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Abstract 

There is currently an overwhelming increased interest in predictive biology and computational 

modelling. The development of reliable, reproducible and revisable simulation models in computational 

life sciences is often pointed out as a challenging issue. Population dynamics, including epidemiology, 

has not yet developed a language to formalize complex models in a univocal and automatable way, 

hence hindering the capability to implement in short time reliable, revisable and expert-friendly models 

intended for realistic mechanistic simulations. In epidemiology specifically, models aim not only at 

understanding pathogen spread but also at assessing control measures at several scales. To achieve this 

goal efficiently, best software practices should be supported by Artificial Intelligence methods to handle 

experts’ knowledge. The framework EMULSION presented here intends to both tackle multiple 

modelling paradigms in epidemiology and facilitate the automation of model design. We therefore built 

both a domain-specific language (DSL) for the modular description of complex epidemiological models, 

and a generic simulation engine designed to embed existing modelling paradigms within a homogeneous 

architecture based on adaptive software agents. The diversity of concerns (biology, economics, human 

activities) involved in real pathosystems requires an explicit, comprehensive and intelligible way to 

describe epidemiological models, to involve experts without computer science skills throughout the 

modelling, simulation and output analysis steps. This approach was applied to compare hypotheses in 

modelling a zoonosis (Q fever), to study its transmission dynamics within and between cattle herds at a 

regional scale, and to assess the contribution of transmission pathways. Separating model description 

from the simulation engine allowed epidemiologists to be involved in assumption revision, while 

guaranteeing very few code modifications. We assessed the added value of EMULSION by applying 

the DSL and the simulation engine to a concrete disease. Future extensions of EMULSION towards a 

broader range of epidemiological concerns will reduce significantly the time required to design and 

assess models and control measures against endemic and epidemic diseases. Ultimately, we believe this 

effort is a major lever to increase scientists’ preparedness to face emerging threats for public health and 

provide rapid, reliable, and reasoned assessments of control measures. 
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Introduction 1 

Balancing development time, reliability and intelligibility in computational models 2 

Computational modelling is essential to better explore complex systems. In particular, 3 

agricultural production systems present highly coupled biological, farming, environmental, and 4 

economic processes, involving a diversity of interacting entities, from individual scale up to whole 5 

territories. Their analytical investigation is strongly limited by the interplay between all processes and 6 

scales, leading to high dimensional and highly nonlinear systems, but also by the boundaries of 7 

knowledge concerning the exact interactions between actors of such systems. Mechanistic simulation 8 

models can assess the relevance of assumptions by comparing model outputs to field data, provide 9 

predictions on systems evolution under real or counterfactual scenarios, and help identify levers to 10 

control those systems. However, it is crucial that alternative hypotheses and practicable actions be tested 11 

in short time, in strong interaction with experts, to quickly identify assumptions providing the most 12 

significant insights, or actions driving the system to a desired state. Such "sieving" of hypotheses also 13 

promotes parsimonious models, highlighting key elements, hence allowing for deeper understanding 14 

and easier comparisons.  15 

However, developing simulation codes directly from models requires strong skills in computer 16 

programming. Any change in hypotheses, scenarios, model structure or even just parameters is 17 

excessively time-consuming to foster incremental design of models and expert involvement. Also, 18 

reliability and reproducibility issues of ad-hoc simulation programs threaten conclusions drawn from 19 

computer experiments. To avoid misinterpretations coming from programming biases [1], several good 20 

practices in software development were proposed [2] (e.g. precise code documentation, systematic 21 

testing, versioning, etc.), but erroneous programs can also reach such standards [3]. 22 

Models are intended to change with biological knowledge and research questions. Assessing 23 

their relevance rather than simulation code quality requires to allow experts scrutinizing their very 24 

components (parameters, functions, modelling paradigms, contact structures, etc.), instead of their 25 

implementation within a specific programming language. It is then the responsibility of computer 26 

scientists to provide an automated, reliable and rapid translation into code. Our approach is in line with 27 

this mindset, by coupling a modular simulation architecture with a Domain-Specific Language (DSL), 28 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 10, 2018. ; https://doi.org/10.1101/491605doi: bioRxiv preprint 

https://doi.org/10.1101/491605
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

which gives experts the ability to understand and design the multiple components of an epidemiological 29 

model without programming.  30 

The diversity of modelling and related issues in epidemiology 31 

Epidemiology is an epitome field for addressing such issues. Since Kermack and McKendrick's 32 

seminal works [4], the complexity of models increased to allow for realistic decision support at several 33 

scales [5, 6], incorporating a broad range of concerns: infectious processes, demography, environmental 34 

conditions, underlying contact structure provided by transportation or trade, etc. Models became hard 35 

to design and harder to implement in a reliable way, because life scientists are not expected to master 36 

programming skills [7]. The diversity of modelling paradigms, as presented below, from rather formal 37 

and analytical, to rule-based descriptions of processes involved in the system, also reduces the ability to 38 

revise or compare models in response to evolving scientific knowledge and purposes. This often results 39 

in heterogeneous, ad-hoc simulation programs which cannot be compared, enhanced, even used, without 40 

diving into the code. However, responsiveness in modelling and in scenario assessment is a stake to 41 

provide relevant control measures against outbreaks, especially in the case of an animal health crisis.  42 

Compartment-based models (CBM) [8] describe disease dynamics by state variables (amount or 43 

proportion of individuals in each health state). CBM can also represent demographic dynamics with 44 

input and output rates, and incorporate additional concerns (e.g. age structure, species, or environment-45 

borne contamination) by splitting compartments. CBM assume that individuals differ only by a few 46 

discrete variables which determine their compartment. To assess targeted control measures, the 47 

multiplication of compartments and transitions required to account for finer-grained features can make 48 

the model very like individual-based models (IBM) [9]. These latter keep individual diversity explicit 49 

