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Abstract 1 

 2 

Summary: 3 

Simulated genomes with pre-defined and random genomic variants can be very useful for 4 

benchmarking genomic and bioinformatics analyses. Here we introduce simuG, a 5 

lightweight tool for simulating the full-spectrum of genomic variants (SNPs, INDELs, CNVs, 6 

inversions and translocations) for any organisms (including human). The simplicity and 7 

versatility of simuG makes it a unique general purpose genome simulator for a wide-range 8 

of simulation-based applications.  9 

 10 

Availability and implementation: Code in Perl along with user manual and testing data is 11 

available at https://github.com/yjx1217/simuG. This software is free for use under the MIT 12 

license. 13 

 14 

1 Introduction 15 

Along with the rapid progress of genome sequencing technologies, many bioinformatics 16 

tools have been developed for characterizing genomic variants based on genome 17 

sequencing data. While there is an increasing availability of experimentally validated gold-18 

standard genome sequencing data set from real biological samples, in silico simulation 19 

remains a powerful approach for gauging and comparing the performance of bioinformatics 20 

tools. Correspondingly, many read simulators have been developed for different sequencing 21 

technologies, such as ART (Huang et al., 2012) for Illumina and 454, SimLoRD (Stöcker et al., 22 

2016) for PacBio, and  DeepSimulator (Li et al., 2018) for Oxford Nanopore. However, when 23 
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it comes to tools for simulating genome sequences with embedded variants, the choices 1 

appear much more limited. The current available tools are either too simple or too 2 

specialized. For example, SInC (Pattnaik et al., 2014) can introduce random single nucleotide 3 

polymorphisms (SNPs), Insertion/Deletions (INDELs), and copy number variants (CNVs) into 4 

a user-provided reference genome but lacks the ability to simulate known variants, which is 5 

actually highly relevant in some simulation applications. Simulome (Price et al., 2017) is 6 

another random variant simulator that provides finer control options, but it is designed for 7 

prokaryote genomes only. More sophisticated tools exist, such as VarSim (Mu et al., 2015) 8 

and Xome-Blender (Semeraro et al., 2018), but these tools are mostly tailored for human 9 

cancer genome simulation and often require additional third-party databases. Therefore, 10 

we feel there is need for a genome simulator that strikes a balance between simplicity and 11 

versatility. With this in mind, we developed a general-purpose genome simulator simuG, 12 

which is versatile enough to simulate both small (i.e. SNPs and INDELs) and large (i.e. CNVs, 13 

inversions, and translocations) genomic variants while staying lightweight with no extra 14 

dependency and minimal input requirements. In addition, simuG provides a rich array of 15 

fine-grained controls, such as simulating SNPs in different coding partitions (e.g. coding sites, 16 

noncoding sites, 4-fold degenerate sites, or 2-fold degenerate sites); simulating CNVs with 17 

different formation mechanisms (e.g. segmental deletions, dispersed duplications, and 18 

tandem duplications); and simulating inversions and translocations with specific types of 19 

breakpoints. These features together make simuG highly amenable to a wide range of 20 

application scenarios. 21 

 22 

2 Description and feature highlights 23 
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simuG is a command-line tool written in Perl and supports all mainstream operating systems. 1 

It takes the user-supplied reference genome (in FASTA format) as the working template to 2 

introduce non-overlapping genomic variants of all major types (i.e. SNPs, INDELs, CNVs, 3 

inversions, and translocations). SNP and INDELs can be introduced simultaneously, whereas 4 

CNVs (implemented as segmental duplications and deletions), inversions, and translocations 5 

can be introduced with separated runs. For each variant type, simuG can simulate pre-6 

defined or random variants depending on specified options. For pre-defined variants, a 7 

user-supplied VCF file that specifies all desired variants is needed, based on which simuG 8 

will operate on the input reference genome to introduce the corresponding variants. For 9 

random variants, simuG supports a wide-spectrum of fine control options, such as ‘-10 

titv_ratio’ for specifying the transition/transversion ratio of SNPs, ‘-11 

indel_size_powerlaw_alpha’ and ‘-indel_size_powerlaw_constant’ for specifying the size 12 

distribution of INDELs, ‘-cnv_gain_loss_ratio’ for specifying the ratio of segmental 13 

duplication versus segmental deletion,  “-duplication_tandem_dispersed_ratio” for 14 

specifying the ratio of tandem versus dispersed duplications, and ‘-centromere_gff’ for 15 

specifying the location of centromeres so that simulated random CNVs, inversions, and 16 

translocations will not disrupt the specified centromeres. An ancillary script vcf2model.pl is 17 

further provided to directly calculate the best parameter combinations for the random 18 

