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Abstract 
 

Single-cell gene expression data with positional information are critical to dissect 

mechanisms and architectures of multicellular organisms, but the potential is limited 

by current data analysis strategies. Here, we present scGCO (single-cell graph cuts 

optimization), a method based on fast optimization of Markov Random Fields with 

graph cuts, to identify spatially viable genes. Extensive benchmarking demonstrated 

that scGCO delivers superior performance with  optimal segmentation of spatial 

patterns, and can process millions of cells in a timely manner owing to its linear 

scalability. 
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Introduction 

 

Systematic assessment of the spatial context of gene expression is a cornerstone in 

understanding mechanistic functionality and molecular organization of tissues and 

organs1. Currently, two main classes of experimental approaches have been established 

to measure spatial transcriptomics. Utilizing probes for individual RNA molecules to 

directly quantify gene expression in situ, image-based single-cell spatial 

transcriptomics, such as seqFISH2 and MERFISH3, can measure hundreds of genes in 

an entire tissue section. On the other hand, by combining single-cell RNA-seq data with 

prerecorded coordinate information, spatial gene expression can be generated for 

hundreds of cells at the genome-scale4,5.  

 

The central task of analyzing spatial transcriptomics is to identify genes with spatially 

viable expression patterns (hereafter referred to as spatial genes). The first generation 

of methods mainly identify spatial genes by comparing gene expression among 

arbitrarily selected regions using procedures such as ANOVA2,4. However, the 

boundaries of selected regions are not rigorously defined, which could limit the 

detection power of subsequent statistical methods. More importantly, scientific 

discovery of novel spatial regions is not possible. Recently, two methods based on 

Gaussian process6 or marked point process7 were developed to specifically identify 

spatial genes. However, benchmarking showed that these methods reported a 

substantially lower number of spatial genes than methods directly comparing 

preselected regions using the same data4,6,7. Moreover, these methods scale poorly with 

a cubic or quadratic growth rate in the number of cells6,7. This may substantially limit 

their utilities, as the spatial transcriptomics scales beyond hundreds of cells.  

 

Here, we present a novel algorithm, single-cell graph cuts optimization (scGCO), to 

identify spatial genes.  A crucial insight of scGCO is that identifying spatial genes is 

analogous to identifying objects from an image, also known as image segmentation, 

which is a classical problem in computer vision that can be solved optimally with graph 

cuts algorithms8. Consistent with the theoretical advantages of graph cuts, scGCO 

demonstrated superior performance against existing methods over a wide range of 

spatial transcriptomics data and can scale to millions of cells. We have made scGCO 

available as a python package to allow optimal analysis of spatial transcriptomics data. 
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Results 

 

Overview of scGCO algorithm 

 

To apply graph cuts to spatial gene expression data, scGCO first performs Delaunay 

triangulation on spatial coordinates of cells to generate a sparse graph representation of 

cell locations (Fig. 1a, 1b). The graph can then be analyzed by graph cuts algorithms to 

identify cuts that minimize the energy of the underlying Markov random fields (MRFs), 

where resulting subgraphs correspond to clusters of cells with similar expression values 

(Fig. 1c). The identified spatial patterns can then be visualized by Voronoi tessellation, 

and statistical significance of identified spatial genes can be evaluated with a 

homogeneous spatial Poisson process (Fig. 1d).  

 

scGCO provides sensitive and robust identification of spatial genes 

 

We first applied scGCO to spatial transcriptomics data from mouse olfactory bulb 

(MOB)4. In the original study, Ståhl et al. directly compared the expression of cells in 

the granular cell layer (GCL) against cells in the glomerular layer (GL), and reported 

170 differentially expressed genes4. Because MOB consists of 5 different layers4, 

hundreds to thousands of genes could be differentially expressed between these regions, 

and hence are spatially viable if we assume that each pair of regions generates a similar 

number of differentially expressed genes to that of GCL vs. GL.  

 

Two recently published methods, spatialDE5 and trendSceek6, were especially designed 

to identify spatial genes. Because trendSceek can only identify < 100 genes in two out 

of the twelve replicates of MOB data7, we focused on the comparison with spatialDE. 