[10, 11] and represent them with their behaviors, environment, possible goals (e.g. [12–16]). This 50 

comprehensive understanding of causal mechanisms occurring in biological systems allows to compare 51 

individual trajectories and measure the impact of fine-grained actions [17]. The capability to increase 52 

indefinitely detail level as needed is counterbalanced by a high computational cost and by a difficulty 53 

to calibrate parameters (even with parsimonious models), two major drawbacks of IBM, since the 54 

scientific soundness of simulation outcomes relies upon repetitions and sensitivity analysis. Their use 55 

on very large scales (e.g. millions of agents) is a challenge, even with massively parallel platforms, 56 

strong software optimizations and oversimplified epidemiological assumptions [13, 18]. 57 
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Metapopulations approaches [19, 20] have been applied in epidemiology for handling region-wide 58 

models at a moderate computational cost. Populations are modelled in interaction through a contact 59 

structure [21] representing neighborhood relations, transportation or trade exchanges [22, 23], or vector- 60 

or airborne transport processes. Yet, approximations in sub-populations dynamics may result in 61 

overestimating infections [24, 25] compared to equivalent IBM. 62 

Most paradigms share the flow diagram formalism, with nodes denoting health states (possibly 63 

combined with other concerns), and transitions labeled with rates. In continuous, deterministic 64 

approaches, they are equivalent to an Ordinary Differential Equation (ODE) system, while in stochastic 65 

models, rates can be used, after conversion into probabilities, either in discrete event methods (e.g. the 66 

Gillespie algorithm [26]), or in multinomial sampling in discrete time approaches [27]. The main 67 

drawback of flow diagrams is that several concerns (infection, demography, herd management...) often 68 

are mixed together in a single representation, reducing the readability of the model, while other features 69 

(parameters, processes, data...) are not systematically explicitly depicted (e.g. the exponential 70 

distribution of state durations, or pathogen shedding during infectious states). Then, when writing actual 71 

simulation code, several implicit assumptions or actions are just added on the fly, which hinders early 72 

model comparison and often leads to biases in the late stage.  73 

Related computer science solutions and specificities of our approach 74 

Epidemiology does not provide any systematic methodology for designing, implementing or 75 

assessing the diversity of its models yet. Other life sciences, which have long faced major computational 76 

problems, have adopted powerful formalisms to express their models in a quite explicit and 77 

comprehensive way and automatize their development. For instance, in molecular biology, the Systems 78 

Biology Graphical Notation (SBGN) [28] offers a visual syntax for describing reactions, compounds or 79 

feedback loops. In epidemiology, such attempts are still at their early stage. Formalisms inspired from 80 

multi-scale processes in physics [29], or proposing a strong complexification of flow diagrams [30], are 81 

not likely to facilitate the appropriation of models by epidemiologists. Conversely, the ODD protocol 82 

("Overview, Design concepts, Details", [31]) aims to obtain comprehensive knowledge from 83 

disciplinary experts within a textual template; however, feedbacks on its actual use for designing models 84 

emphasize ambiguities and "the lack of real specifications" [32].  85 
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Most simulation programs developed for implementing epidemiological models are hand-86 

written ad-hoc tools dedicated to a single pathogen in an applicative context, to evaluate a specific set 87 

of control measures. Reliability of such codes inherently depends on the programming skills of their 88 

authors, and prove difficult to use and maintain in the long-term. Especially, instead of high-level 89 

programming languages (Scilab, R, Python...), performance considerations lead to using low-level ones 90 

(C++), yet harder to master, debug and maintain. Besides, even in object-oriented development, 91 

abstraction is rarely used (excepted e.g. in [33] on vector-borne disease mechanisms).  92 

However, classical general-purpose simulation platforms tend progressively to be used, for 93 

instance GAMA [14], NetLogo [16] or Repast [34]. They provide indeed reliable, ready-made tools for 94 

calculations or data integration, leaving more time to focus on modelling itself. Yet, they are not 95 

specifically designed for epidemiology and still require a significant time spent on software 96 

development. Simulation libraries and platforms dedicated to epidemiological issues are rising, e.g. 97 

SimInf [35], a R library for data-driven CBM; MicroSim [36], an agent-based platform for several 98 

diseases; or GLEaMviz [37], a metapopulation-oriented platform. To our knowledge, the most advanced 99 

approach from a software engineering viewpoint is Broadwick [38], a framework for CBM and IBM 100 

with interaction networks, which still requires writing large portions of code to derive specific classes 101 

and carry out simulations on practical cases. Another interesting approach, though dedicated to a specific 102 

study, relies upon geographical levels and a separation of activities to define efficient aggregations of 103 

individuals [39]. KENDRICK [40] defines a DSL fostering a strong separation of concerns (infectious 104 

dynamics, spatial distribution, species), and generates C/C++ code to run simulations efficiently. But, it 105 

only targets CBM with theoretical (SIR-type) models. 106 

The framework EMULSION (for “Epidemiological Multi-Level Simulation”) we propose is to 107 

our knowledge the only contribution that combines the capability of integrating several modelling 108 

paradigms and several scales with dynamic aggregation levels (through a multi-level multi-agent 109 

architecture to wrap them), and the explicit description of models (through a DSL dedicated to 110 

epidemiolocal issues) [41] (Fig 1). Our objective was indeed to 1) define a formalism making models 111 

as accurate as possible, so that a comprehensive description can be shared amongst experts, and its 112 

implementation automatized; and 2) encompass existing modelling paradigms within a common 113 

interface, to make them interchangeable, or even combine them as proposed by [42].  114 
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Fig 1. A taxonomy of modelling approaches in computational epidemiology. The vertical axis is based on the 

scope (from a single disease to multiple modelling paradigms); the horizontal axis represents the level of computer 

science complexity involved (from ad-hoc monolithic programs to a full separation between explicit knowledge 

and simulation code). In EMULSION, the coupling of a modular simulation architecture with a DSL is beneficial 

on both levels. 