SNP/INDEL simulation based on real data. Moreover, given the strong association between 19 

gross chromosomal rearrangement breakpoints and repetitive sequences (e.g. transposable 20 

elements) observed in empirical studies (Zhang et al., 2011; Yue et al., 2017), simuG can 21 

restrict random inversions and translocations to only use user-defined breakpoints (by 22 

specifying the ‘-inversion_breakpoint_gff’ or  23 

‘-translocation_breakpoint_gff’ option). The specific feature type and strand information of 24 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 30, 2019. ; https://doi.org/10.1101/491498doi: bioRxiv preprint 

https://doi.org/10.1101/491498


 5

these user-defined breakpoints will be considered during the breakpoint sampling. For 1 

example, the breakpoint pairs that can trigger inversion should belong to the same feature 2 

type but from opposite strands (e.g. inverted repeats). Also, when specified, centromeres 3 

will be given special consideration in random translocation simulation so that translocations 4 

leading to dicentric chromosomes will not be sampled. Finally, when needed, users can also 5 

define a list of chromosomes (e.g. mtDNA) to be excluded from variant introduction. Upon 6 

the completion of the simulation, three files will be produced: 1) a simulated genome 7 

bearing introduced variants in FASTA format, 2) a tabular file showing the genomic locations 8 

of all introduced variants relative to both the reference genome and the simulated genome, 9 

3) a VCF file showing the genomic locations of all introduced variants relative to the 10 

reference genome. Since simuG’s major input/output formats (e.g. FASTA, VCF, and GFF3) 11 

are all widely used in the field, it should be fairly straightforward to connect simuG with 12 

other computational tools both upstream and downstream. Please note that when 13 

comparing the VCF outputs from simuG and other tools,  all VCF files used for the such 14 

comparison should be normalized by tools like vt (Tan et al., 2015) beforehand. 15 

 16 

3 Application demonstration 17 

To demonstrate the application of simuG in a real case scenario, we ran simuG with the 18 

budding yeast Saccharomyces cerevisiae (version R64-2-1) and human (version GRCh38) 19 

reference genomes to generate nine simulated genomes for each organism: A) with 10000 20 

SNPs, B) with 1000 random INDELs, C) with 10 random CNV due to segmental deletions, D) 21 

with 10 random CNV due to dispersed duplications, E) with 10 random CNV due to tandem 22 

duplications, F) with 5 random inversions, G) with 5 random inversions triggered by 23 

breakpoints sampled from pre-specified transposable elements (TEs), H) with 5  random 24 
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translocation, I) with 5 random translocation triggered by breakpoints sampled from pre-1 

specified TEs. Based on each simulated genome, 50X 150-bp Illumina paired-end reads and 2 

25X PacBio reads were simulated with ART (Huang et al., 2012) and SimLoRd (Stöcker et al., 3 

2016) respectively and subsequently mapped to the yeast and human reference genomes. 4 

The read mapping was performed by BWA (Li and Durbin, 2009) for Illumina reads and by 5 

minimap2 (Li, 2018) for PacBio reads. With this setup, we evaluated the performance of 6 

different variant callers for both small and large variants (Table 1 and Supplementary Note). 7 

For small-variants (i.e. SNP and INDELs), we found freebayes (Garrison and Marth, 2012) and 8 

the GATK4 HaplotypeCaller (Poplin et al., 2018) both performed well, with the latter one 9 

marginally won out in INDEL calling. For large structural variants like CNVs, inversions, and 10 

translocations, we found both the short-read-based callers Delly (Rausch et al., 2012) and 11 

