
Title: 
Deciphering complex metabolite mixtures by unsupervised and supervised substructure 
discovery and semi-automated annotation from MS/MS spectra 
 

 
 
Integration of MS2LDA substructure discovery with MAGMa spectral annotations and 
ClassyFire term predictions complemented with MotifDB significantly advance metabolite 
annotation. 
 

Keywords: 
Substructures; LDA; machine learning; Mass2Motifs; annotation; mass spectrometry 
fragmentation; database; tool integration 
 

Authors:  
Simon Rogers1, Cher Wei Ong1, Joe Wandy2, Madeleine Ernst3,4, Lars Ridder5, Justin J.J. van 
der Hooft6* 

Affiliations: 
1) School of Computing Science, University of Glasgow, Glasgow, UK 
2) Glasgow Polyomics, University of Glasgow, Glasgow, UK 
3) Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and 
Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA. 
4) Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San 
Diego, San Diego, California, USA 
5) Netherlands eScience Center, Amsterdam, The Netherlands 
6) Bioinformatics Group, Wageningen University, Wageningen, The Netherlands 
*corresponding author: justin.vanderhooft@wur.nl 
 
 
  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 12, 2018. ; https://doi.org/10.1101/491506doi: bioRxiv preprint 

https://doi.org/10.1101/491506
http://creativecommons.org/licenses/by/4.0/


Abstract 
Complex metabolite mixtures are challenging to unravel. Mass spectrometry (MS) is a widely 
used and sensitive technique to obtain structural information on complex mixtures. However, 
just knowing the molecular masses of the mixture’s constituents is almost always insufficient for 
confident assignment of the associated chemical structures. Structural information can be 
augmented through MS fragmentation experiments whereby detected metabolites are 
fragmented giving rise to MS/MS spectra. However, how can we maximize the structural 
information we gain from fragmentation spectra? 
We recently proposed a substructure-based strategy to enhance metabolite annotation for 
complex mixtures by considering metabolites as the sum of (bio)chemically relevant moieties 
that we can detect through mass spectrometry fragmentation approaches. Our MS2LDA tool 
allows us to discover - unsupervised - groups of mass fragments and/or neutral losses termed 
Mass2Motifs that often correspond to substructures. After manual annotation, these 
Mass2Motifs can be used in subsequent MS2LDA analyses of new datasets, thereby providing 
structural annotations for many molecules that are not present in spectral databases.  
Here, we describe how additional strategies, taking advantage of i) combinatorial in-silico 
matching of experimental mass features to substructures of candidate molecules, and ii) 
automated machine learning classification of molecules, can facilitate semi-automated 
annotation of substructures. We show how our approach accelerates the Mass2Motif annotation 
process and therefore broadens the chemical space spanned by characterized motifs. Our 
machine learning model used to classify fragmentation spectra learns the relationships between 
fragment spectra and chemical features. Classification prediction on these features can be 
aggregated for all molecules that contribute to a particular Mass2Motif and guide Mass2Motif 
annotations. 
To make annotated Mass2Motifs available to the community, we also present motifDB: an open 
database of Mass2Motifs that can be browsed and accessed programmatically through an API. 
MotifDB is integrated within ms2lda.org, allowing users to efficiently search for characterized 
motifs in their own experiments. We expect that with an increasing number of Mass2Motif 
annotations available through a growing database we can more quickly gain insight in the 
constituents of complex mixtures. That will allow prioritization towards novel or unexpected 
chemistries and faster recognition of known biochemical building blocks. 
 
 
 
 

Introduction 
Complex natural mixtures are full of specialized metabolites with diverse structures and 
functions.1 In untargeted metabolomics approaches these molecules give rise to information-rich 
mass spectral data sets and a key challenge is the interpretation of this data, particularly in 
terms of identifying chemical structures.2, 3 This process is commonly referred to as metabolite 
annotation and identification,4 a highly challenging process which typically enables the 
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assignment of chemical structures to only a very small percentage of molecules detected.2, 5-7 
Consequently, the rapid and automated identification of chemical structures from complex 
mixtures is one of the main obstacles hindering for example the discovery of novel bioactive 
molecules addressing global health care threats such as antimicrobial resistance, cancer or 
inflammatory diseases.  

Recently, we have introduced the concept of Mass2Motifs, and the MS2LDA approach 
to find these molecular substructure-related mass fragmentation patterns in mass spectral 
metabolomics data.8 We showed that through Mass2Motif discovery, we can assign 
substructures to more than 70% of the fragmented molecules in beer extracts. Another widely 
used tool to organize fragmentation spectra is mass spectral Molecular Networking.9, 10 In 
combination or as stand-alone tool, these MS2 spectral similarity-based grouping algorithms are 
the current state-of-the-art in the untargeted metabolomics field to rapidly get a comprehensive 
overview of molecular diversity in samples.11-15 To retrieve chemical structural information for 
acquired experimental spectra, MS2 fragmentation patterns are matched directly to library 
reference data or in silico by matching substructures of candidate structures,5, 16, 17 however only 
a very low percentage of the molecular features (typically 2-5% up to 30% in rare cases) can be 
confidently assigned to known chemical structures. In comparison to the structural annotation of 
entire molecules, structural annotation of the Mass2Motifs is more straightforward and less 
complex, as Mass2Motifs represent smaller substructures. However, the structural annotation of 
Mass2Motifs is currently performed by a combination of manual peak search in MS/MS 
databases such as MetLin18 and MzCloud19 as well as expert knowledge, and thus still 
represents a tedious and time-consuming step, especially for large-scale high-throughput 
experiments with several hundred discovered Mass2Motifs per experiment. As we and others 
have shown, 8, 17, 20, 21 the use of reference MS/MS spectra of standards speeds up the 
annotation process; however, with the increasing size of publicly available MS/MS reference 
libraries, 9, 17 complete manual Mass2Motif annotation and curation is rapidly becoming 
impractical. Furthermore, with the expected increase in publicly available experimental MS/MS 
data the amount of structurally novel Mass2Motifs is expected to steadily rise. This will make 
structural predictions for Mass2Motifs of non-standards and effective reuse of previously 
annotated Mass2Motifs essential. Thus, the next step is to semi-automate Mass2Motif 
annotation and store annotated Mass2Motifs such that they can be used in the future. Here, we 
propose and implement two complementary strategies for semi-automated motif annotation and 
introduce MotifDB for Mass2Motif reuse.  

