warping path of
the resampled signals to the original ones, and finally refining
it by constrained DTW. Because the highly similar regions
will result in a sharp peak, an early stop condition could be
introduced to save runtime when we calculate the DTW distance
along the nanopore raw signal.

We thus propose a novel algorithm, DSDTWnano (Algorithm
1), where DSDTW(·) is the subsequence dynamic time warping
with an early stop condition, Resampling(·) is the FIR
resampling to compress the nanopore raw signals (Saramaki
and Bregovic, 2002), PathTrackback(·) is a function that
recursively searches the match paths between X′ and Y
that starts from te, ReMapIndex(·) is the context-dependent
constraint generation from a coarse path Wcoarse with a window
size of r, cDTW(·) is the constrained dynamic time warping
(Ratanamahatana and Keogh, 2005) and sbase is the estimation
of raw signal’s sampling rate.Because the subsequence DTW
has the complexity of O(MN′) and the constrained DTW has the
complexity of O(rM) (N′≈N/sbase is the length of resampled
signals, and N is the length of signal X), the overall complexity
of DSDTWnano is O( 1

sbase
MN).

Continuous wavelet subsequence DTW for nanopore raw
signal search

Though DSDTWnano has a dramatic improvement compared
with the naive sliding-window based DTW, it is still not efficient
enough when handling very long raw signal sequences. To

Algorithm 1: DSDTWnano
Input: long reference X, query Y , scale sbase and boundary r

1 SubProcedure DSDTW(X,Y)

2 Pad Y to Y′= (y0,y1,··· ,yM);

3 Dmin←∞, te←0, t←0;

4 while t≤N do
5 D(t,0)←0;

6 for j=1 to M do
7 d←‖xt−y j‖ ;

8 D(t, j)=d+min{D(t−1, j),D(t, j−1),D(t−1, j−1)};

9 end
10 if Dmin>D(t,M) then
11 Dmin = D(t,M), te = t;

12 end
13 Update ε=avg(D(·,M))−5dev(D(·,M));

14 if t−te≥M and Dmin<ε then
15 break;

16 end
17 t← t+1;

18 end
19 return te.

20 Procedure DSDTWnano(X,Y,sbase,r)

21 X′=Resampling(1/sbase,X), i.e., X′= (x′1,··· ,x
′
N′ );

22 te =DSDTW(X′,Y);

23 Wcoarse =PathTrackback(te,X′,Y);

24 B=ReMapIndex(Wcoarse,r);

25 W f ine =cDTW(X,Y,B);

26 return W f ine.

accelerate the efficiency while keeping the effectiveness, we
propose cwSDTWnano, which includes several techniques to
further speed up the subsequence similarity search:seeding,
pre-filtering, and multi-scale search.

cwSDTWnano starts from seed search on the resampled raw
signals. Based on the mapping paths of the seeds, the signal
sequences with no high-similarity segment (i.e., non-hit signals)
are filtered out. For the candidate signal sequences that pass
the filter, a low-resolution wavelet transform is imposed on the
long nanopore signal and the query signal sequences to highly
compress the information, which is utilized to generate the
coarse path with the help of seeds. Finally, with the multi-scale
analysis of CWT, the mapping path between the query signal
sequence and the raw signal sequence is calculated recursively
from a lower-resolution projection to a higher-resolution one.

Seeds with minimal length In genomic read mapping, the k-
long subsequences (i.e., k-mers) in a query sequence are often
used as a quick indicator of whether and where the reference
contains the query. These k-mers are called ‘seeds’ and their
inquiry is usually done through hashing. Because of the high
noise and non-stable sampling rates in nanopore sequencing, it
is difficult to build such a k-mer hash function. However, we
still can use the idea of ‘seeding’ to quickly determine the range
where the query signal locates in the raw signals.

One of our observations is that a query signal could be
detected without ambiguity if it exceeds a certain length.
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Figure 3. The change of the DTW distance with different query lengths.

Here, this certain length is denoted as the minimal length.
An experiment is presented to show how the length of the
query affects the similarity search. As shown in Fig. 2, the
subsequence in the resampled raw signals with the highest
similarity to the query signal will result in the minimum DTW
distance, which behaves as a sharp peak. Fig. 3 shows that a
32bp- or 64bp-long query signal cannot determine a unique
result because there is no distinguishable peak of the DTW
distance. On the contrary, a query with 96bp or 128bp length
is able to detect a clear sharp peak. Two reasons may explain
why a very short query fails: (i) the noise in the raw signal
degenerates the DTW distance of the true hit, and (ii) there exist
multiple similar subsequences in the raw signal sequence.

We make comprehensive experiments, and the results prove
that a length of 128bp is enough for a short query to be detected
in the raw signals. Especially, if the distribution of the electrical
current values in raw signals is given, it is possible to infer the
theoretical minimal length from the given distribution, which
shows the existence of the minimal length in any nanopore
system (a brief proof is given in Section S2). Therefore, we
denote a short segment in a query signal of length at least
minimal length as a seed.

Figure 4. Linear relationship of the mapped path of 3 short seeds that are
extracted from a long query sequence. In the figure, the seeds are marked by
green color (y-axis) and the query result is labeled by red color (x-axis). It can
be found that the mapped path of the seeds follows a linear relationship.