Methods 115 

Coupling a Domain-Specific Language with a generic simulation engine 116 

Designing a model using EMULSION involves three interdependent elements: 1) an explicit, 117 

modular and readable description of the model written using EMULSION’s DSL — this step is intended 118 

to be accessible to non-computer scientists experts ; 2) the use of the generic simulation engine written 119 

by computer scientists, to capitalize, in an extensible, modular and reliable way, recurrent treatments 120 

and calculations that can be found in most epidemiological models (e.g. computation of states evolution 121 

over time, connection to data, etc.) — this engine is aimed at building and running the appropriate 122 

simulation architecture based on the model specifications in the DSL; 3) small code add-ons which may 123 

be necessary to add features (calculations, actions, processes) either specific to each model or not yet 124 

incorporated  into the generic engine (Fig 2). The complexity of designing and implementing a model 125 

is thus broken down into several simpler concerns, without unnecessary code writing. Besides, models 126 

described through EMULSION’s DSL are univocal in the sense that they have to make most 127 

assumptions explicit, and refer to the simulation methods implemented within the generic engine. 128 
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 7 

 
Fig 2. Approach enforced in EMULSION. A generic simulation engine is coupled to a domain-specific 

modelling language, fostering continuous experts’ involvement and user-friendly interactions. Experts’ knowledge 

is kept explicit, understandable, and revisable. A few specific code add-ons can be written to complement the 

simulation engine. 

Knowledge engineering: a paradigm-independent representation of processes 129 

Epidemiological models mainly rely on the description of infectious processes. As a balanced 130 

formalism, we propose to extend flow diagrams to represent state evolution through Finite State 131 

Machines [43], widespread used in computer science. Features that were implicit in epidemiological 132 

design can be described explicitly in nodes (states) and edges (transitions) of state machine diagrams 133 

(Fig 3), enhancing the intelligibility of models. States can be endowed with 1) a duration distribution, 134 

specifying how long an individual is expected to stay in the current state, and 2) actions performed by 135 

individuals when entering, being in, or leaving the state. Transitions are labeled with either a rate, a 136 

probability or an absolute amount; they can also specify: 1) calendar conditions to indicate time periods 137 

when transitions are available; 2) escape conditions allowing to free from state duration constraints; 3) 138 

individual conditions to filter who is allowed; 4) actions performed by individuals crossing the transition 139 

(after leaving their current state and before entering their new one). 140 
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Fig 3. Structure of a transition between two states in state machines. States can be given a duration and actions 

when entering, staying in, or leaving the state. Transitions feature a rate, or probability, or amount, and can be 

associated with actions performed on crossing, time-dependent ("calendar") conditions, or individual conditions 

restricting the capability to cross the transition, and escape conditions allowing individuals to leave their state 

before the nominal duration. 

A classical flow diagram is essentially a conceptual sketch of the model, requiring further 141 

programming to control transitions between states; conversely, the state machine diagram is informative 142 

enough to be processed directly by the generic simulation engine without further code writing. For 143 

instance, flow diagrams generally assume an exponential distribution of durations in health states; but, 144 

sometimes other distributions are required, e.g. a constant incubation duration. While a classical 145 

approach would require to rewrite the simulation code to switch from exponential to constant duration, 146 

with EMULSION the specification of a constant duration in the node of the state machine is 147 

automatically handled with the correct computation by the generic engine. Similar changes can be made 148 

or revised on the fly, since they require no more than adding or removing a few lines in the model 149 

description.   150 

Each state machine is aimed at describing a single process (infection, demography, ...). Thus, 151 

instead of mixing concerns within a single, complex diagram, each process can be expressed, assessed, 152 

revised independently from the others and in a simple representation. Possible interactions between 153 

processes can be expressed through actions: for instance, actions performed in a ‘Treated’ state of a 154 

treatment process can induce changes in the infectious process. 155 

While flow diagrams were population-oriented (i.e. describing the evolution of group size), state 156 

machines are individual-oriented: they specify individual behaviors, allowing to focus on fine-grained 157 

individual features. The subsequent issue, consisting in aggregating individuals to the relevant detail 158 

level without excessive computational cost, is addressed by the agent-based simulation architecture 159 

described a few lines below.  160 
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A language for epidemiological model description 161 

Model assessment, from the first assumptions to the interpretation of simulation results, is a long 162 

process. To keep the model explicit, understandable, and revisable throughout, it must be accessible 163 

under a readable form, rather than buried into the simulation code. Thus, we recommend gathering all 164 

model components (parameters, distributions, functions, time management, state machines, levels, 165 

processes occurring on each scale, actions, etc.) within a structured text file. We defined a Domain-166 