In recent years, algorithms that propose chemical substructures and candidate 
structures for mass features have become available.22-25 For example, MAGMa maps possible 
candidate molecules to MS/MS spectra in experimental data by assigning possible 
substructures from a candidate molecule to the mass fragments and subsequently ranks 
different candidate molecules using those annotations based on a relatively simple scoring 
algorithm.26 Here, we used MAGMa for automated annotation of the features within 
Mass2Motifs based on the MAGMa annotations of reference spectra, using the known chemical 
structures as candidates. The results of this MAGMa-MS2LDA integration are made available 
via the ms2lda.org web app, and can help the annotation of new motifs and may support users 
to chemically interpret the presence of motifs in unknown molecules. 
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A complementary strategy towards structural annotation is to predict molecular 
properties such as fingerprints or classification based on spectral features.27, 28 To annotate 
Mass2Motifs, one would need to learn and combine such molecular properties for the 
Mass2Motif MS/MS features. If MS2LDA is applied to a set of reference molecules, chemical 
class predictions of Mass2Motifs can be performed by augmenting molecular properties directly 
from their known structures. Here, we stored ClassyFire29 substituent terms for each standard 
and determined enriched class terms upon comparing the presence of those class terms within 
a Mass2Motif versus the entire data set. 

Prediction of chemical properties for Mass2Motifs discovered in non-standards from the 
associated MS/MS spectra is a more challenging task. Here, we decouple this into two separate 
tasks (collectively known as ClassyFirePredict), i) training a model that links ClassyFire 
substituent terms of molecules to MS/MS spectral features using reference data, and ii) 
analyzing enriched substituents/fingerprints within Mass2Motifs from non-standards data by 
applying the trained model from i). Using a publicly available annotated MS2LDA experiment, 
we show how this can guide the user for annotation of fragment-based Mass2Motifs such as 
flavonoid and saccharide related motifs. 

Finally, to effectively reuse previously annotated motifs, we introduce MotifDB that is 
available from the ms2lda.org web app.30 Currently, the MotifDB serves as a result for 
annotated Mass2Motifs with their MS/MS features. A number of annotated Mass2Motif sets 
from various source including plant extracts, urine, and standards, are already available for 
matching against Mass2Motifs discovered in new experiments. The extensions to the original 
ms2lda.org platform presented here are shown schematically in Figure 1.  

We expect that the here described augmentations to the ms2lda.org web app will 
empower researchers with the tools to more rapidly decipher complex mixtures and create 
annotated and curated sets of Mass2Motifs. Those in turn will be effective in future experiments 
to more quickly assess the presence of specific molecular types in complex mixtures and 
assess chemical diversity of those mixtures based on substructure recognition. We expect these 
substructure-based annotation strategies to become essential to decipher complex mixtures and 
enable meaningful biochemical interpretation. 

 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 12, 2018. ; https://doi.org/10.1101/491506doi: bioRxiv preprint 

https://doi.org/10.1101/491506
http://creativecommons.org/licenses/by/4.0/


 
Figure 1: The extensions to the original MS2LDA model described in this paper. MotifDB provides a 
platform for storing annotated Mass2Motifs. MAGMa and Classyfire are both used with standard datasets 
to provide insight into the structural makeup of the MassMotifs derived from them. ClassyFirePredict 
extends this idea to non-standard data by predicting Classyfire terms directly from the mass spectra. 

Methods 

Fragment spectrum to ClassyFire substituent term classifier for standards 
and non-standards + neural network for classification of Mass2Motifs from 
non-standards 
 