Filtering non-hit signals by seeds Given a long query signal
sequence (≥1000), it is possible to utilize the seeds to filter raw
signals with no high-similarity segment, which will significantly
reduce the total query time. The key observation is that if a
query sequence has a highly similar region in the resampled raw
signal sequence, linearly ordered seeds on the query sequence

will also have a linear relationship to the hit regions in the
resampled signal sequence (Fig. 4). On the contrary, if the
reference sequence does not have a highly similar region to the
query sequence, no linear-ordered seeds will be detected.Based
on this observation, a filtering operation is developed to quickly
exclude those non-hit signals:

1) Select a set of segments {Qi}i=1,···,K from the query signal Y
as the seeds;

2) For each seed, search in the resampled signal sequence X′

by sDTW(·) to get the local mapping;

3) Trackback from the endpoint of the mapping to get the
mapping path of each seed;

4) Make a linear regression based on the mapping paths of these
seeds and check their consistency;

5) If the consistency is weak, stop the process.

If the linear relationship of the seeds is violated, we can stop the
search process to save time. For K seeds with length L, the total
cost for a raw signal sequence with N time points is O( N

sbase
KL),

in which both K and L are very small.

Multi-scale search based on CWT When handling long signal
sequences, multi-scale analysis has been widely used to reduce
the runtime (Salvador and Chan, 2007; Prätzlich et al., 2016),
and continuous wavelet transform (CWT) has been adopted
to preserve the feature information (Skutkova et al., 2015;
Han et al., 2018). Here we further combine CWT with the
multi-scale analysis (Han et al., 2018) and apply it to the
genome-to-signal subsequence search problem.

Continuous wavelet transform: A continuous wavelet
transform (CWT) is a formal tool that provides an overcomplete
representation of a signal. In particular, the CWT of a one-
dimensional signal X(t) at a scale a∈R+ and translational value
b∈R, denoted as Xa,b, is expressed by the following integral:

Xa,b =
1
√

a

∫ ∞
−∞

X(t)ψa,b(t)dt, (4)

where ψa,b(t)=ψ( t−b
a ) is the mother wavelet which is a

continuous function in both the time domain and the frequency
domain. In our algorithm, the Mexican hat wavelet is the default
option, but other wavelet functions are also applicable (Torrence
and Compo, 1998).

Multi-scale representation: For the convenience of analysis,
we fix the translational value b as the same index
correspondence as X. That is, the transformed signals
(spectrum) have the same length and retain peer-to-peer index to
X. Here we use CWT(X,a) to denote the transformed spectrum
of X with the scale parameter a. A feature extraction procedure
can be carried out (denoted as PickPeaks(·)) to reduce the length
of a signal X: (i) obtain the spectra CWT(X,a); (ii) normalize
CWT(X,a) based on Z-score normalization; (iii) extract peaks
and nadirs from each spectrum as the feature sequence. The
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Algorithm 2: cwSDTWnano
Input: long reference X, query Y , scale sbase, seed number K, seed length

L and boundary r

1 SubProcedure cwDTW(X,Y,WS ,S ,r)

2 Initialization: s←S −1;

3 while s≥1 do
4 Xs =CWT(X,2s−1), PXs =PickPeaks(Xs

p) ;

5 Y s =CWT(Y,2s−1), PY s =PickPeaks(Xs
g) ;

6 Bs =ReMapIndex(Ws+1,r) ;

7 Ws =cDTW(PY s ,PXs ,Bs);

8 s← s−1;

9 end
10 return Ws=1.

11 Procedure cwSDTWnano(X,Y,sbase,s,L,r)

12 X′=Resampling(1/sbase,X), i.e., X′= (x′1,··· ,x
′
N′ );

13 {Qi}i=1,···,K =SelectSeeds(Y,K,L);

14 {Wi}i=1,···,K←0;

15 foreach Qi do
16 te =DSDTW(Qi,Y), Wi =PathTrackback(Qi,X′,Y);

17 end
18 if CheckFalse({Wi})= true then
19 return ∅;

20 end
21 S = log2(M)−2;

22 X′S =CWT(X′,2S ), YS =CWT(Y,2S );

23 Wcoarse =CoarsePath(X′S ,YS ,{Wi});

24 Ws=1 =cwDTW(X′,Y,Wcoarse,S ,r);

25 B=ReMapIndex(Ws=1,r);

26 W f ine =cDTW(X,Y,B);

27 return W f ine.

length of a signal could be dramatically reduced by more than a
times for a classic nanopore raw signal sequence.

Coarse path generation: As introduced before, a number of
seeds are used and their mapping paths with the resampled
signal sequences are recorded. These short mapping paths can
be used as anchors in the construction of the coarse mapping
path between the query sequence and the raw signal sequence
using the lowest resolution transform (i.e., with maximal level
coarsening scale) from CWT:

1) Given the query sequence Y with length M, get the maximal
level coarsening scale a= log2(M)−2;

2) Get the feature signals for both CWT(X′,a) and CWT(Y,a);

3) Run the subsequence DTW on the feature signals and get all
the paths;

4) Find out the coarse path that covers the seeds;

5) Combine both the seeds and the coarse path to generate a
more detailed path.

Then, the generated coarse mapping path is fed into cwDTW
(Han et al., 2018) to determine the final mapping.

