1	DENTATE GYRUS ACTIVIN SIGNALING MEDIATES THE ANTIDEPRESSANT
2	TREATMENT RESPONSE
3	
4 5	Mark M. Gergues ^{1,2,*} , Christine N. Yohn ^{1,*} , Marjorie R. Levinstein ³ , Benjamin A. Samuels ^{1#}
6 7	¹ Department of Psychology, Rutgers, The State University of New Jersey, New Brunswick, New
8	Jersey, United States of America
9	² Department of Neuroscience, University of California San Francisco, San Francisco, California,
10	United States of America
11	³ Department of Neuroscience, University of Washington, Seattle, Washington, United States of
12	America
13	
14	* These authors contributed equally
15	# Address correspondence to: ben.samuels@rutgers.edu
16 17 18 19	
20 21	Keywords: depression, dentate gyrus, activin, fluoxetine, treatment resistance, antidepressant

ACTIVIN SIGNALING IN DG MEDIATES THE ANTIDEPRESSANT RESPONSE

22 ABSTRACT

23 Antidepressants that target monoaminergic systems, such as selective serotonin reuptake 24 inhibitors (SSRIs), are widely used to treat neuropsychiatric disorders including major depressive 25 disorder, several different anxiety disorders, and obsessive-compulsive disorder. However, these 26 treatments are not ideal because only a subset of patients achieve remission. The reasons why 27 some individuals remit to antidepressant treatments while others do not are unknown. Here, we 28 developed a paradigm to assess antidepressant treatment resistance in mice. Treatment of mice 29 with either chronic corticosterone or chronic social defeat stress effectively induces increased 30 negative valence behaviors. Subsequent chronic treatment with the SSRI fluoxetine reverses 31 these behavioral changes in some, but not all, of the mice, permitting stratification into persistent 32 responders and non-responders to fluoxetine. We found several significant differences in 33 expression of Activin signaling-related genes between responders and non-responders to 34 fluoxetine in the dentate gyrus, a region that we recently reported is critical for the beneficial 35 behavioral effects of fluoxetine. Furthermore, enhancement of Activin signaling in the dentate 36 gyrus converted behavioral non-responders into responders to fluoxetine treatment more 37 effectively than commonly used adjunctive antidepressant treatments, while inhibition of Activin 38 signaling in the dentate gyrus converted responders into non-responders. Taken together, these 39 results demonstrate that the behavioral response to FLX can be bidirectionally modified via 40 targeted manipulations of the dentate gyrus and suggest that molecular- and neural circuit-based 41 modulations of dentate gyrus may provide a new therapeutic avenue for more effective 42 antidepressant treatments or adjunctive therapies.

43

ACTIVIN SIGNALING IN DG MEDIATES THE ANTIDEPRESSANT RESPONSE

45 INTRODUCTION

46 Approximately 32-35 million adults in the US population (16%) experience an episode of 47 major depression in their lifetime¹, and commonly used treatments, such as selective serotonin 48 reuptake inhibitors (SSRIs), are not ideal since only a subset of patients (~33%) achieves 49 remission with initial treatment^{2,3}. However, despite this large population of non-remitters, the 50 reasons why some individuals remit to antidepressant treatments while others do not remain 51 unknown. Given that SSRIs are widely used to treat not only major depressive disorder, but also 52 several anxiety disorders and obsessive-compulsive disorder, improving our understanding of the 53 basis of this treatment resistance is of paramount importance. One approach is to decipher the 54 neural circuitry and molecular mechanisms that underlie antidepressant treatment response and 55 resistance.