ClassyFire terms were derived through the CLassyFire API for two of the public standard 
datasets (massbank_binned_005 and gnps_binned_005 - see Data Availability section) stored 
within ms2lda.org using the ClassyFire web API29 based on the molecules’ InCHiKeys. The 
substituent terms were stored in the database and linked to the relevant molecules such that 
they are visible when the molecule is explored. Additional functionality was added to ms2lda.org 
to summarize the terms within a particular Mass2Motif. In particular, based on actual values of 
the fragment spectra to Mass2Motif probability and overlap score thresholds as outputted by 
MS2LDA,31 the molecules associated with each Mass2Motif are extracted, along with their 
ClassyFire substituent terms. For each term, the proportion of molecules associated with the 
Mass2Motif that include the term is computed, along with the proportion of molecules in the 
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experiment. Comparing these terms provides evidence as to how unique and concentrated that 
term is in the Mass2Motif. 
When working with new experimental data, exploring ClassyFire terms from standard molecules 
is useful if a discovered motif closely matches one of those in the standards experiments. To 
further extend this functionality we have developed a machine learning approach that can 
predict putative ClassyFire terms from any mass spectrum. A multilayer neural network was 
produced that, for a binned mass spectrum, predicts the probability of presence/absence for 
each ClassyFire term. The network was built in Python using keras.32 Spectral data are currently 
binned into bins of width 1Da with m/z values over 1000 discarded. After normalizing so that the 
base bin (i.e. the bin holding the most intensity in a particular spectrum) had intensity of 1000.0, 
the data were log transformed (after adding 1.0 to avoid problems associated with taking the log 
of zero). The network consists of a 1000-dimensional densely-connected input layer, followed 
by two hidden dense layers (of dimension 500 and 200) and then an output layer with dimension 
equal to the number of ClassyFire substituent terms. Non-linear ReLU (rectified linear unit) 
activation functions were used for the hidden layers, and a sigmoid function for the output layer. 
The model was optimized using the binary cross entropy loss function. This model represents 
our initial network design and it is likely that it could be optimized further. 
An initial training and validation phase was used to determine which terms could be reliably 
predicted. A filtered dataset of 10,038 unique tandem mass spectra with associated chemical 
structures retrieved from the Global Natural Products Social Molecular Networking (GNPS) 
platform was used that was created as follows. Mass spectral molecular networks were created 
using all publicly available libraries on GNPS and these were matched back to the libraries to 
obtain chemical structural information. The resulting mass spectral molecular networks and 
results from spectral library matching are publicly available (see Data Availability section). 
Subsequently, we used a script in python (see Code availability section) to sub-select only 
tandem mass spectra with associated chemical structural information on their complete 
structure in computer readable format to create a dataset in the .MGF data format followed by 
the selection of 10,105 unique molecules based on the first 14 digits of the InchiKeys with 
parent m/z < 1000 Da. From these selected molecules, we could get classifications from the 
ClassyFire API for 10,038 of them resulting in the final data set.  
Ten random splits into training (90%) and validation (10%) were used to assess the 
performance with respect to each term. Within each split, the area under the receiver operating 
characteristic curve (AUC) was computed, and these were averaged across the ten splits. 
Figure 2 describes the distribution of AUCs for the 2098 unique terms found in the dataset. Note 
that AUCs of less than 0.5 (worse than random guessing) occur due to the very small number of 
occurrences of some terms (1804 of the 2098 terms appear in fewer than 1% (100) of the 
10,038 unique molecules). Based on this analysis, we selected 444 terms for the final classifier 
as including terms that were proven to be unpredictable would only add noise to the ms2lda.org 
analysis. These 444 terms were chosen via two conditions. Firstly, all terms with an average 
AUC across the ten splits of greater than 0.7 and also, terms with an AUC of between 0.6 and 
0.7 who appeared in at least 0.5% of the molecules in the dataset. These additional terms were 
included to increase coverage under the assumption that some false positives can be tolerated 
for individual molecules as they are likely to be filtered out when we explore terms at the 
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Mass2Motif level. Finally, the model was re-trained using these 444 terms and all of the 
available training data. 
The predictive model was incorporated into ms2lda.org allowing users to assign putative 
ClassyFire terms to any molecules. These terms are then collated at the Mass2Motif level to aid 
in annotation in exactly the same manner as those linked to the reference molecules. 

 
Figure 2: The number of terms exceeding different AUC values (y-axis) versus the AUC (x-axis). The 
curve shows the number of terms that exceed any particular AUC value. Note that AUCs of less than 0.5 
(worse than random guessing) occur due to the very small number of occurrences of some terms (1804 of 
the 2098 terms appear in fewer than 1% (100) of the 10,038 unique molecules). Terms with AUCs above 
0.7 and those between 0.6 and 0.7 appearing in at least 0.5% of the molecules in the dataset were used 
to train a neural network. 
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MAGMa-MS2LDA integration 
We used MAGMa to annotate Mass2Motif features as follows. All reference spectra for four data 
sets of known molecules that were subjected to MS2LDA (massbank_binned_005, 
gnps_binned_005, 2613 public spectra from various sources in positive ionization mode, and 
551 public spectra in negative ionization mode from various sources - see Data Availability 
section), were analyzed and annotated using MAGMa (see Code Availability section). The 
annotation of each spectrum was performed with a single candidate molecule, i.e. the known 
molecule. As a result, the likely substructures of this molecule were assigned to individual peaks 
in the spectrum. Note, that only the peaks used in the MS2LDA analysis were included in the 
MAGMa analysis and that not all of those necessarily match with a simple substructure found 
within the reference molecule. Subsequently, the substructures were matched with the actual 
features used in the MS2LDA analysis (either fragments or losses within user-defined mass 
bins). For fragment features, the substructures assigned by MAGMa were stored both as a 
canonical SMILES, generated by RDKit, and as a mapping (with atom indices) on the original 
molecule. A SMILES string was generated for the loss features by first removing the MAGMa 
substructure atoms from the parent molecule and generating a canonical SMILES from the 
remaining atoms. These SMILES may contain disconnected parts of the molecules (separated 
by a dot according the SMILES specifications). These MAGMa substructure feature annotations 
were stored in the database of MS2LDA, and visualized on the web interface  where 
substructures are drawn using the ChemDoodle package.33   
As a result, Mass2Motif pages in MS2LDA could now be augmented with the MAGMa 
substructure annotations as follows. For a given feature explained by a Mass2Motif, all 
substructures associated to the feature in the corresponding spectra (MS2LDA documents) are 
retrieved and grouped based on the canonical SMILES. Note that the same feature in different 
spectra may correspond to different substructures. In the current interface, all unique 
substructures are presented together with the number of times they occur in the corresponding 
spectra. Additionally, since the same binned fragment and neutral losses are used as global 
features across all experiments in MS2LDA.org, annotations for all (and new) features that have 
corresponding features in MAGMa-annotated experiments can be derived from the existing 
MAGMa annotations assigned to these shared global features. We show this new information in 
the Mass2Motif and Document pages of the ms2lda.org web app.  
 

MotifDB 
Once Mass2Motifs have been annotated, it is useful to be able to search for them in future 
MS2LDA experiments. To this end, we have created a new application within MS2LDA.org 
called MotifDB: a database for annotated Mass2Motifs (http://ms2lda.org/motifdb). This 
database can be accessed via an Application Programming Interface (API) as well as being 
searchable against other experiments in the ms2lda.org web app. In particular, when an 
experiment has been run through MS2LDA.org, the user can start a motif matching procedure 
against MotifDB whereby the Mass2Motifs discovered in the user’s experiment are compared 
against those in the MotifDB. Where a match exceeds a user-defined threshold (matches are 
computed via a cosine similarity score), the experimental motif can be linked to the MotifDB 
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motif, which in turn will transfer the MotifDB annotation and allow it to be highlighted in 
visualizations. As MotifDB grows by community efforts, more and more Mass2Motifs learnt in 
experiments will be available to be matched with a high score against those in the MotifDB 
database, allowing for more rapid characterization of diverse chemical mixtures. 
 