The continuous wavelet subsequence DTW: Algorithm 2
shows cwSDTWnano, where cwDTW(·) is the continuous
wavelet-based multi-level DTW (Han et al., 2018),

SelectSeeds(·) is the procedure to get K segments with
length L from Y , CheckFalse(·) is the filtering of false
alignment described in Section 26, ReMapIndex(·) is the
context-dependent constraint generation from a coarse path
Wcoarse with a window size of r, CWT(·) is the continuous
wavelet transform and PickPeaks(·) is the procedure to get
feature sequence (Han et al., 2018), CoarsePath(·) is the coarse
path generation procedure described in the previous paragraph
and cDTW(·) is the constrained DTW (Ratanamahatana and
Keogh, 2005). We notice that the false filtering procedure has
a complexity of O( N

sbase
KL) and the procedure of cwDTW(·)

is bounded within O(N logN). Thus the overall complexity for
Algorithm 2 is O( N

sbase
KL+N logN), which has an obvious

advantage when the signal length increases.

EXPERIMENTS AND RESULTS

Datasets

Three real-world nanopore sequencing datasets are used in
our experiments, among which the first (human) and second
(lambda phage) are used to evaluate the accuracy of our
proposed local search algorithms. The third dataset (E. coli) is
used to show the power of our algorithms on the discrimination
of hit and non-hit signals, as well as the low-coverage SNP
detection .

The first dataset is a subset of the publicly available human
data, which comes from human chromosome 21 from the
Nanopore WGS Consortium (Jain et al., 2018) and contains
6318 sequenced reads. The samples in this dataset were
sequenced from the NA12878 human genome reference on
the Oxford Nanopore MinION using 1D ligation kits (450
bp/s) with R9.4 flow cells (raw signals downloaded from
the nanopore-wgs-consortium http://s3.amazonaws.com/
nanopore-human-wgs/rel3-fast5-chr21.part03.tar).
We denote this dataset as the Human21 database.

The second and third datasets are from the genome of lambda
phage and E. coli, respectively. These two datasets were all
prepared and sequenced at the University of Queensland by
Prof. Lachlan Coin’s lab. The lambda phage dataset contains
27004 reads and the E. coli dataset contains 27608 reads.
The samples were sequenced on the MinION device with 1D
protocol on R9.4 flow cells (FLO-MIN106 protocol). We denote
these two datasets as the Lambda phage database and the E. coli
database, respectively. Specifically, E. coli has a relatively low
coverage (20×).

To comprehensively evaluate the performance of the
algorithms, we created a subset by randomly sampling
3000 reads from Human21 and Lambda phage (data
avaliable at https://drive.google.com/drive/folders/
1LuOxg9qE1l9AuDcfyUz9aF10X4cgmX5t?usp=sharing).
The average length of the DNA sequences in the sampled
datasets is 7890 and 8461 for Human21 and Lambda phage,
and the average length of the nanopore raw signal sequences is
65947 and 69715, respectively.
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Figure 5. A demonstration of the raw signal similarity search and mapping by our algorithm. Here, the top signal (blue) is a query signal of length 300, and
the bottom signal (black) is a nanopore raw signal of length 10000. The zoom-out subfigure locating at [145:185] shows how the query signal corresponds to the
{A,C,G,T } nucleotides. The red signal that locates at [4553:7641] on the raw signal is the query result. By further selecting the segment [6197:6594] on the raw
signal and overlapping it with the segment [145:185] on the query signal, a superimposed image with high degree of overlapping is produced.

Similarity criteria

Edit mapping error of a local search Suppose the reference
genome is known, we may use the edit mapping error to evaluate
the difference between the mapping path generated by a local
genome-to-signal search algorithm and the global mapping
path.

Specifically, given a nanopore raw signal sequence, as
we know the reference genome, it is possible to find the
corresponding genomic region to the raw signals (Li, 2018).
Therefore, the global mapping path W′ between the genomic
region and the raw signal sequence can be derived by the
original dynamic time warping (Stoiber et al., 2016; Han et al.,
2018).

For a genomic region G =g1g2 ···gL and its corresponding
raw signal sequence R=r1r2 ···rN , the accuracy of the mapping
path W generated by a local search algorithm is defined as:

emError(W,W′)=
1
L

L∑
i=1

EditDist(signalW (gi),signalW ′ (gi))
L(signalW ′ (gi))

, (5)

where signalx(gi) returns the set of signal indexes {r j} that
corresponds to the query sequence position gi from a certain
mapping path x∈{W,W′}. This is because on average, each
nucleotide corresponds to 8 to 9 signals in the raw signal
sequence due to the redundant sampling in nanopore. EditDist(·)
is the edit distance and L(·) is the size of the signal index set.

For example, if we have a query G =g1g2g3 with L=3.
Suppose its local mapping path W is {(10,1), (11,1), (12,1),
(13,2), (14,2), (15,2), (16,3), (17,3)}, and the global mapping
path W′ is {(11,1), (12,1), (13,2), (14,2), (15,2), (16,3), (17,3)}.
Then we will have the edit distance for g1, g2 and g3 being 1,
0 and 0, respectively, and thus emError(W,W′)= 1

3 ·(
1
2 + 0

3 + 0
2 )=

0.166. If the local search algorithm returns a perfect mapping

path, the error is zero. Note that the error may exceed 100% if
the mapping is way off.

Normalized signal distance of a local search Suppose the
reference genome is unknown or not accurate, it is difficult
to obtain the global mapping. In this case, we may use the
normalized signal distance (nDist) to evaluate the similarity
between the mapped raw signal and the corresponding
reference.