56 Several brain regions, including prefrontal and cingulate cortices, amygdala, thalamus, 57 hypothalamus, nucleus accumbens, and hippocampus are implicated in mood disorders through 58 imaging and postmortem studies^{4,5}. Within the hippocampus, several preclinical studies in 59 rodents demonstrate that the dentate gyrus (DG) subfield is an essential component of the neural 60 circuitry mediating the antidepressant response. Serotonin 1A receptors on mature dentate gyrus 61 (DG) granule cells are critical mediators of the negative valence behavioral and the 62 neuroendocrine response to the SSRI fluoxetine⁶. Furthermore, chronic treatment with most 63 antidepressants (including SSRIs) stimulates adult neurogenesis in the dentate gyrus (DG)^{7,8}. 64 Chronic SSRI treatment increases proliferation of dividing neural precursor cells and promotes 65 maturation and integration of young adult born granule cells (abGCs) into the DG and ablation or 66 impairment of this neurogenic niche results in the loss of some antidepressant-mediated behaviors⁷⁻¹². Direct peptide infusions of brain-derived neurotrophic factor (BDNF), vascular 67 68 endothelial growth factor (VEGF), or Activin A, yield an antidepressant-like behavioral

ACTIVIN SIGNALING IN DG MEDIATES THE ANTIDEPRESSANT RESPONSE

69	response ¹³⁻¹⁷ . Likewise, targeting entorhinal cortex projections to the DG yields an
70	antidepressant-like behavioral response ¹⁸ . Optogenetic and chemogenetic manipulations of
71	ventral DG granule cells demonstrate a role in anxiety-related behaviors and stress resilience ¹⁹⁻²¹ .
72	Serotonin 1B receptors on cholecystokinin (CCK) inhibitory interneurons in the DG are also
73	essential for mediating the negative valence behavioral response to SSRI treatment ²² . Finally,
74	humans suffering from major depressive disorder have fewer DG GCs than controls and DG
75	volume is inversely correlated with the number of depressive episodes ^{23,24} . Taken together, all of
75 76	volume is inversely correlated with the number of depressive episodes ^{23,24} . Taken together, all of these data indicate that the DG is a principal component of the neural circuitry mediating the
76	these data indicate that the DG is a principal component of the neural circuitry mediating the
76 77	these data indicate that the DG is a principal component of the neural circuitry mediating the antidepressant response. Therefore, both molecular and functional manipulations of the DG will

81 Exposure of rodents to chronic stressful experiences can induce a long-lasting affective 82 state in which there are increases in negative valence behaviors. This negative affective state is 83 often associated with or described as an experimental system to study mood disorders. Several 84 highly distinct stress paradigms are commonly used for this purpose, including chronic mild 85 stress, chronic social defeat stress, and chronic administration of glucocorticoids^{11,25-37}. 86 Importantly, these stressed rodents can be treated with antidepressants to reverse the negative 87 valence behaviors and better understand the neural effects of antidepressants. Interestingly, we 88 have noticed that in the Novelty Suppressed Feeding (NSF) behavioral task, SSRI treatment only 89 reverses the effects of chronic glucocorticoid administration in a subset of mice, suggesting that there may be responders and non-responders to antidepressant treatment 29,38 . Therefore, we 90 91 sought to better understand and characterize this potential treatment resistance phenotype and

- 92 then to assess differences in the DG between responders and non-responders in order to
- 93 determine how to manipulate the DG to modify the response to antidepressant treatment.

ACTIVIN SIGNALING IN DG MEDIATES THE ANTIDEPRESSANT RESPONSE

94 **RESULTS**

95

96 Behavioral Responders and Non-Responders to FLX treatment following CORT

97 administration

98 To better understand the potential treatment resistance phenotype following chronic stress 99 and antidepressant treatment, we began by exposing a cohort (n=70) of group housed 8-week-100 old male C57BL/6J mice to chronic administration with either vehicle or corticosterone 101 (CORT, 5mg/kg/day via drinking water). Chronic CORT administration at this dosage induces 102 several negative valence behaviors, including increased latency to feed in NSF and decreased 103 open arm entries and duration in the elevated plus maze (EPM)¹¹. We administered vehicle or 104 CORT for 4 weeks and then added either vehicle or the SSRI fluoxetine (FLX, Prozac, 105 18mg/kg/day) to the treatment paradigm for an additional 3 weeks (timeline of treatments in 106 Figure 1a). As expected, chronic CORT induced an increased latency to feed in NSF relative to 107 vehicle only treated mice (CORT+VEH vs VEH p = 0.004, logrank Mantel-Cox test with 108 Bonferroni correction) and coadministration of CORT and FLX significantly reduced latency to 109 feed relative to CORT treated mice indicative of an antidepressant response (CORT+FLX vs 110 CORT+VEH p < 0.0001, logrank Mantel-Cox with Bonferroni correction) (Figure 1b left). 111 However, closer inspection of the individual latencies of CORT+FLX mice demonstrated a 112 bimodal distribution (Figure 1b right), providing a potential basis for dividing mice into 113 responders and non-responders to FLX treatment groups. Importantly, all mice that received 114 FLX showed similar levels of FLX in their serum (Supplemental Figure 1). Furthermore, food 115 consumption in the home cage was similar among all mice (data not shown). 116 We next exposed the same cohort of C57BL/6J mice to EPM and then the forced swim test 117 (FST), which is a commonly used test of antidepressant efficacy. In the EPM, separate two-way