We first applied scGCO to replicate 11 of the MOB data, which spatialDE analyzed 

extensively in their study6. Strikingly, scGCO identified 16-fold more spatial genes 

(1,131 genes, FDR < 0.01) than spatialDE (67 genes, FDR < 0.05), and reproduced a 

majority of spatialDE identified genes (59 of the 67) (Fig. 2a). Because biological 

functions are carried out by modules or networks of genes that are highly correlated, 

we expect that the spatial genes should also share similar spatial patterns. Indeed, genes 

identified by scGCO formed four tight clusters when projected onto a low-dimensional 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 9, 2018. ; https://doi.org/10.1101/491472doi: bioRxiv preprint 

https://doi.org/10.1101/491472
http://creativecommons.org/licenses/by-nc-nd/4.0/


space via t-distributed stochastic neighbor embedding (t-SNE)9 (Fig. 2b). Moreover, 

direct visualization of spatial gene expression patterns of representative genes 

confirmed that a distinct spatial pattern is associated with each cluster (Fig. 2c). To 

exhaustively validate the predictions, we plotted and visually examined all 1,131 genes 

identified by scGCO and confirmed that the vast majority of identified genes indeed 

display valid spatial patterns that resemble representative genes from each cluster 

(Supplementary File 1). Finally, five out of the top ten enriched gene sets are neuron-

related, confirming that the large number of spatial genes identified by scGCO 

demonstrate significant biological relevance (Supplementary Fig. 1). 

 

We next analyzed all 12 replicates of the MOB data. Similar to the results for replicate 

11, scGCO consistently identified substantially more spatial genes than spatialDE and 

trendSceek in all replicates (Supplementary Fig. 2). Reassuringly, four clusters with the 

minor cluster detectable in nine replicates were consistently recovered by t-SNE 

analysis (Supplementary Fig. 3). Direct visualization confirmed the validity of the 

identified spatial patterns in all replicates, and the results of two replicates (1 and 10) 

with a large number of identified genes are provided in supplementary materials 

(supplementary Fig. 4 and 5, supplementary Files 2 and 3). In contrast, genes identified 

by spatialDE formed fewer clusters, and each cluster contained many fewer genes 

(supplementary Fig. 6). Importantly, scGCO also reproduced majority of the genes 

differentially expressed between GCL vs. GL layers, confirming that scGCO could 

identify spatial genes beyond direct region comparison (Supplementary Fig. 7). 

 

We next investigated robustness of the algorithms by comparing genes that were 

reproducibly identified across all 12 biological replicates. ScGCO consistently 

reproduced more spatial genes and had a smaller percentage of unreproducible genes 

than spatialDE (35% v.s. 46%) (Supplementary Fig. 8). Moreover, the reproducible 

genes identified by scGCO are highly enriched with neuron-related gene ontologies, 

further confirming the validity of identified spatial genes (Supplementary Fig. 8).  

 

scGCO is applicable to a wide variety of spatial transcriptomics data 

 

We next applied scGCO to spatial gene expression data from breast cancer biopsies, 

which were generated using the same protocol as the MOB data4. As expected, scGCO 
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consistently identified more spatial genes than both spatialDE and trendSceek (Fig. 2d, 

supplementary Fig. 9). Interestingly, genes identified by scGCO consistently formed 

three clusters using t-SNE across all four replicates, while genes identified by spatialDE 

failed to maintain consistent clustering patterns, suggesting that scGCO is not only 

more sensitive but also more robust (Supplementary Fig. 10). Indeed, scGCO 

consistently reproduced more spatial genes than spatialDE when biological repeats 

were compared, and had a lower percentage of unreproducible genes (46.1% vs. 57.6%). 

Reassuringly, reproducible genes identified by scGCO are enriched with metastasis-

related GO terms such as focal adhesion, confirming their biological relevance (Fig. 2e, 

Supplementary Fig. 11). 