Given the mapping path W generated by a local search
algorithm, the genome-to-signal similarity is defined as:

nDist(W)=

∑L(W)
n=1 c(wni,wn j)

L(W)
, (6)

where L(W) is the length of the mapping path W, and
c(wni,wn j) is the absolute (or, Z-score) difference of the
nth aligned element between the two signal points xi (the
nanopore raw signal) and y j (the expected signal from the k-
mer pore model). Different from emError(W,W′), here nDist(W)
is defined over one mapping path W only, instead of over two
mapping paths W and W′.

For a new dataset with multiple sequences, the normalized
signal distance is important for the discrimination of hit and
non-hit signals, as well as for data classification and clustering
analysis.

Performance

Visualization of a detailed example To demonstrate the
effectiveness of our algorithms in discovering the corresponding
subsequences in the raw signal sequence, we give one example
in Fig. 5 to show the detailed steps of local genome-to-signal
search.

Here, a short region of the DNA sequence with 300bp length
is selected as the query sequence and a raw signal sequence
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with 10000 time points is served as the signal database (the
black signal depicted on the bottom of Fig. 5). Both the DNA
sequence and the raw signal sequence are selected from the
Human21 dataset.

Below are the four steps of the genome-to-signal search
procedure:

A) The query sequence is translated into a query signal
sequence based on the 6-mer pore model provided by
Nanopore Technologies (the blue signal sequence depicted
on the top of Fig. 5).

B) Run the DSDTWnano algorithm to obtain the detailed
region ([4553:7641]) on the raw signal sequence that has
the highest similarity with the query signal sequence (the
red signal region depicted on the bottom of Fig. 5). This
query operation takes 29 ms and results in a normalized
signal distance of 0.1556 between the query signal sequence
and the red region of the raw signal sequence. Typically, a
normalized signal distance ranging from 0∼0.20 indicates a
good hit.

C) By comparing the zoomed out regions of the query and
raw sequences, we can find that these two signals are very
similar to each other. However, it should be noted that the
query result in the raw signal sequence is about 9× longer
than the query signal, which is the typical difference in the
sampling speed in nanopore sequencing. Nevertheless, our
algorithm still produced an accurate mapping.

D) By further selecting the segment [145:185] on the query
sequence and the segment [6197:6594] on the raw sequence,
we may align and visualize them according to the mapping
path produced by our algorithm.

Accuracy analysis The performance of DSDTWnano and
cwSDTWnano is evaluated using the subset of the Human21
dataset and the Lambda phage dataset. In doing so, we randomly
select a segment with length l as the query sequence and then
run the two algorithms on the corresponding raw signals to
find out its maximal response mapping. Finally, we compare
the query results of DSDTWnano and cwSDTWnano with the
global mapping by the edit mapping error.

We first run an experiment of DSDTWnano and
cwSDTWnano (with parameter K =3 and L=128) with
the mapping boundary r =50 and the query length l=1000.
As shown in Fig. 6(A), the distribution of the edit mapping
error of cwSDTWnano is very similar to that of DSDTWnano,
and the majority of the error ranges between 0 and 0.01. Fig.
6(B) shows the scatter plot between the edit mapping error
of DSDTWnano (x-axis) and that of cwSDTWnano (y-axis),
which indicates that most of them are the same (on the diagonal
of the scatter map). The outliers of cwSDTWnano may be
caused by the coarsening in the multi-scale analysis.

We then challenge both algorithms with different lengths l of
the query sequence and different radius r of the mapping path

Figure 6. Statistics of the edit mapping error of our algorithms on the
Human21 database, where for both DSDTWnano and cwSDTWnano the
mapping boundary r =50 and query length l=1000. (A) Distribution of the edit
mapping error of DSDTWnano (in yellow) and cwSDTWnano (in blue). (B)
Scatter plot between the edit mapping error of the DSDTWnano (x-axis) and
that of cwSDTWnano (y-axis).

boundary. The average edit mapping error of the query results
by DSDTWnano and cwSDTWnano on the Human21 database
and the Lambda phage database are summarized in Tables 1
and 2, respectively. We can find that for queries with different
lengths, (i) DSDTWnano almost always outputs a query result
within 0.01 edit mapping error, and no larger than 0.006 for
most of the cases; (ii) the edit mapping error of cwSDTWnano
can also be controlled around 0.006 if a suitable r is selected
(r =50 for l62000 and r =70 for l64000). This is normal as
the performance of cwSDTWnano depends on the mapping
boundary r which is required for the coarsening of the input
signals. As a result, although human and lambda phage are two
completely different species, from the little difference between
the two tables, we know that the performance of our methods is
stable and consistent over different species.