Manta (Chen et al., 2016) and  the long-read-based caller Sniffles (Sedlazeck et al., 2018) 12 

were able to identify most simulated events, especially when no TEs were associated with 13 

the breakpoints. The long-read caller Sniffles showed superior accuracy in resolving the 14 

exact breakpoints to the basepair resolution than short-read-based callers by taking 15 

advantage of the long-reads, even with half of the sequencing coverage. Between the two 16 

short-read-based callers, Manta outperformed Delly in terms of breakpoint accuracy at the 17 

basepair level.  18 

 19 

  Yeast  Human 

Variant type Variant 

caller 

Precision Recall F1 score Precision Recall F1 score 

SNP 

(n = 10000) 

freebayes 1.000 0.971 0.985 0.999 0.981 0.990 

GATK4 1.000 0.970 0.985 1.000 0.977 0.988 

INDEL freebayes 0.954 0.931 0.942 0.939 0.930 0.935 
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(n = 1000) GATK4 1.000 0.969 0.984 1.000 0.976 0.988 

CNV:  

segmental deletion  

(n = 10) 

Delly 1.000 1.000 1.000 1.000 1.000 1.000 

Manta 1.000 1.000 1.000 1.000 1.000 1.000 

Sniffles 1.000 1.000 1.000 1.000 1.000 1.000 

CNV:  

dispersed duplication  

(n = 10) 

Delly 1.000 0.875 0.933 1.000 0.906 0.951 

Manta 1.000 1.906 0.951 1.000 0.906 0.951 

Sniffles 1.000 0.875 0.933 1.000 0.906 0.951 

CNV:  

tandem duplication 

(n = 10) 

Delly 1.000 1.000 1.000 1.000 0.700 0.824 

Manta 1.000 1.000 1.000 1.000 0.700 0.824 

Sniffles 1.000 1.000 1.000 1.000 0.800 0.889 

Inversion 

(n = 5) 

Delly 1.000 1.000 1.000 1.000 1.000 1.000 

Manta 1.000 1.000 1.000 1.000 1.000 1.000 

Sniffles 1.000 1.000 1.000 1.000 1.000 1.000 

Inversion with TE 

breakpoints 

(n = 5) 

Delly 1.000 0.200 0.333 1.000 1.000 1.000 

Manta 1.000 0.200 0.333 1.000 1.000 1.000 

Sniffles 1.000 0.200 0.333 1.000 1.000 1.000 

Translocation 

(n = 5) 

Delly 1.000 1.000 1.000 0.800 0.800 0.800 

Manta 1.000 1.000 1.000 1.000 1.000 1.000 

Sniffles 1.000 1.000 1.000 1.000 1.000 1.000 

Translocation with TE 

breakpoints 

 (n = 5) 

Delly NA 0.000 NA 1.000 1,000 1.000 

Manta NA 0.000 NA 1.000 1.000 1.000 

Sniffles NA 0.000 NA 1.000 1.000 1.000 

 1 

Table 1. Benchmarking popular variant callers with the small and large genomic variants simulated by 2 

simuG. For each variant type, number of introduced variants are shown in parentheses. TE: transposable 3 

elements (full-length Ty1 for S. cerevisiae and full-length intact L1 for human). Precision = true 4 

positive/(true positive + false positive). Recall = true positive/(true positive + false negative). F1 score = 2 5 

* (recall * precision)/(recall + precision). For a single CNV derived from dispersed duplication, there could 6 

be multiple duplicated copies inserted to different genomic locations, making it tricky to calculate 7 
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accuracy, precision, and F1 score by measuring the number of recovered CNV events. Therefore, we 1 

calculated these values based on the number of recovered breakpoints instead in this case.  2 

 3 

4 Conclusions 4 

We developed simuG, a simple, flexible, and powerful tool to simulate genome sequences 5 

with both pre-defined and random genomic variants. Simple as it is, simuG is highly versatile 6 

to handle the full spectrum of genomic variants, which makes it very useful to serve the 7 

purpose of various simulation studies.  8 
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