 

We next tested scGCO using seqFISH data from mouse hippocampus. The 

hippocampus data contain 21 fields with variable quality, and consequently, the number 

of identified spatial genes ranged from single digits to over two hundred 

(Supplementary Fig. 12). Despite this variation, scGCO and spatialDE demonstrated 

robust performance and identified spatial genes in all 21 samples, while trendSceek 

only identified spatial genes in 15 samples (Fig. 2f, Supplementary Fig. 12, 13). 

Moreover, scGCO consistently identified more spatial genes than spatialDE in 15 out 

of 21 samples, and outnumbered trendSceek in 14 out of 21 samples, further 

demonstrating scGCO’s superior performance. 

 

Finally, we extended the analysis to MERFISH data3. ScGCO identified 139 spatial 

genes, which is comparable to trendSceek (140) and is higher than spatialDE (91). 

Interestingly, spatial genes identified by the three methods displayed a near perfect 

overlap, supporting a comparable performance (Supplementary Fig. 14). However, 

only 150 genes were identified by all three methods combined. Hence, the similarity is 

likely to be a consequence of a lack of spatial genes, rather than a valid indicator of the 

algorithms’ performance.  

 

scGCO scales linearly with the number of cells 

 

Spatial gene expression is now being measured for millions of cells10; hence, it is 

essential that analysis methods demonstrate scalabilities that meet these challenges. We 

first compared the memory requirement of scGCO, spatialDE and trendSceek using 
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simulated data with cell numbers up to a million. Consistent with previous algorithm 

analyses results6,7, memory footprints of spatialDE and trendSceek grow quadratically 

with the number of cells. Importantly, both algorithms are unpractical to scale to 1 

million cells, because they require about 8 T and 106 T memory, respectively (Fig. 2g).  

In contrast, scGCO demonstrates a minimal memory requirement that grows near 

linearly with the number of cells and can process 1 million cells using only 19 GB 

memory (Fig. 2g). The low memory footprint of scGCO is expected because scGCO 

uses a graphical representation of spatial information of cells that is intrinsically sparse, 

because cells only make contact with a few neighboring cells. 

 

We next compared the running times of scGCO, spatialDE and trendSceek using the 

same simulated data. For cell numbers less than 5,000, scGCO and spatialDE deliver 

excellent running time and can perform analysis in minutes using a typical desktop 

computer (Fig. 2h). TrendSceek is not competitive and requires orders of magnitude 

longer running time under the same test conditions (Fig. 2h). Importantly, the running 

time of spatialDE and trendSceek is cubic or quadratic in the number of cells6,7, and 

both methods are unpractical to scale to millions of cells (Fig. 2h). In sharp contrast, 

scGCO’s running time is linear in the number of cells, which is consistent with 

benchmarks of graph cuts11. As a result, scGCO can analyze 1,000,000 cells in less than 

3 hours using a typical desktop computer (Fig. 2h), demonstrating unparalleled 

scalability. 

 

Discussion 

 

Single-cell sequencing technology is enjoying a rapid revolution, and data are now 

being generated for millions of cells in a single experiment10. This astronomical amount 

of data poses a great challenge for analysis methods, which are essential to fully realize 

values for single-cell data. By employing powerful graph cuts algorithms for spatial 

gene analysis, our method delivers excellent scalability and can process millions of 

cells in a reasonable time using modest hardware. Moreover, the graph cuts algorithm 

has demonstrated excellent performance in 3-D object recognition12 and can be 

accelerated by GPU13. Hence, our method could readily scale to 3-D single-cell spatial 

transcriptomics data. 
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By posing spatial gene identification as an image-processing problem, our method 

delivers a powerful visual presentation of identified spatial patterns and could be 

valuable for a broad spectrum of researchers. In contrast to existing methods, graph 

cuts do not rely on assumptions of data distribution and theoretically can identify any 

pattern of spatial distribution. Moreover, while the hyperparameters in Gaussian 

process or marked point process typically settle for a local optimum, for bilabel image 

segmentation, which is equivalent to identifying spatial genes that are over- or 

underexpressed in specific regions, graph cuts guarantee to find the global optimal 

solution14,15. Consequently, our method consistently demonstrates superior 

performance across a wide range of spatial gene expression data types. Taken together, 

we expect scGCO to become the method of reference for spatial gene expression 

analyses.  