Table 1. The average edit mapping error on the Human21 database

Edit Mapping Error l=600 l=1000 l=2000 l=3000 l=4000

DSDTW

nano

r =30 0.003992 0.004477 0.005322 0.005602 0.005575

r =50 0.004131 0.004440 0.005213 0.005361 0.005326

r =70 0.004092 0.004533 0.005147 0.005368 0.005158

cwSDTW

nano

r =30 0.004444 0.007988 0.012675 0.019269 0.030104

r =50 0.004183 0.004651 0.005647 0.005867 0.006013

r =70 0.004100 0.004598 0.005308 0.005504 0.005395

Table 2. The average edit mapping error on the Lambda phage database

Edit Mapping Error l=600 l=1000 l=2000 l=3000 l=4000

DSDTW

nano

r =30 0.003813 0.003940 0.004631 0.004898 0.004686

r =50 0.003544 0.004059 0.004527 0.004667 0.004583

r =70 0.003763 0.003933 0.004347 0.004453 0.004265

cwSDTW

nano

r =30 0.004674 0.006521 0.014902 0.035661 0.052850

r =50 0.003791 0.004549 0.005384 0.005728 0.005973

r =70 0.003791 0.004294 0.004673 0.004758 0.004667

Because cwSDTWnano has two extra parameters, K and L, to
define the seed number and the seed length, we further analyze
the parameter sensitivity. Table 3 summarizes the average edit
mapping error on the Human21 database for cwSDTWnano
with different seed numbers K and seed lengths L (here the
search radius r is set to 50). From Table 3 we can find that
the seed length has an influence on the quality of the result
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but the number of seed does not have. Also, the edit mapping
error demonstrated in Table 3 indicates that cwSDTWnano is
robust for K>3 and L>128. Thus a very short seed may cause
false dismissals, whereas a seed length of 128 can ensure the
correctness of cwSDTWnano for almost all the queries, and a
seed length of 192 is sufficient for a dataset with raw signals
with reasonably good quality.

Table 3. The average edit mapping error of query results on the Human21

database for cwSDTWnano with different configurations

Edit Mapping Error l=600 l=1000 l=2000 l=3000 l=4000

K =3,L=128 0.004183 0.004651 0.005647 0.005867 0.006013

K =4,L=128 0.004155 0.004819 0.005569 0.006062 0.005725

K =5,L=128 0.004202 0.004643 0.005549 0.005785 0.005832

K =3,L=192 0.004444 0.004626 0.005355 0.006047 0.005624

K =4,L=192 0.004223 0.004745 0.005398 0.005949 0.005759

K =5,L=192 0.004177 0.004950 0.005322 0.006114 0.005730

Runtime analysis For a database with a number of raw signals,
the running time for a query is also important. Generally,
the runtime of DSDTWnano is about 450 ms and that of
cwSDTWnano is about 200 ms for a query sequence with
1000bp in length on a 100000 time points raw signal sequence.
When the query length grows, the runtime may increase
considerably if there are hundreds or thousands of raw signals.
Under this condition, cwSDTWnano is suitable because it
can accelerate the query process remarkably by a multi-scale
strategy. In this subsection, the runtime for both DSDTWnano
and cwSDTWnano is investigated.

Figure 7. The runtime of our algorithms with different query lengths and raw
signal lengths (r =50, K =3 and L=128). (A) The runtime of DSDTWnano
and cwSDTWnano on a 2×105-long raw signal sequence when the length of
the query changes; (B) The runtime of DSDTWnano and cwSDTWnano for a
1000bp-long query when the length of raw signals changes.

Fig. 7 demonstrates the runtime of our algorithms. All the
execution time is collected on a Fedora25 system with 128Gb
memory and two E5-2667v4 (3.2 GHz) processors. From Fig.
7(A) we can find that DSDTWnano has a much higher execution
time compared with cwSDTWnano when the query length
increases, whereas cwSDTWnano keeps a low computational
cost. Specifically, the runtime of cwSDTWnano is always
shorter than 900 ms even searching a 6000bp-long query on
a raw signal with 2×105 time points. From Fig. 7(B) we can
find that the runtime of cwSDTWnano does not exceed 1500
ms when searching a 1000bp-long query on a raw signal with
1×106 time points.

In practice, we recommend to run DSDTWnano if the query
length is short, and run cwSDTWnano otherwise.

Discrimination of hit and non-hit signals A fundamental task
in nanopore sequencing is that, given a query sequence and
a raw signal database, whether we can find a set of signal
segments (subsequences of raw signals) that are similar to
the query, i.e., distinguishing the hit signals from the non-hit
ones. This is necessary because in some applications such as
SNP detection, the task is to find some non-standard signals,
in which multiple numbers of hit signals are required for the
reliable detection of these events. However, it is not easy to
implement a scoring function to discriminate hit and non-hit
signals, especially when the reference genome is unknown or
not accurate. Here, we show that the normalized signal distance
(nDist) is a good similarity measurement in such a task.

We use the E. coli database to test the performance of
nDist with DSDTWnano to identify hit and non-hit signals. To
construct the benchmark, we randomly select 600bp-long and
1000bp-long subsequences from the E. coli genome as the query
sequences, each with 200 samples. For each raw signal sequence
in the E. coli database, as its corresponding reference sequence
is known, we are able to get the true label of each sequence.
Since the sequencing coverage of the E. coli dataset is around
20, we use all the hit signals as the true set, and randomly
sample 200 non-hit as the f alse set. For each pair of the query
sequence and the raw signals in either the true or f asle set,
we run DSDTWnano to obtain the local mapping path and the
corresponding nDist score.

Figure 8. The histogram of the normalized signal distance (nDist) on the E.
coli database, which is generated from 200 query sequences whose length is
600bp-long or 1000bp-long. Each query sequence has 200 non−hit raw signals
(denoted as the f alse set) and about 20 hit raw signals (denoted as the true set).

As shown in Fig. 8, we observe that (i) there are two
well-separated distributions of nDist, where almost all the left
(right) belongs to the true ( f asle) set; and (ii) nDist from
the query sequence with different lengths reside in the same
distribution. Thus, nDist can distinguish the true set (i.e., hit
signals) from the f alse one (i.e., non-hit signals) regardless of
the query length. It is obvious that there is a clear boundary
around nDist=0.2 that could separate the true and f alse sets,
which is used as the threshold in practice. Specifically, such a
characteristic of nDist naturally constructs a linear classifier for
further data classification task.