Code Availability 
The python script to generate MAGMa annotations of standards datasets is provided on github: 
https://github.com/iomega/motif_annotation 
The python script to collect all GNPS library compounds is provided on github: 
https://github.com/madeleineernst/EditMGF/blob/master/CompileGNPSMGF_withInChIKey.py 
The scripts to prepare the GNPS library molecules for neural networking and perform the neural 
networking is provided on github: https://github.com/sdrogers/nnpredict 
Code to perform MS2LDA is available at: 
https://github.com/sdrogers/lda 
Code for the ms2lda.org visualisation platform is available at: 
https://github.com/sdrogers/ms2ldaviz 
 

Data Availability 
The following GNPS experiments were used in this manuscript: 
Mass spectral molecular networks of public GNPS Library molecules - 
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=6e22f85aeb0744208e872d1640f508d9 
Library matching of the mass spectral molecular networks of GNPS Library molecules to 
retrieve full metadata - 
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=03fba62d93cb4cbfa3f72106d18f7d2c 
 
The following public MS2LDA experiments were used in this manuscript: 
Reference molecules data sets: 
massbank_binned_005 - http://ms2lda.org/basicviz/show_docs/190/ 
Gnps_binned_005 - http://ms2lda.org/basicviz/show_docs/191/ 
2613 public spectra from various sources in positive ionization mode - 
http://ms2lda.org/basicviz/summary/304/ 
551 public spectra in negative ionization mode from various sources - 
http://ms2lda.org/basicviz/summary/305/ 
Complex mixtures: 
Urine38_POS_mzML_standardLDA_005binned - http://ms2lda.org/basicviz/summary/709 
UrineDrugs_MolNetw_WorkshopSeattle2018 - http://ms2lda.org/basicviz/summary/601/ 
Rhamnaceae_plant_extracts_KyoBin_200Motifs_MS1_peaktable - 
http://ms2lda.org/basicviz/summary/566/ 
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Results 

MAGMa-based annotation of Mass2Motifs 

MAGMa-MS2LDA annotations for previously analyzed Mass2Motifs 
 
The integration of MAGMa with MS2LDA resulted in reference MS/MS MS2LDA experiments 
enriched with available MAGMa annotations for mass fragments and neutral losses for each 
fragmented molecule (Figure 3A). To evaluate how well these annotations matched with 
previously manually annotated motifs,8 we compared MAGMa annotations to those of manual 
annotations. These manual annotations were previously manually validated to be present or 
absent in motif-associated molecules which resulted in AUCs of around 0.69 for the GNPS and 
MassBank motif sets - thus indicating that within motifs the majority of the molecules contained 
the annotated substructures but a number of molecules contain unrelated substructures to those 
manual annotations. For example, motif 59 in the GNPS reference set was found to be related 
to the [Phenylalanine minus CHOOH fragment] substructure 
(http://ms2lda.org/basicviz/view_parents/58316/). Indeed, for 79 out of 117 molecules exactly 
this substructure was annotated by MAGMa for mass fragment 120.0825, with confirmation for 
the related aromatic fragment 103.0525 for 29 out of 35 appearances. This indicates that indeed 
this motif is related to [Phenylalanine minus CHOOH]; moreover, the MAGMa annotations also 
provide quick insight in structurally less related molecules in the motif that are included due to 
isomeric fragments giving rise to the same mass fragment. This highlights the need for manual 
validation of fragmentation patterns in molecules, which is now supported in the ms2lda.org web 
application. 

Another example is the indole related GNPS motif 25 
(http://ms2lda.org/basicviz/view_parents/58017/); here, for 47 out of 110 molecules MAGMa 
annotated the 130.0675 mass fragment with a methylindole substructure and for 11 out of 28 
molecules, the 118.0675 mass fragment was annotated with the indole substructure. 
Interestingly, the MAGMa annotations facilitated insight in other isomeric substructures within 
this motif; for example, MAGMa annotated the 130.0675 fragment for 17 molecules with a 2-
aminopropyl-phenyl substructure and for 6 molecules the related 2-aminoethyl-phenyl 
substructure, indicating that motif 25 is also associated to this aromatic substructure. Other 
annotations for the 130.0675 fragment included two isobaric substructures with a different 
elemental formula which mass fell within the 0.005 Da mass bin. 

MAGMa also annotated neutral loss-based Mass2Motifs. For example, GNPS 
Mass2Motif 49 which was annotated with “Loss possibly indicative of carboxylic acid group with 
1-carbon attached” http://ms2lda.org/basicviz/view_parents/58174/. MAGMa annotations indeed 
show that the annotated loss (CC(=O)O in SMILES) was annotated to the largest set of 38 
molecules out of 132 molecules as can be seen for 12 different molecules in Figure 3B. 
However, additional annotations were present such as 25 molecules containing the structurally 
related COC=O loss (Figure 3C). The remaining molecules contained isomeric losses. Similarly, 
an alternative loss was observed by MAGMa for GNPS motif 18 
http://ms2lda.org/basicviz/view_parents/58383/ annotated as acetyl loss, as can be seen here: 
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http://ms2lda.org/basicviz/show_doc/273058/. Furthermore, for Massbank Mass2Motif 41, “Loss 
indicative of [hexose minus H20]” it became clear that by far the majority of the MAGMa-
annotated losses (50 out of 64) were glucose related 
http://ms2lda.org/basicviz/view_parents/57676/ (Figure 4A) with 13 being deoxyhexose moieties 
(Figure 4B) that - unlike usually - included the connecting oxygen atom upon fragmentation of 
the main scaffold. Similarly, with GNPS Mass2Motif 44, “[Pentose (C5-sugar)-H2O] related loss 
– indicative for conjugated pentose sugar”, for about half of the molecules (27 out of 56 
molecules) the pentose loss was confirmed by MAGMa (Figure 4C) 
http://ms2lda.org/basicviz/view_parents/58179/. For this motif, alternative loss annotations were 
also annotated by MAGMa such as displayed in Figure 4D. 