 

Materials and methods 

 

Graph and Voronoi diagram representation of spatial gene expression data 

 

To apply the graph cuts algorithm to spatial gene expression data, we first performed 

Delaunay triangulation on the spatial coordinates of the cells. The graph produced by 

Delaunay triangulation has the nice property that only authentic neighbors are 

connected by edges in the graph because no cells are allowed in the triangle connecting 

three cells. Hence, Delaunay triangulation captures essential information of cell-cell 

interactions with a sparse graph. After spatial gene expression patterns have been 

identified by graph cuts, we performed the dual operation of Delaunay triangulation to 

generate Voronoi diagrams, which has been broadly used to model cells16. To highlight 

the boundaries of cell clusters identified by graph cuts, edges in the Delaunay 

triangulation connecting cells with different predicted labels are identified, and Voronoi 

polygon edges intersecting these identified edges in Delaunay triangulation are 

highlighted, providing a direct visual representation of spatial gene expression patterns.  

 

Markov random fields model 

 

A Markov random field (MRF) is an undirected graphical model capturing conditional 

independence among a set of random variables. According to the Hammersley-Clifford 
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Theorem, the joint distribution p(X) of an MRF can be written as a product of positive 

potential functions ψc(xc) over the maximal cliques of the graph: 

𝑝(𝑋) =
1
𝑍)𝜓+(𝑥+)

+

 

 
where Z is the partition function that normalizes the distribution p(X), which is the 

sum of potential functions over all maximal cliques. The positive potential functions 

allow the joint distribution of an MRF to be conveniently written as a Gibbs 

distribution:   

𝑝(𝑋) =
1
𝑍 exp	(−2𝐸(𝑥+)

+

) 

where E(xc) > 0 is the energy associated with the variables in clique c. Thus, minimizing 

the total energy function is equivalent to the maximum a posteriori estimation of p(X).  

 

Studies analyzing spatial expression of genes demonstrated that the spatial distribution 

of expression values forms patches, where adjacent cells tend to display comparable 

levels of gene expression4. Thus, patches of cells in which a gene displays similar gene 

expression levels are analogous to objects in an image. Consequently, we adopt the 

classical energy formulation for image segmentation in computer vision to describe the 

spatial distribution of gene expression in single cells: 

 

𝐸(𝑋) = 	2𝐷5(𝑥5)
5∈7

+	 2 𝑉5,;(𝑥5, 𝑥;)
(5,;)∈<

 

 

where N is the set of adjacent cells that interact directly in the graphical representation 

of single cell spatial gene expression data. In the context of single cell spatial gene 

expression analysis, 𝐷5(𝑥5) is a data penalty function of assigning a particular gene 

expression classification x to cell p, and 𝑉5,;(𝑥5, 𝑥;)  is the interaction energy of 

assigning a particular pair of gene expression classifications to a pair of cells interacting 

directly. Essentially, assigning gene expression classifications is analogous to assigning 

pixel labels in image segmentation. Although 𝑉5,;(𝑥5, 𝑥;) can take many forms, a 

common requirement is that the interaction energy penalizes the assignment that 

adjacent cells are with different classifications, which is crucial to identify patches of 

cells with similar gene expression patterns. 
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Minimizing MRFs energy with graph cuts  

 

When the classification of cells is limited to two classes, or two labels in an image 

segmentation problem, a crucial advantage of the above energy formulation of MRFs 

is that powerful min-cut/max-flow algorithms for graph cuts can be used to minimize 

the above energy functions, which provides fast, globally optimal solutions for two-

label problems15. For multilabel problems, global minimization of the energy function 

is NP-hard17. In scGCO, we adopt the alpha-expansion algorithm developed by Boykov 

et al., which iteratively applies 2-label graph cuts to expand each label until the 

algorithm converges17. The algorithm runs in low polynomial time and guarantees that 

the solution is within a known factor of the global minimum17.  