Specific Language (DSL) [44] matching the needs of epidemiology, to allow experts to structure models 167 

through key-value pairs. Model description files are intended to be comprehensive documents, thus 168 

force modelers to leave comments and sources for each item: the same file can then be used to produce 169 

figures, parameter tables, or technical documentation. When processing model files, the generic engine 170 

parses parameters, variables, and mathematical expressions using a symbolic computing library, to 171 

translate them into true functions. It also builds the simulation architecture and checks the consistency 172 

of the model before running the simulation.  173 

This separation between experts’ and domain-specific knowledge (declarative part of the model) 174 

on the one hand, and the algorithms to handle it (procedural part) on the other hand, is a classical, but 175 

powerful Artificial Intelligence solution [45], known for helping experts to be involved directly in the 176 

model design process, and for allowing fast, iterated feedbacks. Besides, this approach appears a kind 177 

of "literate modelling" by analogy with Knuth's "literate programming" approach [46], aimed at 178 

fostering a human-friendly, purpose-driven way of developing software codes. The elaboration of a DSL 179 

for epidemiological models is actually a first attempt towards standardization, which must be supported 180 

by an ability to encompass existing modelling paradigms and adapt to real use cases.  181 

The modelling language defined in EMULSION is an “internal” DSL [47], as it is based on 182 

another language, YAML (a human-friendly data serialization standard). Its syntax is quite simple, 183 

relying mainly on lists and on dictionaries (i.e. key-value pairs), which can be nested one in another and, 184 

for most components, do not require a special ordering. Contrary to most general-purpose programming 185 

languages, this DSL is aimed at describing declarative knowledge, i.e. the model components and their 186 

relations, the way to process them being implemented in the generic simulation engine. A whole 187 

example is provided as supporting information (with syntactic colorization: Additional File, S4 Files). 188 

Six main sections (first-level keys in the dictionary) must be specified: 1) the levels of interest in the 189 
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simulation (e.g. individuals, populations, metapopulations…) and their link to agent classes (i.e. either 190 

agents defined in the generic simulation engine, as described below, or derived from the latter to provide 191 

specific code add-ons); 2) the processes occurring at each level, which can be either handled through a 192 

state machine (e.g. infection process, population dynamics, etc.), or implemented as a specific code add-193 

on in the class associated to the level; 3) the description of the state machines, composed of the list of 194 

the states, with associated duration and actions if any, and the list of transitions between states, with 195 

possible conditions and actions (the description of the state machines is equivalent to the state machine 196 

diagram presented on Fig 3); 4) the comprehensive list of parameters used in the model, with their 197 

description and values; 5) the list of agent variables (“statevars”) with their role; 6) the list of agent 198 

actions with their description. Only the items of the two latter require subsequent implementation in the 199 

proper agent classes as specific code add-ons. Additional features can be specified in the model, such 200 

as time management (e.g. time unit, duration of discrete time steps, scheduling of events…) or desired 201 

outputs.  202 

The key point is that this description, which can be developed and consulted independently of 203 

the generic simulation engine and of any possible code add-ons, does not require any computer science 204 

skill to be understood and discussed. Hence, it fosters interactions with experts throughout modelling, 205 

from formulating initial assumptions to specifying parameter values and identifying relevant scenarios 206 

and outputs. Besides, an EMULSION model not only enforces an explicit specification of model items 207 

that otherwise would be hidden in the code, but also requires a textual description of their rationale and 208 

purpose, to keep track for instance of the evolution of assumptions or of the exact meaning of 209 

parameters. Revising the model to account for new knowledge or to test alternative hypotheses 210 

essentially consists in modifying the YAML file, by adding or removing states, transitions, parameters, 211 

processes or actions, as shown on the application to Q Fever disease in the Results section. 212 

An agent-based software implementation 213 

Several elements in the model description file rely upon the agent-based software architecture 214 

used in EMULSION, which is instantiated at runtime by the generic simulation to build the actual 215 

simulation from the model description.  216 

Multi-Agent Systems (MAS) [48, 49] have become a classical paradigm for the simulation of 217 

complex systems. Agents, endowed with behaviors reflecting assumptions of a mechanistic model, 218 
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interact within a shared environment. They are quite flexible and can represent any kind of entity, since 219 

they are defined by their behaviors and interaction capabilities rather than by their structure. Their 220 

behaviors can be defined through rules, equations, probabilistic trials, etc. More recently, in multi-level 221 

MAS, agents are also used to explicitly represent intermediary organization levels within the system, 222 

with their own behavioral capabilities. Hence, they can be used to encapsulate other paradigms within 223 

a homogeneous interface. Among the few generic meta-models designed for multi-level agent-based 224 

simulation [50–53], we used the principles defined in [50] which proved flexible enough to adapt to 225 

other fields [54], and provide useful features for computational epidemiology, such as a clear separation 226 

between declarative and procedural aspects. A multi-level MAS, in this meta-model, is the combination 227 

of an architecture of nested agents (through a hosting relation) and an explicit and intelligible description 228 

of the processes where agents are involved. 229 

State machines specify quite accurately individual behaviors for each possible process. In most 230 

situations however, keeping all individuals in the simulation would be highly inefficient and lack 231 

relevance. Therefore, agents can materialize groups at different levels, according to model requirements 232 

and to similarities between individuals. EMULSION intends to implement those principles, by 233 

combining agent classes defined to match typical relationships between a group and the underlying 234 

entities [55]. All agents are situated in at least one environment where they live, perceive, and act. Two 235 

main agent families are used: atoms representing individuals, and groups representing aggregation with 236 

a tunable granularity level. 237 

 
Fig 4. Integration of multiple modelling paradigms and scales. EMULSION allows multiple modelling 

paradigms to be expressed within the same formalism, based on nested agents, from the explicit representations 

of individuals (individual-based models) to aggregated populations (compartment-based models), with 

intermediary representations designed to group individuals depending on domain-dependent variables. 