Finally, GNPS motif 54 was annotated as ferulic acid related 
http://ms2lda.org/basicviz/view_parents/58325/. The MAGMa annotations show how important it 
is for this motif that the four mass fragments are all present since 73 molecules contained mass 
fragment 177.0525 whereas for mass fragment 117.0325 14 out of 19 molecules contained 
ferulic acid related substructures. Thus, whereas all GNPS Mass2Motif 54 related fragments 
have isomeric substructures unrelated to ferulic acid, their combined presence is highly 
indicative for the presence of ferulic acid. 
 

MAGMa-MS2LDA integration for annotation of yet unexplored Mass2Motifs 
In addition to previously annotated motifs, MAGMa annotations of not yet explored Mass2Motifs 
were analyzed. Figure 3A shows MAGMa annotations for Mass2Motif fragment and loss 
features for five of the here described motifs in one of their related molecules. For example, 
GNPS Mass2Motif 152 could now be easily annotated as methanol loss resulting from the 
presence of a methoxy group  http://ms2lda.org/basicviz/view_parents/58033/. The methoxy 
related loss could be annotated in 51 out of 58 molecules by MAGMa. Another methoxy group 
related GNPS Mass2Motif (374) was uncovered where the loss of 16.0325 was assigned with 
CH4 in 33 out the 38 molecules in the motif. In addition, GNPS Mass2Motif 188 could be 
annotated as related to a 2-dimethylamine-ethanol loss (m/z 89.0825) which was present in 9 
out of the 14 molecules http://ms2lda.org/basicviz/view_parents/58098/. Other examples where 
MAGMa facilitated motif annotations include MassBank Mass2Motif 315 (benzyl and phenoxy 
group containing molecules) where for 77 out of the 84 associated molecules the benzyl moiety 
was annotated by MAGMa. Moreover, in 20 molecules the phenoxy group was annotated for the 
motif fragment m/z 95.0475; however, interestingly, in 34 cases this fragment was present in the 
MS/MS spectrum while there was no phenoxy group present in the corresponding reference 
molecule, nor was there any other substructure that could be assigned to this fragment. A 
possible explanation is that rearrangements are taking place in the mass spectrometer during 
the fragmentation process leading to the formation of phenoxy fragments as all these molecules 
do contain benzyl moieties. Here, the MAGMa-MS2LDA integration provides quick insight in 
assessing the consistency of structural annotations based on presence/absence of mass 
fragments. Furthermore, MassBank Mass2Motif 443 could be easily annotated as “aniline 
related” as 30 of the 32 associated molecules indeed contained an aniline or substituted aniline 
substructure annotated by MAGMa  http://ms2lda.org/basicviz/view_parents/57561/. Finally, 
GNPS Mass2Motif 439 (http://ms2lda.org/basicviz/view_parents/57921/) was shown by the 
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MAGMa annotation to originate from a specific series of oxyacetyl-amino-methyl-cyclohexane-1-
carboxylic acids with a characteristic series of losses (Figure 4E). Especially with losses 
MAGMa annotations are very helpful during the annotation process as manual analysis of 
neutral losses is hampered by our inability to detect these generally smaller losses rather than 
larger scaffolds which are easier to recognize. 
 
 
Figure with substructure annotations by MAGMa 

 
Figure 3: A-C Screenshots of the ms2lda.org web app with A) MAGMa annotations of Mass2Motif 
features in 5 motifs discussed in the results section. Annotated fragments are highlighted in black and 
bold, whereas annotated losses are depicted in red and bold. B) 12 examples of the 38 molecules for 
which the loss_60.0225 in GNPS Mass2Motif 49 was annotated with loss (CC(=O)O in SMILES.  C)  6 
examples of the 25 molecules for which the structurally related COC=O loss in SMILES was annotated for 
the same loss feature in GNPS Mass2Motif 49. 
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Figure 4: A-E Screenshots of the ms2lda.org web app with A) 9 different molecules out of the 50 
molecules that MAGMa annotated with a hexose moiety for the loss feature in MassBank Mass2Motif 41. 
B) 3 examples of the 13 molecules where MAGMa annotated the loss feature in MassBank Mass2Motif 
41 with a deoxyhexose moiety. C) 9 out of the 27 molecules for which MAGMa annotated a pentose 
moiety for the loss feature in GNPS Mass2Motif 44. D) alternative loss annotation of the loss feature in 
GNPS Mass2Motif 44. E)  oxyacetyl-amino-methyl-cyclohexane-1-carboxylic acid loss annotated in 10 
molecules of GNPS Mass2Motif 439. 