 

The above graph cuts algorithm can be applied to energy minimization of MRFs if and 

only if the interaction energy is regular18: 

 

𝐸=,>(0, 0) + 𝐸=,>(1, 1) 	≤ 𝐸=,>(0, 1) + 𝐸=,>(1, 0) 

 

The regularity of interaction energy guarantees a duality between energy states of 

MRFs and label configurations of the corresponding graph, where the minimal energy 

state matches the maximum flow of the graph, hence allowing the application of graph 

cuts to solve energy minimization of MRFs. In our implementation, we used a 

topological interaction energy that has greater penalties when the classification of 

adjacent cells is further away. Specifically, the interaction energy S is a symmetric 

matrix whose entries were: 

𝑆=,> = |𝑖 − 𝑗|𝐹 

 

where F is a smooth factor that controls the size of the penalty and Si,j is the interaction 

energy for adjacent cells with classification i and j respectively.  

 

Statistical significance of identified spatial genes 

 

We modeled the spatial gene expression patterns as homogeneous spatial Poisson 
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processes, which describe the random distribution of points in 2-D plane.  For points 

with a density r, the probability of finding exactly k such points in a region V can be 

determined from Poisson distribution: 

𝑃(𝑘, r, 𝑉) = 	
(𝑉r)H𝑒J(Kr)

𝑘!  

 

In the setting of spatial gene expression analysis, the graph cuts algorithm will separate 

cells into distinct segments according to gene expression classification predicted by the 

MRF model. V is the number of cells in a segment determined by graph cuts. Although 

all cells in the same segment have the same predicted classification, the cells’ true 

classifications determined from their gene expression levels may be different. In the 

analyzed segment, k is the number of cells with a particular true classification, and r is 

the density of cells of corresponding true classification in the entire sample. For each 

candidate gene, we analyzed all possible classifications (all k, p pairs) in all segments 

identified by graph cuts, and reported the best result as the p-value for the gene. For 

genome-scale analyses, multiple test correction was performed with Benjamini–

Hochberg procedure. 

 

Gene expression classification via Gaussian mixture modeling 

 

For each gene we performed Gaussian mixture modeling (GMM) on its gene expression 

vector to identify the underlying Gaussian distribution components. We then assigned 

each cell a gene expression classification according to the GMM classification of the 

gene’s expression level in the cell. The classifications were ordered by corresponding 

gene expression levels so that cells with larger difference in gene expression levels have 

greater difference in their classifications. This setup ensures that adjacent cells with 

larger expression difference are associated with larger classification differences, which 

will generate larger penalties in energies of associated MRFs. This energy formulation 

favors graph cuts that put cells with similar classifications in the same sub-graph.  

 

To determine the best number of components for GMM, we generated GMM with 

component numbers from 2 to 10. We then calculated Bayesian information criterion 

(BIC) for each GMM and selected the GMM with best BIC as final GMM for 

downstream analysis.   
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Data sets and data preprocessing 

 

We downloaded the spatial transcriptomics data reported by Ståhl et al. from the Spatial 

Transcriptomics Research website (http://www.spatialtranscri 

ptomicsresearch.org/datasets/doi-10-1126science-aaf2403)4. We used all 12 replicates 

for the mouse olfactory bulb, and all four layers for the breast cancer data. For mouse 

hippocampus seqFISH data2, we downloaded the data from https://ars.els-

cdn.com/content/image/1-s2.0-S0896627316307024-mmc6.xlsx. We used all 21 fields 

provided by the authors for analysis. The MERFISH data was downloaded from the 

Zhuang lab website (http://zhuang.harvard.edu/ MERFISHData/data_for_release.zip)3. 

We used “Replicate 6” similar to spatialDE6, as these had the largest number of cells 

and highest confluency. Expression data were normalized using the same procedure as 

described in the cellranger package (https://support.10xgenomics.com/single-cell-

gene-expression/software/pipelines/latest/what-is-cell-ranger). 