Depending on how such agents are combined and whether or not their behavior is controlled by 238 

a state machine, classical epidemiological modelling paradigms can be easily reproduced. A 239 
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“GroupManager” agent endowed with a health-related state machine and hosting several 240 

“Compartment” agents reproduces a CBM (Fig 4, right). Contrarily, gathering “EvolvingAtom” agents, 241 

each one owning a state machine, within a “SimpleView”, leads to an IBM (Fig 4, left). Refer to 242 

Additional File, §S1 Appendix and S1 Fig for the detailed relationships between agent classes. 243 

In addition, multi-level agents enable a hybrid modelling paradigm, mixing the preservation of 244 

individual states as in IBM and the reduced computational cost of CBM. Indeed, aggregation structures 245 

can be built at an intermediary stage, between individual- and population-oriented architectures. 246 

Individuals can indeed be gathered according to each separate concern, based on their similarities 247 

regarding each key variable. For instance, since the description of the infectious process is associated 248 

with a specific state machine, each atom agent can be endowed with a variable for holding this state 249 

(e.g. “health_state”). Then, it makes sense to gather individuals according to possible values of this 250 

“health_state” variable, for instance using “AdaptiveView” agents, hosted by a “GroupManager” (Fig 4, 251 

center). This “GroupManager” supervises the health-related state machine (instead of atoms) and, during 252 

the simulation, determines how many atoms have to change their “health_state” value and move from 253 

one “AdaptiveView” to another. To do so, due to the homogeneity of atoms within each 254 

“AdaptiveView” regarding “health_state”, only one multinomial sample per group is required, instead 255 

of one Bernoulli trial per individual, which reduces significantly the computation cost compared to a 256 

classical IBM. Besides, using “AdaptiveView” agents as containers facilitates the separation of 257 

concerns: if another process (e.g. recovery) suddenly affects the “health_state” variable of some agents, 258 

their change is detected by the view, which asks its own host (the “GroupManager”) to move modified 259 

atoms to the proper place. 260 

Metapopulation appears a gathering of lower-level agents, such as those built after one of the 261 

previous architectures. “MultiProcessManager” agents are designed to host them, provide a contact 262 

structure, and be automatically constructed by EMULSION with the underlying components, based on 263 

the specification of processes modelling the contact structure, key variables and state machines in the 264 

model description file. Thus, several concerns are handled at the same time, without any special 265 

development effort for the model designer.  266 

EMULSION models can be checked prior to simulation to identify missing or inconsistent 267 

information, and code templates can be generated to facilitate writing the specific add-ons. To run a 268 
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simulation from a model, EMULSION parses the YAML description file to read parameters, resolve 269 

expressions, build the state machines, and instantiate the agent classes corresponding to the required 270 

levels and groupings, based both on the objects of the generic simulation engine and on the specific code 271 

add-ons.  272 

Application to the exploration of an epidemiological model (Q fever spread) 273 

The algorithms within EMULSION have been broadly tested on several very well-known 274 

variants of SIR-like models [5, 6] based on CBM, IBM, hybrid modelling, and metapopulations. 275 

However, the major added-value of EMULSION is to facilitate the development of complicated models 276 

by model designers, to foster participative model revisions within short development time thanks to the 277 

DSL. Hence, we addressed models for a real disease, Q fever in dairy cattle herds, for which herd 278 

management processes have to be accounted for to reliably predict pathogen spread [15, 56, 57].  279 

Q fever is a worldwide zoonosis caused by the bacterium Coxiella burnetiid. It has recently 280 

spread in Europe, e.g. in the Netherlands with a large number of human cases reported in 2007–2009 281 

[58]. Domestic ruminants are recognized as the main source of human infection. In previous studies, a 282 

detailed individual-based within-herd model was designed to help better controlling C. burnetii spread 283 

in cattle herds with a particular attention paid to the diversity of transmission pathways and levels of 284 

pathogen shedding by infected hosts [15]. The main parameters of a simplified variant of this model 285 

were estimated from epidemiological data [56]. A study in the French department of Finistère revealed 286 

seroprevalence levels for 2697 dairy herd by enzyme-linked immunosorbent assay (ELISA) in bulk tank 287 

milk in 2012. 797 herds were detected seronegative in 2012 and tested again one year later. The annual 288 

herd incidence (number of herds newly infected) was of 295 herds. The within-herd model was extended 289 

to the between-herd level and confronted to such epidemiological data [57]. However, three main 290 

computational and epidemiological issues remained. First, the infection process was mixed with the 291 

reproduction cycle of cows, impeding modifications of biological assumptions and, thus, the exploration 292 

of a larger variety of model structures. Second, the integration of within-herd dynamics into the between-293 

herd scale was not straightforward. Third, the simulated annual herd incidence was still too low.  294 

We re-implemented these models using EMULSION to explore more quickly the interplay 295 

between within-herd and between-herd levels. First, the original model [15] was simplified, keeping 296 

relevant assumptions and removing those less crucial in the perspective of the between-herd dynamics 297 
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[59]. Then, it was extended to the regional between-herd level, where assumptions regarding airborne 298 

transmission were compared. Finally, the within-herd model was revised with alternative hypotheses in 299 

the infection process, to better reproduce the observed annual herd incidence at the between-herd level 300 

while making plausible assumptions about host infection processes. The relative roles of trade and 301 

airborne transmission in regional pathogen spread were reassessed under these new modelling 302 

assumptions. 303 

Results 304 

Model simplification within EMULSION 305 

According to the parsimony principle, we built a model with a minimum number of states, 306 

transitions and parameters, trying to reproduce main simulation outcomes (prevalence, seroprevalence 307 

and bacterial shedding) of the original within-herd model [15] after the transient period. To do so, we 308 

identified possible simplifications (reduction of the number of states and transitions, and replacement 309 

of distributions by aggregated parameters), and assessed them by simulation with a modified YAML 310 

configuration file, without changing the code, and iterated the process with alternative hypotheses. In 311 

the resulting model, called below "simplified model", 5 (out of 11) health states were retained 312 