118	ANOVAs revealed effects of CORT administration and FLX treatment in open arm entries
119	(CORT: $F_{(1,66)} = 9.69$, p = 0.0027, FLX: $F_{(1,66)} = 19.4$, p < 0.0001) and open arm duration
120	(CORT: $F_{(1,66)} = 10.34$, p = 0.002, FLX: $F_{(1,66)} = 15.42$, p = 0.0002) (Figure 1c small panels).
121	To investigate behavioral differences between CORT only treated mice, NSF-defined
122	CORT+FLX responders, and non-responders in the EPM, we next used one-way ANOVAs and
123	found significant differences in open arm entries ($F_{(2,36)} = 33.24$, p < 0.001) and duration ($F_{(2,36)}$
124	= 36.54, $p < 0.001$) (Figure 1c large panels), with Bonferroni-corrected post hoc tests
125	demonstrating that responders had significantly increased open arm entries and duration
126	relative to vehicle treated mice and non-responders (entries and duration: CORT+VEH vs
127	CORT+FLX-R and CORT+FLX-R vs CORT+FLX-NR, all $p < 0.001$). Non-responders did not
128	show any significant differences relative to vehicle treated mice (entries and duration:
129	CORT+VEH vs CORT+FLX-NR, $p > 0.999$ for both). These data suggest that FLX response
130	status is conserved across the NSF and EPM. Similarly, in the FST, a two-way ANOVA
131	revealed effects of both CORT administration ($F_{(1,66)} = 4.83$, p = 0.031) and FLX treatment
132	$(F_{(1,66)} = 22.24, p < 0.0001)$ (Figure 1d small panel) on immobility over the last four minutes of
133	the six minute test. A separate one-way ANOVA demonstrated significant differences in
134	immobility ($F_{(2,36)} = 21.02$, p < 0.001) (Figure 1d large panel), with Bonferroni-corrected post
135	hoc tests demonstrating that responders had significantly decreased immobility relative to
136	vehicle treated mice and non-responders (CORT+VEH vs CORT+FLX-R and CORT+FLX-R
137	vs CORT+FLX-NR, both $p < 0.001$). Non-responders did not show any significant differences
138	relative to vehicle treated mice in the FST (CORT+VEH vs CORT+FLX-NR, $p > 0.999$).
139	Taken together, these data suggest that FLX response status across NSF, EPM, and FST is
140	conserved in CORT-treated mice.

141	A negative affect index was next used to assess the behavior of this cohort of mice
142	across EPM, NSF, and FST as previously described ^{39,40} (Figure 1e). Briefly, z-scores were
143	calculated in each behavioral test (EPM, NSF, FST) by normalizing individual animals against
144	control group averages and standard deviation. Each behavioral test z-score was then averaged
145	for each animal and group averages were calculated. The score shows a more comprehensive
146	analysis of behavior across multiple behavioral modalities where a score above zero represents
147	an animal that shows low open arm entries and time in the EPM, high immobility times in the
148	FST, and longer latency to feed in the NSF task relative to control. A two-way ANOVA
149	revealed significant effects of CORT ($F_{(1,66)} = 6.41$, p = 0.013) and FLX ($F_{(1,66)} = 12$, p =
150	0.0009) treatment on the negative affect index (Figure 1e small panel). A separate one-way
151	ANOVA demonstrated significant differences in negative affect index ($F_{(2,36)} = 261.4$, p <
152	0.001), with Bonferroni-corrected post hoc tests demonstrating that responders had a
153	significantly decreased negative affect index relative to vehicle treated mice and non-
154	responders (CORT+VEH vs CORT+FLX-R and CORT+FLX-R vs CORT+FLX-NR, both p $\!<\!$
155	0.001) (Figure 1e large panel). Non-responders did not have a significantly different negative
156	affect index than vehicle treated mice (CORT+VEH vs CORT+FLX-NR, $p > 0.999$).
157	We next directly assessed the relationship between NSF latency to feed and behavioral
158	performance in the EPM and FST among CORT+FLX treated mice. Significant relationships
159	emerged between NSF latency to feed and open arm time (Pearson $r = -0.786$, p < 0.0001,
160	Figure 1f), as well as NSF latency to feed and immobility duration (Pearson $r = 0.773$, p <
161	0.0001). To characterize these relationships further we ran two separate linear regressions, with
162	NSF latency and open arm time having a linear regression line ($y = -6.02x + 780$, $F_{(1,21)} =$