Comparison with read-based approach As discussed in
introduction, there exist two subsequence inquiry approaches
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Table 4. Performance of subsequence inquiry on the simulated dataset at 80%

sequencing accuracy

bAcc Prec Sens Spec Mcc

L=200
Minimap2 0.618 0.873 0.248 0.995 0.362
BLAST 0.871 0.642 0.483 0.932 0.685

Our proposal 0.948 0.914 0.913 0.986 0.947

L=400
Minimap2 0.783 0.992 0.534 0.984 0.623
BLAST 0.923 0.953 0.872 0.978 0.927

Our proposal 0.956 0.996 0.942 0.993 0.964

L=800
Minimap2 0.947 0.922 0.791 0.997 0.821
BLAST 0.934 0.955 0.913 0.975 0.944

Our proposal 0.991 0.996 0.981 0.997 0.989

Table 5. Performance of subsequence inquiry on the simulated dataset at 90%

sequencing accuracy

bAcc Prec Sens Spec Mcc

L=200
Minimap2 0.853 0.827 0.787 0.941 0.723
BLAST 0.912 0.739 0.959 0.933 0.833

Our proposal 0.992 0.909 0.985 0.998 0.978

L=400
Minimap2 0.942 0.991 0.924 0.999 0.925
BLAST 0.949 0.932 0.918 0.983 0.926

Our proposal 0.999 0.999 0.999 0.999 0.999

L=800
Minimap2 0.935 0.903 0.921 0.985 0.914
BLAST 0.937 0.946 0.967 0.982 0.951

Our proposal 0.999 0.999 0.999 0.999 0.999

for nanopore-based targeted sequence analysis: signal-based
and read-based. In the signal-based approach, the genomic
region of interest will be first translated into the expected
signals by the k-mer pore model, and then be inquired as signal
against the database containing the raw signals. In the read-
based approach, the raw signals are first transformed into the
reads by base-calling, and then the genomic sequence of interest
will be used for detecting the similar subsequences within these
reads. Our proposed algorithms belong to the former, while a
variety of standard read mappers (e.g., minimap2 (Li, 2018),
BLAST (Altschul et al., 1997), and others (Sedlazeck et al.,
2018; Sovic et al., 2016; Langmead and Salzberg, 2012; Li and
Durbin, 2010)) belong to the latter. A natural question to ask is if
there really exists an advantage of the signal-based approaches
over the read-based methods in processing nanopore sequencing
data.

To answer this question, we use our in-house tool
DeepSimulator (Li et al., 2018) to simulate 20,000 reads and
signals at two typical sequencing accuracy (say, 80% and
90%) from a given 1M bp genomic region that encompasses
Human DGCR8 gene (essential for microRNA biogenesis
(Wang et al., 2007)). Then we randomly select subsequences
at different lengths (say, 200 bp, 400 bp, and 800 bp) within
this 1M bp region, each with 5 samples, as the query sequences
to perform subsequence inquiry. The programs to compare
with our DSDTWnano are minimap2 and BLAST, which are
processed with default parameters.

As the ground-truth is known during simulation, for each
subsequence, we denote those reads that fully contain (not
contain) this subsequence as hit (non-hit) reads. In order to
eliminate ambiguity, we exclude those reads that overlap with
this subsequence. Thus, for each method, the purpose is to

identify as much as hit reads as possible, while avoiding
classifying those non-hit reads as hits.

For our DSDTWnano method, it is straightforward to
distinguish hit and non-hit reads by setting the threshold as
nDist=0.2. However, for minimap2 and BLAST, it is not
straightforward to do so as they will report some reads with low-
similarity or low-quality. To remove them, we set a length of
alignment (LALI) threshold 0.75 ·L for BLAST and minimap2
where L is the length of the query subsequence. For example,
if the length of a subsequence is 400 bp, then we exclude those
reads whose LALI is below 300.

We measure the success rate of subsequence inquiry in the
following terms: balanced accuracy (bAcc), precision (Prec),
sensitivity (Sens), specificity (Spec), and Matthews correlation
coefficient (Mcc). In order to calculate these terms, we define
the True Positives (TP) and True Negatives (TN) as the numbers
of correctly identified hit and non-hit reads, respectively,
where False Positives (FP) and False Negatives (FN) are the
numbers of misclassified hit and non-hit reads, respectively.
Precision, sensitivity and specificity are defined as T P/(T P+

FP), T P/(T P+FN) and T N/(T N +FP), respectively. Balanced
accuracy is the average of sensitivity and specificity.

MCC=
(T P×T N−FP×FN)

√
(T P+FP)(T N +FP)(T P+FN)(T N +FN)

. (7)

As shown in Table 4 and Table 5, our method outperforms
BLAST and minimap2 by a large margin, especially when
the length L of the query subsequence is short, regardless
of the dataset with a relatively low or high sequencing
accuracy. Specifically, for L=200 at 80% sequencing accuracy,
our method achieves 0.947 Mcc, 0.913 sensitivity, 0.914
precision and 0.948 balanced accuracy, respectively, which
are 58.5%, 66.5%, 4.6% and 33% higher than minimap2,
and 26.2%, 43%, 27.2% and 7.7% higher than BLAST; for
90% sequencing accuracy, our method achieves 0.978 Mcc,
0.985 sensitivity, 0.909 precision and 0.992 balanced accuracy,
respectively, which are 25.5%, 19.8%, 8.2% and 13.9% higher
than minimap2, and 14.5%, 2.6%, 17% and 8% higher than
BLAST.