(Additional File, S2 Fig and S3 Fig): susceptible (S), infectious without (I–) or with (I+) antibodies, and 313 

carrier with (C+) or without (C-) antibodies, without distinguishing between shedding levels or 314 

pathways. Contaminations occurred through contacts with contaminated environment, bacteria (𝐸𝑡𝑜𝑡𝑎𝑙, 315 

bacterial load in environment) coming either from local shedding (𝐸𝑙𝑜𝑐𝑎𝑙, due to infectious animals from 316 

the herd) or external sources (𝐸𝑎𝑒𝑟𝑜, from airborne transmission). At herd scale, when neglecting 317 

between-herd transmission, 𝐸𝑙𝑜𝑐𝑎𝑙 is equal to 𝐸𝑡𝑜𝑡𝑎𝑙 (Additional File, S2 Appendix equation 1). The 318 

probability of infection was determined by 𝑝 = 1 − 𝑒−
𝑁_0 ∗ 𝐸𝑡𝑜𝑡𝑎𝑙

𝑁 , where N denoted the population 319 

present in the herd (N_0 being a normalization factor). Besides, only adult female cows were taken into 320 

account. They follow a reproduction process (Additional File, S4 Fig) with state depending on their 321 

pregnancy status (P for pregnant,  NP for non-pregnant). Transitions between P and NP were handled 322 

by a duration in each state. Special events such as abortion could happen to pregnant cows up to three 323 

weeks after infection. Local bacteria shedding occurred either during infectious states through on-stay 324 
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actions, or massively at special events (calving and abortion), through on-cross actions. The YAML file 325 

corresponding to this model (model structure, levels, parameters, variables, etc.) is provided as 326 

supporting information (Additional File, S4 Files). 327 

 
Fig 5. Structure of the within-herd hybrid model for Q fever. Individuals are aggregated according to concern-

related variables (health state, life cycle, and parity). Individuals (e.g. the blue one in health state I+, life state NP, 

and parity 4) can be accessed through each concern or through a global list. 

The model followed the hybrid structure (Fig 4, center) to fully account for individual events 328 

(calving and abortion) without excessive computational cost. The implementation required only a class 329 

for individuals, derived from “AtomAgent”, and one for the herd, derived from “MultiProcessManager” 330 

[59]. The resulting multi-agent architecture used to represent a herd is shown on Fig 5. Processes 331 

involved at the herd level were the following: 1) culling (cow removal depending on parity); 2) 332 

replacement (introduction of new animals); 3) infection and  4) farm management, both based on state 333 

machines respectively affecting health state and life cycle; 5) actualization of animal grouping by parity; 334 

6) bacterial decay in the environment (exponential decrease) and update of bacterial shedding. While 335 

processes 1, 2, and 6 required writing short specific code add-ons, the others, involving generic 336 

mechanisms such as state machines and groupings based on parity, health state, and life cycle, were 337 
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handled automatically by the generic simulation engine. Parameters were calibrated to match the median 338 

and 10-90 percentiles (on 200 repetitions) of three major outcomes (prevalence, seroprevalence and 339 

bacterial load in environment) of the original model simulation after the transient period (200 weeks 340 

after introducing one I+ cow just before calving in a fully susceptible herd).  341 

Exploration: from within-herd to between-herd levels, back and forth 342 

Next, we focused on accounting for annual herd incidence observed in Finistère. The between-343 

herd model is a metapopulation, composed of independent herds linked through a contact network. As 344 

in the within-herd architecture, the metapopulation could be implemented in EMULSION by a 345 

“MultiProcessManager” agent, encapsulating a view holding all herds and endowed with dedicated 346 

processes to handle interactions between them (Additional File, S7 Fig). Transforming the YAML file 347 

from the within-herd to the between-herd scale only required to add the description architecture and 348 

processes at the metapopulation level (Additional File, S1 Text), here assuming herds have similar 349 

parameter values and sizes. 350 

Herds could interact either through animal trade or airborne transmission from neighbor herds. 351 

Initial assumptions considered animals bought from outside the metapopulation healthy. Bacteria were 352 

transported and deposited by wind using a plume dispersion equation [60, 61] (called "Ermak-Stockie 353 

function" below and detailed in Additional File, §S2 Appendix). Processes involved at the 354 

metapopulation level thus were: 1) activation of herd processes; 2) airborne transmission; 3) selection 355 

of animals for trade movements in source herds; 4) effective movement to destination herds. Herd 356 

specificities (initial size, renewal, culling and trade movements) were based on the French livestock 357 

exchange data, requiring specific code add-ons to make the metapopulation agent calibrate herd 358 

parameters and extract the relevant trade movements from data. The predicted herd incidence with these 359 

initial assumptions was much lower than in observed data (Fig 6-A). The discrepancy between observed 360 

and predicted incidence could be explained either by a missing transmission route (but no other is known 361 

for Q fever), wrong assumptions about risky trade or airborne transmission, or wrong assumptions about 362 

the within-herd infection dynamics. To check for these two latter issues and improve herd incidence 363 