Chemical classification-based annotation of Mass2Motifs from standards  
With increasing numbers of library MS/MS spectra available, the number of Mass2Motifs that 
can be extracted from those spectra will steadily increase. An alternative guidance in assigning 
substructures to those motifs is the use of chemical classification. We collected ClassyFire 
substituent terms for all the molecules in the reference MS/MS data set.29 These substituent 
terms are found using more than 5000 SMARTS patterns and are then normally used by 
ClassyFire to put molecules into a hierarchical chemical ontology represented by taxonomy 
terms. Here, we combined the substituent terms associated to molecules within a Mass2Motif to 
look for substituent terms that are enriched within motifs as compared to their presence across 
the entire data set. For example, GNPS Mass2Motif 43 was previously annotated to be related 
to the adenine core structure http://ms2lda.org/basicviz/view_parents/58177/. The enriched 
substituent terms clearly correlate with this previous annotation: terms like aminopyrimidine and 
6-aminopurine are enriched as compared to the general percentage in the entire GNPS data set 
(Table 1). In addition, GNPS Mass2Motif 72 was enriched with amine and tertiary amine terms 
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which is consistent with its annotation as diethylamino or dimethylaminoethyl substructure 
(Table 2).  GNPS Mass2Motif 1 was enriched with oxosteroid related substituent terms 
matching its previous annotation as “sterone related” 
http://ms2lda.org/basicviz/view_parents/58328/. Finally, the natural product substructure of 
quinazolinol (4-quinazolinone) was previously assigned to GNPS Mass2Motif 60 
http://ms2lda.org/basicviz/view_parents/57956/. Moreover, MAGMa annotations of MS2LDA 
features that were associated with this Mass2Motif also showed the quinoxaline substructure to 
be present in 22 out of the 25 molecules (Figure 5). The enriched ClassyFire terms confirm this 
annotation. This indicates that the collected terms can be used as proxy and guidance for 
Mass2Motif annotations in reference MS/MS data sets. 
With help of the new additions a number of novel annotations were made. For example, GNPS 
Mass2Motif 6 could be annotated with the diphenyl-containing substructure following MAGMa 
annotations for its mass features and its enriched ClassyFire terms 
http://ms2lda.org/basicviz/view_parents/58331/ (Table 3). Finally, the earlier with MAGMa 
annotated methoxy group related GNPS Mass2Motif 152 returned consistent ClassyFire terms 
being enriched in this motif such as methyl ester and carboxylic acid ester (Table 4) which is 
remarkable for such a small substructure. Interestingly, the with help of MAGMa annotated 
earlier discussed GNPS Mass2Motif 439 (Figure 4E) is not covered by helpful ClassyFire 
annotations, indicating the complementarity of these approaches. Overall, the enriched 
chemical classification terms confirmed and strengthened the manual and MAGMa annotations 
and as such they may support and promote the use of consistent chemical terminology during 
the annotation process. 
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Figure 5: A) Top: feature frequency plot for GNPS Mass2Motif 60; Middle: Most enriched ClassyFire 
substituent terms in the same motif; Bottom: MAGMA assigned the quinazolinol substructure in 22 of the 
25 molecules associated to this motif. B) Screenshot of the ms2lda.org web app with the by MAGMa 
annotated quinazolinol substructure highlighted in 12 of the 22 molecules. 
 
 
Table 1: Top 10 most enriched ClassyFire substituent terms for GNPS Mass2Motif 43 previously 
annotated as adenine related. Term name represents the ClassyFire substituent term, Count in motif is 
the number of times the term appeared in a molecule associated to the Mass2Motif, Percentage in motif 
is the percentage of the count in motif over the total number of molecules in the motif, Percentage in 
experiment is the percentage of the number of term occurrences in molecules within the entire 
experiment over the total number of molecules, and Absolute difference is the absolute difference 
between the two percentages. 
Term name Count in 

motif 
Percentage in motif Percentage in 

experiment 
Absolute 
difference 
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Aminopyrimidine 27 64.3 2.3 62 

Imidazole 27 64.3 4 60.2 

Pyrimidine 27 64.3 4.5 59.8 

Azole 27 64.3 8.1 56.2 

Imidolactam 25 59.5 3.8 55.7 

N-substituted imidazole 24 57.1 3.2 53.9 

6-aminopurine 22 52.4 0.6 51.8 

Purine 21 50 0.7 49.3 

Imidazopyrimidine 19 45.2 0.7 44.5 

N-glycosyl compound 19 45.2 0.8 44.4 

 
 
 
Table 2: ClassyFire substituent terms for GNPS Mass2Motif 72 annotated as diethylamino or 
dimethylaminoethyl substructure related. Term name represents the ClassyFire substituent term, Count in 
motif is the number of times the term appeared in a molecule associated to the Mass2Motif, Percentage 
in motif is the percentage of the count in motif over the total number of molecules in the motif, Percentage 
in experiment is the percentage of the number of term occurrences in molecules within the entire 
experiment over the total number of molecules, and Absolute difference is the absolute difference 
between the two percentages. 

Term name Count in 
motif 

Percentage in 
motif 

Percentage in 
experiment 

Absolute 
difference 

Amine 49 58.3 25 33.3 

Organoheterocyclic 
compound 

6 7.1 38 30.9 

Tertiary amine 38 45.2 14.6 30.7 

Tertiary aliphatic amine 37 44 13.7 30.3 
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Table 3: Top 10 most enriched ClassyFire substituent terms for GNPS Mass2Motif 6 which could in this 
study be annotated as diphenyl substructure related. Term name represents the ClassyFire substituent 
term, Count in motif is the number of times the term appeared in a molecule associated to the 
Mass2Motif, Percentage in motif is the percentage of the count in motif over the total number of 
molecules in the motif, Percentage in experiment is the percentage of the number of term occurrences in 
molecules within the entire experiment over the total number of molecules, and Absolute difference is the 
absolute difference between the two percentages. 

Term name Count in 
motif 

Percentage in 
motif 

Percentage in 
experiment 

Absolute 
difference 

Diphenylmethane 23 52.3 2.1 50.2 

Tertiary aliphatic amine 21 47.7 13.7 34 

Tertiary amine 21 47.7 14.6 33.2 

Amine 24 54.5 25 29.5 

Heteroaromatic compound 5 11.4 36.8 25.4 

Aromatic heteropolycyclic 
compound 

7 15.9 40.3 24.4 

Benzenoid 10 22.7 45 22.3 

Aromatic homomonocyclic 
compound 

14 31.8 9.6 22.2 

Benzylether 8 18.2 0.6 17.5 

Dialkyl ether 11 25 7.7 17.3 

 
Table 4: Top 10 most enriched ClassyFire substituent terms for GNPS Mass2Motif 152 that was 
annotated with help of MAGMa as methoxy group related. Term name represents the ClassyFire 
substituent term, Count in motif is the number of times the term appeared in a molecule associated to the 
Mass2Motif, Percentage in motif is the percentage of the count in motif over the total number of 
molecules in the motif, Percentage in experiment is the percentage of the number of term occurrences in 
molecules within the entire experiment over the total number of molecules, and Absolute difference is the 
absolute difference between the two percentages. 
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Term name Count in 
motif 

