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 2 

Abstract 1 

 2 

Summary: 3 

Simulated genomes with pre-defined and random genomic variants can be very useful for 4 

benchmarking genomic and bioinformatics analyses. Here we introduce simuG, a light-5 

weighted tool for simulating the full-spectrum of genomic variants. The simplicity and 6 

versatility of simuG makes it a unique general purpose genome simulator for a wide-range of 7 

simulation-based applications.  8 

 9 

Availability and implementation: Code in Perl along with user manual and testing data is 10 

available at https://github.com/yjx1217/simuG. This software is free for use under the MIT 11 

license. 12 

 13 

1 Introduction 14 

Along with the rapid progressing of genome sequencing technologies, many bioinformatics 15 

tools have been developed for characterizing genomic variants based on genome sequencing 16 

data. While there is an increasing availability of experimentally validated gold-standard 17 

genome sequencing data set from real biological samples, in silico simulation remains a 18 

powerful approach for gauging and comparing the performance of bioinformatics tools. 19 

Correspondingly, many read simulators have been developed for different sequencing 20 

technologies, such as ART (Huang et al., 2012) for Illumina and 454, SimLoRD (Stöcker et al., 21 

2016) for PacBio, and  DeepSimulator (Li et al., 2018) for Oxford Nanopore. However, when 22 

it comes to tools for simulating genome sequences with embeded variants, the choices 23 
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 3 

appear much limited. The current available tools are either too simple or too specialized. For 1 

example, SInC (Pattnaik et al., 2014) can introduce random single nucleotide polymorphisms 2 

(SNPs), Insertion/Deletions (INDELs), and copy number variants (CNVs) into a user-provided 3 

reference genome but lacks the ability to simulate pre-defined variants, which is actually 4 

highly relevant in some simulation applications. Simulome (Price et al., 2017) is another 5 

random variant simulator that provides finer control options, but it is designed for prokaryote 6 

genome only. More sophisticated tools exist, such as VarSim (Mu et al., 2015) and Xome-7 

Blender (Semeraro et al., 2018), but these tools are majorly tailored for human cancer 8 

genome simulation and often require additional third-party databases. Therefore, we feel 9 

there is need for a genome simulator that strikes a balance between simplicity and versatility. 10 

With this in mind, we developed a general-purpose genome simulator simuG, which is 11 

versatile enough to simulate both small (i.e. SNPs and INDELs) and large (i.e. CNVs, inversions, 12 

and translocations) genomic variants while staying light weighted with no extra dependency 13 

and minimal input requirements. These features together make simuG highly amenable to a 14 

wide range of application scenarios. 15 

 16 

2 Description and feature highlight 17 

simuG is a command-line tool written in Perl and supports all mainstream operating systems. 18 

It takes the user-supplied reference genome as the working template to introduce non-19 

overlapping genomic variants of all major types (i.e. SNPs, INDELs, CNVs, inversions, and 20 

translocations). SNP and INDELs can be introduced in the same time, whereas CNVs 21 

(implemented as segmental duplications and deletions), inversions, and translocations can be 22 

introduced with independent runs. For each variant type, simuG can simulate pre-defined or 23 

random variants depending on specified options. For pre-defined variants, a user-supplied 24 
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 4 

VCF file that specifies all desired variants is needed, based on which simuG will operate on 1 

the input reference genome to introduce the corresponding variants. For random variants, 2 

simuG provides a rich array of options for fine-grained controls, such as ‘-titv_ratio’ for 3 

specifying the transition/transversion ratio of SNPs, ‘-indel_size_powerlaw_alpha’ and ‘-4 

indel_size_powerlaw_constant’ for specifying the size distribution of INDELs, ‘-5 

cnv_gain_loss_ratio’ for specifying the ratio of segmental duplication and segmental deletion 6 

for CNVs, and ‘-centromere_gff’ for specifying the location of centromeres so that simulated 7 

random CNVs, inversions, and translocations will not disrupt the specified centromeres. An 8 

ancillary script vcf2model.pl is further provided to directly calculate the best parameter 9 

combinations for the random SNP/INDEL simulation based on real data. Moreover, given the 10 

strong association between gross chromosomal rearrangement breakpoints and repetitive 11 

sequences (e.g. transposable elements) observed in empirical studies (Zhang et al., 2011; Yue 12 

et al., 2017), simuG can simulate random inversions and translocations by only sampling from 13 