predictions, we considered alternative assumptions on three main levers. We first assumed that animals 364 

coming from outside the metapopulation had the same probability of being infected as inside the 365 

metapopulation (rather than assuming them susceptible), this one being a part of a larger regional 366 
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population of herds. The impact on herd incidence was low (Fig 6-B) despite 18% of incoming 367 

movements from outside the metapopulation. Second, regarding airborne transmission, we assumed that 368 

individuals could be contaminated by inhalation of available bacteria (which is biologically plausible) 369 

rather than by deposited pathogens. Hence, a simpler Gaussian approach [61], not accounting for 370 

deposition, was implemented for plume dispersion (Additional File, equation 6, §S2 Appendix). Only a 371 

few lines of codes were changed in the specific add-on to define the new function. Still, parameters 372 

could not be calibrated within biologically plausible ranges to reach the expected seropositive herd 373 

incidence (Fig 6-C), while the true herd incidence sharply increased. The difference between incidence 374 

levels considering either infectious or seropositive animals, suggested to investigate the within-herd 375 

model further. We reexamined shedding assumptions, shedding being observed to be intermittent [62]. 376 

The original model [15] assumed that I– cows were able to eliminate all bacteria and become S again 377 

(non-shedder without antibodies and then apparently susceptible) [56], resulting in transitions from I– 378 

to S. Alternatively, a latent state (L) could have been assumed, i.e. a non-shedding but infected state. 379 

The intermittent shedding then can be explained by a loop between L and I– states (Additional File, S5 380 

Fig), obviously increasing within-herd prevalence and reducing sharply spontaneous fade-out at local 381 

scale. Using EMULSION, going back and forth from one model structure to another is straightforward, 382 

even for a multi-scale model.  The new within-herd model ("Latent state model") was built from the 383 

Simplified model by adding a state and changing four transitions in the state machine describing health 384 

states (i.e. 10 lines in the YAML file: Additional File, S2 Text). It was then calibrated to keep the same 385 

steady-state regarding the same three main simulation outcomes (prevalence, seroprevalence and 386 

bacterial load in environment) in the medium run as the simplified model (Additional File, S6 Fig). 387 

Then, back to between-herd scale, we calibrated parameters in a plausible range for reaching the 388 

expected herd incidence level (Fig 6-D). 389 

A sensitivity analysis was carried out to assess the impact of model parameters on two main 390 

outcomes at the metapopulation level (annual and weekly herd incidence), highlighting 391 

𝑁0 (normalization factor), l (transition probability from L to I– states), m (transition probability from I– 392 

to S),  (proportion of bacteria leaving local environments to contribute to airborne transmission) and  393 

(contact rate with bacteria coming from airborne transmission) as key parameters (Additional File, S8 394 
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Fig). In addition, we ensured that spatial distributions of herds by health status were similar between 395 

observed serological data and simulations (Additional File, S9 Fig). 396 

 
Fig 6. Annual herd incidence distributions in models based on combining variants of three main features. 
1) No infection risk when purchasing animals from outside the metapopulation vs. risk similar to the average 

prevalence in the metapopulation, 2) Airborne transmission calculated by the Ermak-Stockie function vs. a 

Gaussian function, 3) Simplified within-herd model vs. model with a latent state. Yellow (cyan) color corresponds 

to the number of herds observed healthy (seronegative) in 2012 that hold a shedder (seropositive) animal at least 

once during the year. Observed data correspond to the 295 herds newly detected as seropositive by the ELISA test 

in 2013 (seronegative in 2012) in Finistère, France. 

Impact on previous conclusions 397 

Regarding pathways responsible for Q fever spread at the regional scale, we knew from the 398 

previous study [57] that airborne transmission was predominant over trade movements. Yet, we wanted 399 

to assess whether trade-borne infections could be neglected or not. After exploring model assumptions 400 

and parameters to account for observed seroprevalence data in 2013 (Fig 6), we examined more finely 401 

temporal and spatial effects of both transmission pathways, under the hypothesis that seroprevalence is 402 

a relevant indicator for disease persistence within a one-year interval. First, infections of naive herds 403 

appeared, as expected from previous results, to be caused mostly (89.5% of newly infected herds) by 404 

airborne transmission (Fig 7, A). However, it also appeared that contaminations caused by trade 405 

movements happened in a more deterministic way, which was not highlighted previously. When we 406 

considered the infection dates of herds contaminated by trade movements at least once in 50 stochastic 407 
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repetitions by trade movements, two groups were identified (Fig 7, B): first, herds infected early in the 408 

simulations, almost always at the same date and by trade movements; second, herds infected at a variable 409 

date and with a variable contribution of airborne transmission. Spatial distribution of incident herds 410 

(Fig 7, C) pointed out that areas with a high density of initially infected herds (and of herds in general: 411 