Percentage in 
motif 

Percentage in 
experiment 

Absolute 
difference 

Methyl ester 14 24.1 2.3 21.8 

Carboxylic acid ester 20 34.5 13.9 20.6 

Dialkyl ether 15 25.9 7.7 18.2 

Enoate ester 11 19 2.9 16.1 

Alpha,beta-unsaturated 
carboxylic ester 

11 19 2.9 16.1 

Ether 26 44.8 30.9 13.9 

Dihydropyridinecarboxylic 
acid derivative 

6 10.3 0.6 9.8 

Carboxylic acid 2 3.4 13.3 9.8 

Enamine 5 8.6 0.6 8.1 

Monocarboxylic acid or 
derivatives 

16 27.6 19.7 7.9 

 

Chemical classification-based annotations of Mass2Motifs from non-
standards 
Using more than 10,000 unique GNPS Library reference MS/MS spectra, we were able to train 
a neural network to infer 444 ClassyFire substituent terms from fragmentation data using 1 Da 
binned mass fragments as input. To evaluate how well the current model predicts enriched 
terms for Mass2Motifs, we performed the ClassyFire prediction analysis on a public MS2LDA 
experiment of 71 Rhamnaceae plant extracts (see Data Availability section). In there, more than 
20 motifs were previously annotated manually.14 We compared the predicted terms to those 
manual annotations and observed the following trends for motifs predominantly based on mass 
fragments. For example, Rhamnaceae Mass2Motif 33 was annotated with a xylose or arabinose 
moiety. The ClassyFire predictions show huge enrichment of alcohol and secondary alcohol 
terms as well as glycosyl and O-glycosyl compounds which are all saccharide related terms 
http://ms2lda.org/basicviz/view_parents/109416/. The unannotated Rhamnaceae Mass2Motif 
196 was enriched with overlapping terms which suggest that this is a saccharide related motif 
as well  
http://ms2lda.org/basicviz/view_parents/109504/. Rhamnaceae Mass2Motifs 3 and 86 were 
annotated with the 3-hydroxyflavanoid cores myricetin and quercetin, respectively 
http://ms2lda.org/basicviz/view_parents/109575/ and 
http://ms2lda.org/basicviz/view_parents/109460/. Indeed, the predicted enriched ClassyFire 
terms clearly point to flavonoid related terms like chromone and phenol, which is also reflective 
of their presence in the training data. Finally, Rhamnaceae Mass2Motif 148 was annotated as 
cyclopeptide alkaloids related http://ms2lda.org/basicviz/view_parents/109419/ which structures 
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were also validated.14 Indeed, the predicted enriched ClassyFire terms reflect the cyclopeptide 
structures well with the benzene ring that is part of the cyclic structure in these alkaloid peptides 
(https://gnps.ucsd.edu/ProteoSAFe/gnpslibraryspectrum.jsp?SpectrumID=CCMSLIB000046792
80#%7B%7D) as the most enriched term in this motif.  
 

MotifDB 
To demonstrate the utility of being able to match against previously annotated Mass2Motifs from 
MotifDB, we ran the motif matching pipeline to match newly discovered Mass2Motifs in 5021 
mass spectra of a publicly available human urine sample with a set or Mass2Motifs previously 
manually annotated from urine samples of the same cohort run under the same experimental 
conditions (http://ms2lda.org/basicviz/manage_motif_matches/709/).31 Of the 300 Mass2Motifs 
discovered, 102 could be matched against 82 unique Mass2Motifs from MotifDB with cosine 
scores of 0.5 or greater, 41 of which had cosine scores greater than 0.9. The distribution of 
scores is shown in Figure 6. The ten highest scoring matches are shown in Table 5 along with 
the annotation, and the number of molecules that are assigned to the discovered motif (at a 
probability threshold of 0.1 and an overlap threshold of 0.3). In total, across the 102 motifs, a 
total of 3715 unique molecules include at least one of the 102 matched Mass2Motifs (out of a 
total of 5021 in the experiment; 74%) and 2879 (57%) unique molecules include at least one 
Mass2Motif matched with a score of >0.9. This percentages indicate the potential of annotating 
complex mixtures through substructure assignments. 
 
Table 5: Then highest scoring matches of Mass2Motifs discovered from urine matched against a set of 
urine-derived Mass2Motifs in MotifDB. Motif is the experimental Mass2Motif, MotifDB Motif is the matched 
motif from MotifDB, Score is the cosine similarity score between the two Mass2Motifs, MotifDB Annotation 
the structural annotation from MotifDB, and the Number of molecules are the number of molecules 
associated with the experimental Mass2Motif (out of 5021 in total). 

Motif MotifDB Motif Score MotifDB Annotation Number of 
molecules 

motif_25 urine_mass2motif_286.m2m 1.000 C4H8N based 
Mass2Motif - indicative 
for proline arginine 
ornitine citrulline and N-
containing ring 
structures 

217 

motif_181 urine_mass2motif_233.m2m 1.000 Loss of 60.0248 - 
unclear what it points to 

86 

motif_49 urine_mass2motif_194.m2m 0.999 Creatinine related 
Mass2Motif 

154 
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motif_114 urine_mass2motif_126.m2m 0.999 C7H7 and C5H5 
fragments - indicative of 
methylbenzene 
substructure (aromatic) 

75 

motif_193 urine_mass2motif_273.m2m 0.999 Fragments (C4H8NO 
ring fragment - and 
C4H7O2 and C4H5O 
fragments) indicative for 
C4H10NO2 amino acid 
substructure 

40 

motif_206 urine_mass2motif_230.m2m 0.999 Water loss - indicative of 
a free hydroxyl group 

147 

motif_238 urine_mass2motif_18.m2m 0.999 C2H3N loss - could be 
specific for a type of 
ring? 