 

Comparison to existing spatial gene identification algorithms  

 

To systematically evaluate the performance of scGCO against two published 

algorithms (spatialDE and trendSceek), we ran spatialDE, trendSceek and scGCO on 

all the samples in mouse olfactory bulb data (12 replicates), the breast cancer data (4 

samples),  mouse hippocampus seqFISH data (33 samples), and MERFISH dataset (1 

sample). For spatialDE, we downloaded the scripts provided by the authors from their 

GitHub website and executed the scripts without modification. For trendSceek, we 

implemented R scripts according to the methods descripted in trendSceek’s original 

paper. The trendSceek’s scripts and the scripts to run scGCO are provided in the tutorial 

files in scGCO’s GitHub repository.  

 

To estimate the scalabilities of algorithms, we evaluated memory requirement and 

running time using simulated data as described by Edsgard et al.7. For running time,  

we executed all algorithms on a desktop computer with Intel® Core™ i7-6700 CPU (8 

cores at 3.40GHz), 40 GiB memory, and running the Ubuntu 18.04.1 operating system. 

For memory profiling, we executed all algorithms on a work station with 2 TB of 

memory. For spatialDE and trendSceek, both algorithms exceed the capacity of 
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available hardware when the cell numbers are large. Because these algorithms scale 

quadratically or cubically with the number of cells6,7, we estimated their memory 

requirement and running time by fitting available data to polynomial functions. 

  

Gene ontology and network analyses 

 

The gene set enrichment analyses were carried out with GSEA19 desktop version 3.0 

with number of permutations set to 1000, max size (exclude large size) set to 500 and 

min size (exclude smaller size) set to 15. Gene Ontology analyses were carried out with 

R package clusterProfiler20 using default parameters. The GO enrichment graph was 

generated with Cytoscape21 (version 3.6.1) plugins ClueGO22 version 2.5.2 and 

CluePedia23 version 1.5.2  using a kappa score cutoff of 0.6. 

 

Code availability  

 

An open source implementation of scGCO is available at GitHub 

(https://github.com/WangPeng-Lab/scGCO).  
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Figure Legends 

 

 
Figure 1. Overview of scGCO for spatial gene identification.  

(a) An example of spatial gene expression data. Each dot represents a cell and is placed 

according to its spatial coordinates. The gene expression level is high in  magenta 

colored cells and low in turquoise colored cells.  (b) Transforming the spatial gene 

expression data into a graph representation via Delaunay tessellation.  (c) The classical 

max-flow min-cut algorithm cuts the spatial gene expression graph into two subgraphs, 

one consisting of cells overexpressing the gene and one consisting of cells 

underexpressing the gene. (d) Voronoi tessellation produces a visual representation of 

the identified spatial expression pattern. Thicker lines highlight the subgraph 

boundaries identified by graph cuts. The statistical significance of spatial distribution 

of gene expression is determined by a homogeneous spatial Poisson distribution. 
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Figure 2. scGCO delivers superior performance in analyzing spatial gene 

expression data. 

(a) Venn diagram showing the set relationship among spatial genes identified by 

scGCO (FDR < 0.01) and spatialDE (FDR < 0.05) using mouse olfactory bulb data 

(replicate 11). (b)  t-SNE for all significant spatial genes identified by scGCO shown 

in a. Numbers indicate indexes of identified clusters. (c) Representative Voronoi 

diagrams showing spatial expression patterns. Two examples per column were shown 

for each cluster in b. Polygons representing cells are colored according associated gene 

expression levels. The boundaries for segments of significant spatial expression 

patterns are depicted by thicker black lines. (d) Bar charts showing the number of 

significant spatial genes identified by scGCO, spatialDE and trendSceek, for breast 

cancer data (FDR < 0.05). (e) Representative Voronoi diagrams showing spatial 

expression patterns identified in breast cancer data by scGCO (layer 2). (f) 

Representative Voronoi diagrams showing spatial expression patterns identified in 

mouse hippocampus seqFISH data by scGCO (field 43). (g) Graph showing the 

memory requirement of scGCO, spatialDE and trendSceek in the number of cells (100 
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genes). Dotted line indicates memory extrapolated from measured data. (h) Graph 

showing the running time of scGCO, spatialDE and trendSceek in the number of cells 

(100 genes). Dotted line indicates running time extrapolated from measured data. 
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