Additional File, S10 Fig) drove at the same time the predominance of airborne transmission and the 412 

probability that a herd subject to airborne transmission risk becomes infected. Conversely, herds infected 413 

at least once by trade movements were mostly located on peripheral areas, such as coasts (Fig 7, D), and 414 

most of them purchased animals directly in an initially prevalent herd before becoming infected, with 415 

mostly early infection dates. To summarize, the spread of Q fever within areas of high prevalence and 416 

high herd density is strong and mainly caused by airborne transmission, which argues for vaccination 417 

as a disease control strategy in such areas, while herds in low prevalence areas have little chance to be 418 

contaminated but by trade, which supports tests on purchase in that case. 419 

Discussion and conclusions 420 

EMULSION is the first framework that simultaneously provides a Domain-Specific Language 421 

dedicated to the comprehensive and accurate description of epidemiological models, from SIR-like 422 

models to more complex multi-scale multi-concern models, together with a modular simulation engine 423 

using a multi-level agent-based architecture, to encompass existing epidemiological issues and 424 

modelling paradigms within a homogeneous interface (Fig 1).  425 

Elaborating realistic models (such as [15, 57]) often requires many trials aiming at the 426 

exploration of various assumptions and processes. EMULSION significantly accelerates model 427 

development, first because it provides classical computational bricks, but also since changing 428 

hypotheses (e.g. adding or deleting a state or a transition) generally consists in modifying the 429 

configuration file, instead of rewriting many parts of a large specific source code. The modularity of 430 

model description allows assessing separately hypotheses, which demands much more work when 431 

dealing with ad-hoc models and is more prone to programming and hence interpretation errors.  432 
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Fig 7. Contributions of infection pathways at regional scale, as predicted by the between-herd Q fever model 

with latent state and a Gaussian plume airborne transmission (50 stochastic repetitions of the standard 

scenario). (A) Distribution of the proportion of repetitions where each herd stayed healthy, became infected by 

animal trade movements, or became infected by airborne transmission, over one year (color shows the proportion 

of repetitions where the herd became infected by any of the transmission routes). (B) Amongst herds infected in 

at least one repetition by trade movements, relation between the proportion of infections caused by movement and 

the infection date (in average and standard deviation), exhibiting two subgroups: one with an early and little 

variable infection date, caused very often by movements (blue points), and the other with a more variable infection 

date and caused less often by movements (brown points). (C) Map of Finistère with the density of initially infected 

herds (2012 serological data) and the location of herds infected in at least one repetition. Color shows the 

proportion of infections caused by airborne transmission vs. trade movements. (D) Map showing the location and 

average infection date of herds infected at least once by trade movements. Herds marked with a "x" purchased 

animals from initially infected herds before their own infection. Map tiles by Stamen Design, under CC BY 3.0. 

Data by OpenStreetMap, under ODbL. 
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Using EMULSION, we re-implemented very quickly the initial within-herd Q fever dairy cattle 433 

model and assessed the compatibility of simpler alternative model structures with previous predictions 434 

derived from a model whose parameters were estimated using observed on-farm data. Then, moving to 435 

the regional scale required little transformation of the within-herd model. Small pieces of code related 436 

to trade and weather data and calculation of transmission functions were used as specific add-ons by the 437 

simulation engine. The facility to compare a large panel of assumptions regarding the existence of a 438 

latent stage in Q fever infectious process, the nature of airborne transmission, and values of the less 439 

well-known parameters, allowed us to identify and calibrate the best candidates with respect to observed 440 

herd incidence data. Also, conditions under which trade movements and airborne transmission 441 

contribute to new infections were explored, highlighting new findings, especially that infections caused 442 

by movements are almost deterministic and impact mostly herds in peripheral areas and low prevalence 443 

areas. 444 

This works provides a proof of concept, demonstrating the added-value of using such a 445 

framework, both in terms of code reduction and model readability. To promote our approach and 446 

modelling language, EMULSION will be soon released as an open-source software. The current version 447 

of the generic simulation engine being written in Python, efficiency cannot compete with compiled 448 

languages such as C++ (as the code generated by KENDRICK [40]) or Java (used in the Broadwick 449 

framework [38]), especially at the between-herd scale. This was not under the scope of the present study. 450 

Nevertheless, the facility to choose the granularity level of simulations and the adaptive gathering of 451 

individuals make the approach much more efficient than IBM anyway. To tackle efficiency issue, the 452 

next step will be to consider using EMULSION’s DSL to build dedicated, optimized code from model 453 

descriptions.  454 

We showed how modelling paradigms and scales could be wrapped within agents, which are in 455 

charge of processing the required calculations according to their specificities. This allows modellers to 456 

focus on their research questions instead of implementation issues, while still being able to select and 457 

compare relevant modeling paradigms. To go further, new computational issues in epidemiological 458 

modelling have to be addressed, especially in coupling contrasted paradigms [63]. For instance, multi-459 

host pathosystems may combine populations having highly contrasted characteristics, such as size (a 460 

large size leading to more deterministic dynamics while a small one enhances stochastic events) and 461 
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movement patterns (vectors spread continuously while livestock trade and human activity give rise to 462 

discrete long-distance jumps). In addition, the level of required details may differ, possibly leading to 463 

combine aggregated representation (i.e. CBM) with preservation of individuals (i.e. IBM). The 464 

integration of such features into both the DSL and the generic engine (especially as new agent classes) 465 

will enable modellers to address such computational challenges in epidemiological modelling. 466 

From the point of view of computer science, adapting the original multi-level agent-based meta-467 

model [41, 50] to epidemiological issues also was fruitful. Dealing with aggregation and disaggregation 468 

in an adaptive way is a challenging open question in multi-level modelling. The architecture designed 469 

for multi-scale epidemiological systems will provide clues for building similar structures in general-470 

purpose agent-based systems, and continue the identification and characterization of design patterns in 471 

multi-level agent-based simulation initiated in [55]. 472 

We consider our contribution a first step towards a standardized DSL for epidemiology. Though 473 

initiated in the context of animal health, our approach is generic and modular enough to extend to human 474 

and plant epidemiology. The generalization of such methods could enhance significantly the 475 

reactiveness of modelers in sketching, assessing, and recommending reliable and efficient control 476 

measures against outbreaks, accounting for possible biases in model predictions arising from uncertainty 477 

in model assumptions. 478 
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