Case study

Two case studies of SNP detection and haplotyping
classification are presented to demonstrate the application
of our algorithms in targeted sequencing (see Fig.9).

SNP detection Detecting genetic variations, such as single
nucleotide polymorphisms (SNPs), in a specific region of the
genome is a major task in targeted sequencing. Currently,
the identification of SNPs is mainly done by resequencing
approach (i.e., searching for differences between aligned reads
and the reference genome) or assembly approach (i.e., de
novo assembling consensus read sequences against a reference
genome) (Magi et al., 2017). Recently, a few studies explored
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Figure 9. Two use cases to demonstrate the potential applications of the reference-to-signal pipeline in nanopore-based targeted sequencing. Left: SNP typing. Here
the query sequence is the SNP-containing genomic region. The aligned raw signals upon the query sequence with a SNP (here is A→C) is shown in the bottom. A
clear difference between the raw signals (black squiggle curves) and the expected signals (red and green curves for reference and mutated sequences, respectively)
indicates strong evidence of SNP. Right: haplotyping. Here the query sequences are the four candidate haplotypic sequences. A raw signal should be classified to
the most similar haplotype if it passes the similarity threshold. The count of each haplotype is shown in the bottom.

the capability of nanopore sequencing to identify SNPs (Quick
et al., 2016), which conclude that to reach a high detection rate
(such as ∼90%), more than 60× sequencing coverage is needed
(Jain et al., 2015).

A case study is presented to demonstrate how we can identify
and visualize SNPs based on the nanopore raw signals at a
low sequencing coverage on a targeted genome region. The
experiment is carried out on the E. coli dataset with a series
of relatively low coverage (10×, 15× and 20×) and a number
of randomly mutated SNPs (10,100,1000 and 10000 SNPs)
on the genomic region covering the first 2.5Mbp. Here we
choose 2.5Mbp because this length is roughly the upper bound
of the targeted sequencing reported so far using the CATCH
(Cas9-assisted targeting of chromosome segments) technology
(Bennett-Baker and Mueller, 2017).

In doing so, we first generate a mutated genome by
randomly substituting n bases on the reference genome. Then
we randomly select N raw signals from the signal database
to fit the required coverage c. Afterwards, given a mutated
genome with n SNPs and the signal database at coverage c, we
extract 600bp-long sliding window sequences with a step size
of 300bp from the mutated genome and use them as queries in
cwSDTWnano, to locate the candidate raw signal segments and
positions that might contain a SNP. The SNP positions are then
detected based on the mismatches between the aligned signals
and the expected signals of the reference sequence (without
mutation), as measured by Z-score. After the candidate SNP
regions are detected, for each position within this region, four
mutated sequences each with that position being {A,C,G,T },

Table 6. The SNP detection ratio under different signal coverages

SNP detection rate n=10 n=100 n=1000 n=10000

Our

method

c=10 0.500 0.480 0.530 0.510

c=15 0.800 0.820 0.795 0.803

c=20 0.900 0.890 0.889 0.897

Nanopolish

c=10 0.000 0.040 0.051 0.044

c=15 0.400 0.440 0.431 0.447

c=20 0.700 0.780 0.771 0.769

respectively, are used as the query to search against the signal
database. Finally, the mutation with the expected signal closest
to the observed signals in the database is chosen as the detected
SNP at the candidate position (more details are given in Section
S3).

To evaluate the performance of our algorithms in the
low coverage situation, we calculate the SNP detection rate
and compare our method with Nanopolish (Quick et al.,
2016) at different coverages c and different SNP numbers n.
Table 6 summarizes the experimental results with different
numbers of SNPs and different signal coverages. Our method
always dramatically outperforms Nanopolish, especially at low
coverage. This is an important feature for nanopore-based
targeted sequencing because nanopore does not need PCR
amplification and thus often has a low coverage, especially
for single cell experiments. When the coverage is as low as
10, Nanopolish almost fails to detect any SNPs, whereas our
method can detect roughly half of them.

An example of SNP identification is shown in Fig. 10, which
is a region of aligned raw signals (a full mapping can be found
in Section S3). Here the red (green) curves indicate the 6-mer
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Figure 10. Illustration of SNP detection by cwSDTWnano. A, C, G and T on the reference sequence (query) are labeled in red, yellow, green and blue, respectively.
The aligned nanopore signals are shown in the black squiggle curves and the red (green) curves indicate the 6-mer pore model for the reference (mutated) sequence
centered at the candidate SNP position.

pore model for the reference (mutated) sequence centered at
the candidate SNP position. The aligned nanopore signals are
shown in black. There is a clear difference of the pore model at
the SNP position, which indicates a strong evidence.

In summary, experiments on the E. coli dataset demonstrate
that accurate SNP detection (around 90%) can be achieved by
a low coverage (i.e., 20×) with the help of our algorithms. The
success of our algorithms lies in two folds: (i) the signal-level
operation reserves more information, and (ii) the normalized
signal distance measurement effectively filters out non-hit
signals and identifies hit signals.