user-defined breakpoints (by specifying the ‘-inversion_breakpoint_gff’ and  14 

‘-translocation_breakpoint_gff’ options). The specific feature type and strand information of 15 

these user-defined breakpoints will be considered during the breakpoint sampling. For 16 

example, the breakpoint pairs that can trigger inversion should belong to the same feature 17 

type but from opposite strands (e.g. inverted repeats). Also, when specified, centromere will 18 

be given special consideration in random translocation simulation so that translocations 19 

leading to dicentric chromosomes will not be sampled. Finally, when needed, users can also 20 

define a list of chromosome(s) to be excluded from variant introduction. Upon the completion 21 

of the simulation, three files will be produced: 1) a simulated genome bearing introduced 22 

variants in FASTA format, 2) a tabular file showing the genomic locations of all introduced 23 

variants relative to both the reference genome and the simulated genome, 3) a VCF file 24 
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 5 

showing the genomic locations of all introduced variants relative to the reference genome. 1 

Since simuG’s major input/output formats (e.g. FASTA, VCF, and GFF3) are all widely used in 2 

the field, it should be fairly straightforward to connect simuG with other computational tools 3 

both upstream and downstream in any user-specific simulation study design. Please note that 4 

when comparing the VCF outputs from simuG and other tools,  all VCF files used for the such 5 

comparison should be normalized by tools like vt (Tan et al., 2015) beforehand. 6 

 7 

3 Application demonstration 8 

To demonstrate the application of simuG in a real case scenario, we ran simuG with the 9 

budding yeast Saccharomyces cerevisiae S288C (R64-2-1) reference genome to generate five 10 

simulated genomes: 1) with 1000 SNPs + 100 random INDELs, 2) with 10 random inversions, 11 

3) with 5 random inversions triggered by breakpoints sampled from pre-specified 12 

transposable elements (TEs), 4) with 2 random translocation, 5) with 2 random translocation 13 

triggered by breakpoints sampled from pre-specified TEs. Based on each simulated genome, 14 

50X 150-bp Illumina paired-end reads were simulated with ART (Huang et al., 2012) and 15 

mapped to the reference genome by BWA (Li and Durbin, 2009). With this setup, we 16 

evaluated the performance of different variant calling tools for both small and large variants 17 

(Table 1 and Supplementary Note). For small-variants (i.e. SNP and INDELs), we found 18 

freebayes (Garrison and Marth, 2012) and GATK4’s HaplotypeCaller (Poplin et al., 2018) both 19 

performed well, with the latter one edged out in INDEL calling. For large variants like 20 

inversions and translocations, we found both Delly (Rausch et al., 2012) and Manta (Chen et 21 

al., 2016) were able to identify simulated events when no TEs were associated with the 22 

breakpoints, although the exact breakpoint could be slightly off sometimes, especially with 23 
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Delly. In contrast, for simulated inversions and translocations with TE breakpoints, both tools 1 

failed to detect most events in our test.  2 

 3 

Variant type Variant caller Precision Recall F1 score 

SNP (n = 1000) freebayes 0.997 0.969 0.983 

GATK4 1.000 0.969 0.984 

INDEL (n = 100) freebayes 0.929 0.910 0.919 

GATK4 1.000 0.970 0.984 

inversion (n = 10) Delly 1.000 1.000 1.000 

Manta 1.000 1.000 1.000 

inversion with TE breakpoints (n = 5) Delly 1.000 0.200 0.333 

Manta 1.000 0.200 0.333 

translocation (n = 2) Delly 1.000 1.000 1.000 

Manta 1.000 1.000 1.000 

translocation with TE breakpoints (n = 2) Delly NA 0.000 NA 

Manta NA 0.000 NA 

 4 

Table 1. Benchmarking popular variant callers with the small and large genomic variants simulated by 5 

simuG. For each variant type, number of introduced variants are shown in parentheses. TE: transposable 6 

elements (S. cerevisiae full-length Ty-1 in this case). Precision = true positive/(true positive + false positive). 7 

Recall = true positive/(true positive + false negative). F1 score = 2 * (recall * precision )/(recall + precision).  8 

 9 

4 Conclusions 10 

We developed simuG, a simple, flexible, and powerful tool to simulate genome sequences 11 

with both pre-defined and random genomic variants. Simple as it is, simuG is highly versatile 12 
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 7 

to handle the full spectrum of genomic variants, which makes it very useful to serve the 1 

purpose of various simulation studies.  2 
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