130 

motif_151 urine_mass2motif_293.m2m 0.998 Carnitine related 
Mass2Motif 
‚acylcarnitines are 
prevalent 

419 

motif_68 urine_mass2motif_228.m2m 0.997 Lysine related 
Mass2Motif 

191 

motif_72 urine_mass2motif_27.m2m 0.996 C5H10NO and C3H6N 
fragments - most likely 
N-methyl-morpholine 
substructure 

138 
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Figure 6: Distribution of Mass2Motif matching scores for a urine dataset matched against the urine 
MotifSet in MotifDB. Dashed line shows the number of Mass2Motifs (41) that could be matched against 
the MotifSet with a cosine score of 0.9 or more.  
 
To further evaluate the power of motif matching against MotifDB we matched the urine motif set 
from MotifDB with Mass2Motifs discovered in fragmentation spectra of 6 urines from another 
cohort analysed under the same experimental conditions 
(http://ms2lda.org/basicviz/manage_motif_matches/601/).21 In this case, of the 200  
Mass2Motifs discovered in the experiment, 55 could be matched at a threshold of at least 0.5 
(covering 573 of the 1163 molecules; 49%) and 20 at a threshold of 0.9 (404 molecules; 35%). 
Although, as expected since the data is from a different cohort, the number of matches is lower 
than that for the first example, the ability to immediately match approximately a quarter of the 
discovered motifs (allowing some level of annotation for half of the molecules) highlights the 
generalizability of Mass2Motifs across sample sets, and the power of matching against 
previously discovered ones. This approach also aids in the discovery and prioritization of novel 
Mass2Motifs that may well represent xenobiotic-related chemistry (i.e., drug, food, etc.) not 
previously encountered. 
 

Conclusions and Future Outlook 
In this paper, we have described multiple extensions to the MS2LDA platform (all implemented 
at the ms2lda.org web app) that enhance the ability of analysts to characterize the makeup of 
complex mixtures of metabolites. The extensions all make it easier to characterize the 
Mass2Motifs onto which MS2LDA allows experimental data to be decomposed. These 
Mass2Motifs often represent chemical substructures and annotating them allows some degree 
of annotation to all MS2 spectra that include them as often a relative small number of annotated 
Mass2Motifs provide information about a significant proportion of the molecules in an 
experiment.8 
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The extensions move the platform forward in two general directions. The first, MotifDB, provides 
a platform that allows for the storage of annotated Mass2Motifs that can then be accessed via 
an API (details at http://ms2lda.org/motifdb) or used within ms2lda.org by allowing users to 
match Mass2Motifs discovered within their experiments to those stored in MotifDB. In our 
experiments with human urine data, we found that roughly 25% of the Mass2Motifs in a urine 
dataset from a different cohort than the dataset from which the annotated motifs were generated 
could be matched against Mass2Motifs from MotifDB. These 25% of Mass2Motifs were 
associated to about 50% of the molecules.  
The second direction is the collation of known and predicted molecular properties for individual 
molecules across Mass2Motifs. Here, we have presented three advances. Firstly, the use of 
MAGMa on databases of standards that had been analysed with MS2LDA to annotate their 
fragment spectra with substructures. We show how MAGMa-Mass2Motif annotations provide 
quick insight in ambiguity of annotations in case of isomeric substructures. These substructure 
annotations can then be propagated to the features in the Mass2Motifs, providing relevant 
insight into the substructures they could represent.  
The second advance propagates the Classyfire substituent terms for the same standards 
datasets to the Mass2Motif level. Finally, for “unknown” molecules from experimental data of 
mixtures, we have introduced a machine learning approach based on a neural network that can 
predict a subset of classyfire substituent terms from the spectral data. The current 
implementation has some limitations: i) the predictive power is dependent on the chemical 
diversity present in available training spectra, ii) the current training set consists of series of 
structurally correlated molecules, and iii) very small substructures will be difficult to predict due 
to their usually widespread presence which makes it harder to recognize specific chemical 
terms in the diverse molecules. Nevertheless, we show that for fragment-based Mass2Motifs 
from complex mixtures the predicted terms can guide Mass2Motif annotations.  Again, these 
can be propagated to the Mass2Motif level, providing insight into their structural makeup. We 
foresee that by annotating more and more Mass2Motifs, the metabolite annotation of yet 
unknown molecules in complex mixtures - the main bottleneck in untargeted metabolomics data 
analysis - will become easier. Here, we show that the neutral networking approach has the 
potential for further exploration and optimization. This is an avenue for future work - the model 
can be further augmented by inclusion of neutral loss features as well as mass shift features 
which is expected to improve chemical predictions for loss-based motifs such as loss of hexose 
or deoxyhexose and amino acid related motifs, respectively. 
In the future, we anticipate these tools becoming even more useful. As more Mass2Motifs are 
extracted and annotated from the growing datasets of standards, MotifDB will grow and the 
coverage across experiments will increase. We also foresee that instead of unsupervised 
discovery of fragmentation patterns alone, users can include annotated motif sets of their choice 
to their LDA experiment thereby both finding known substructure patterns and discovering yet 
unknown ones. Such a workflow can then replace the current “Decomposition” workflow that 
only uses defined annotated motif sets and has the benefit of combining supervised and 
unsupervised motif discovery in one analysis. Furthermore, users would then also be able to 
decompose single spectra over these motif sets through an API. 
The MAGMa and ClassyFire based annotations can significantly enhance the process of 
annotation of the rapidly growing (number of) datasets and Mass2Motifs. The expected growth 
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in available fully annotated reference spectra will also increase the training sets available for our 
ClassyFire predictor, increasing performance and increasing the set of terms that we can 
confidently predict. Furthermore, the implementation of chemical ontology from ClassyFire 
assists in more consistent annotations of motifs by using chemical terminology from an 
ontology. 
We expect that substructure-based annotation strategies will prove to be essential to decipher 
complex mixtures and enable meaningful biochemical interpretation. Our work represents key 
steps of this workflow by recognizing mass spectral patterns, semi-automated structurally 
annotating and storing them. An increasing amount of structurally annotated Mass2Motifs will 
allow metabolomics researchers to gain some structural information on the majority of 
fragmented molecules. The further closing of the structural annotation gap in metabolomics will 
make untargeted metabolomics a very powerful tool to study complex mixtures. 
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