Haplotype classification The genome of a lot of eukaryotic
species, including human, is diploid. Each of its autosomes
(i.e., non-sex chromosome) comes in two copies. These parental
copies are affected by different SNPs, and the assignment of
these SNPs to each copy is defined as haplotyping (Consortium
et al., 2005). Currently, there are two major approaches to
perform haplotype classification: (i) statistical methods, which
assume that the haplotypes to be computed are a mosaic of
reference haplotype blocks that arise from recombination during
meiosis, and use maximum-likelihood estimation to solve the
problem (Browning and Browning, 2011); and (ii) sequencing
approach, which addresses the haplotype classification directly
from the sequencing reads (Patterson et al., 2015).

With the rise of targeted sequencing techniques, the
haplotyping within a selected genomic region becomes possible.
Here, we formulate the targeted haplotyping problem as
searching all the possible haplotypic sequences within a selected
genomic region against the raw nanopore signals. As nanopore
data with known haplotyping are not available, we use our in-
house tool DeepSimulator (Li et al., 2018) to simulate signals
and reads at a relatively low sequencing accuracy.

In particular, we generate two haplotypes of the 42 kb human
MDM2 oncogene centered in a 200 kb genomic region. The
MDM2 protein is a ubiquitin ligase that plays a critical role
in regulating the levels and activity of the p53 protein (Atwal
et al., 2007). The two SNPs that we choose to generate the

two haplotypes locate at positions 285 C/G and 309 T/G, which
are shown to be associated with an earlier age of tumor onset
(Renaux-Petel et al., 2014).

The experiment is conducted as follows: (i) the two assigned
haplotypes in our simulation are 285C-309T and 285G-309G,
respectively; (ii) the coverage of simulated signals/reads (the
average accuracy of the simulated reads is about 85%) in this
200 kb genomic region is about 20× for each haplotype; (iii)
four sequences with 800 bp length that cover this haplotype
region (say, 285C-309T, 285C-309G, 285G-309T, and 285G-
309G) are used as query, to find out the segments of the raw
signals that cover this 800 bp region (denoted as hit); (iv) for
each hit signal, the normalized signal distance (nDist) of these
four sequences are calculated and the minimum one is selected
as the haplotyping label.

Table 7. The confusion matrix of haplotyping for MDM2 gene by signal-based

approach
PPPPPPPPPredicted

Truth
285C-309T 285C-309G 285G-309T 285G-309G

285C-309T 23 0 0 0

285C-309G 0 0 0 0

285G-309T 0 0 0 0

285G-309G 0 0 0 21

Table 8. The confusion matrix of haplotyping for MDM2 gene by read-based

approach
PPPPPPPPPredicted

Truth
285C-309T 285C-309G 285G-309T 285G-309G

285C-309T 18 0 0 0

285C-309G 1 0 0 1

285G-309T 2 0 0 1

285G-309G 0 0 0 17

Among the ∼5000 generated signals/reads, 44 of them are
hit signals that cover this 800 bp haplotype region. As the
ground-truth of the haplotype for each hit signal is known as
prior, a confusion matrix could be produced to indicate the
classification accuracy by our direct signal search approach.
For comparison, we run BLAST (Altschul et al., 1997) for
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each of the four 800 bp haplotype sequences against the read
database, and collect those reads if the sequence identity and
the length coverage is above 85% to all of the four sequences.
For the resultant 40 reads, the haplotype is labeled based on the
maximal BLAST bit score among the four haplotype sequences.
As shown in Table 7, our signal-based algorithms achieved
100% accuracy, whereas the accuracy of read-based approach
is lower than 90% (see Table 8). This result indicates that the
haplotype classification at the raw-signal level is more accurate
than that at the read level.

CONCLUSION AND DISCUSSION

We proposed two novel algorithms for local genome-to-signal
search and mapping, which is a key step in major tasks of
targeted sequencing. The proposed algorithms are based on the
idea of subsequence dynamic time warping and directly operate
on the nanopore raw signals. Comprehensive experiments on
real-world datasets demonstrate that the proposed algorithms
are able to produce accurate and efficient subsequence search,
mapping and pattern classification. Two case studies further
demonstrate the potential applications of our methods towards
nanopore-based targeted sequencing.

Our proposed algorithms could also be extended and applied
to detecting other single nucleotide variants (SNV), such
as small insertions and deletions (InDels), as well as DNA
modifications using nanopore data. Reports have shown that
these events are challenging to detect, especially under a low
sequencing coverage or with low-quality raw signals. As these
non-standard events would all cause changes in the raw signals,
it is possible to develop a universal detector for SNVs and DNA
modifications under our framework. In addition, our algorithms
are can be possibly used to resolve the long insertion and
deletion events or other large scale mutation events with the help
of large gap penalty (Smith and Waterman, 1981) or Viterbi-like
algorithms (Viterbi, 2006) with hidden Markov models.

ACKNOWLEDGEMENTS

The authors thank Minh Duc Cao, Lachlan J.M. Coin,
Louise Roddam and Tania Duarte for providing the
nanopore sequencing data. This work was supported by
the King Abdullah University of Science and Technology
(KAUST) Office of Sponsored Research (OSR) under
Awards No. FCC/1/1976-04, URF/1/2601-01, URF/1/3007-
01, URF/1/3412-01, URF/1/3450-01, URF/1/1976-26, and
URF/1/1976-23.

Conflict of interest statement. None declared.

REFERENCES

Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z.,
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