ACTIVIN SIGNALING IN DG MEDIATES THE ANTIDEPRESSANT RESPONSE

163 33.9, p < 0.0001), and FST linear regression line (y = 4.63x - 415, $F_{(1,21)} = 31.1$, p < 0.0001) 164 (Figure 1f).

165 Finally, we wanted to assess whether the responder and non-responder phenotypes persisted 166 across several months (Figure 1g). To this end, we exposed a new cohort of C57BL/6J mice to 167 CORT+FLX as in Figure 1a, and then assessed behavior in NSF. Similar to the cohort in Figure 168 1b, the CORT+FLX mice displayed a bimodal distribution of latencies to feed. These mice then 169 remained on CORT+FLX and were retested several times in the NSF. Importantly, the 170 responder vs non-responder behavioral distinction persists for at least 6 months (repeated 171 measures ANOVA reveals significant effect of response status $[F_{(1,22)} = 4350, p < 0.0001]$, but 172 not time [$F_{(3,66)} = 0.255$, p = 0.8573]). Therefore, the CORT+FLX paradigm permits definition 173 of persistent responders and non-responders to FLX treatment and potentially allows for 174 additional manipulations in attempts to convert non-responders into responders.

175

Dentate Gyrus mRNA expression of Activin signaling components correlates with behavioral response to FLX treatment following CORT administration

We previously published a preliminary microarray study assessing DG gene expression in CORT+VEH and CORT+FLX-treated mice³⁸. However, when we looked at CORT+FLX responders vs non-responders in these microarray data, pathway analyses suggested that there were differences in multiple components of DG Activin signaling. We were particularly interested in further analyzing this pathway because previous reports have demonstrated that some Activin signaling components are altered in DG by antidepressant treatment and that acute Activin A infusions have antidepressant-like effects in FST^{16,17}.

185	To fully characterize Activin signaling in DG of responders and non-responders, we
186	prepared a new cohort of vehicle, CORT+VEH, and CORT+FLX treated mice (behavioral data
187	in Supplemental Figure 2), and prepared DG RNA following behavioral testing. Two-way
188	ANOVAs revealed significant effects of FLX treatment on DG expression of Activin A (Figure
189	2a middle panel, $F_{(1,62)} = 85.51$, p < 0.0001), the Activin receptors acvr1a (Figure 2b middle
190	panel, $F_{(1,62)} = 28.15$, p < 0.0001) and acvr1c (Figure 2d middle panel, $F_{(1,62)} = 35.37$, p <
191	0.0001), and the intracellular signaling protein smad3 (Figure 2f middle panel, $F_{(1,62)} = 45.19$, p
192	< 0.0001) and of CORT administration on Activin A (Figure 2a middle panel, $F_{(1,62)} = 5.01$, p =
193	0.0288) and acvr1b (Figure 2c middle panel, $F_{(1,62)} = 7.285$, p = 0.009). Separate one-way
194	ANOVAs were next used to compare DG expression of these genes in CORT+FLX responders,
195	CORT+FLX non-responders, and CORT+VEH mice. These analyses revealed significant
196	group differences in Activin A (Figure 2a left panel, $F_{(2,36)} = 81.68$, p < 0.001), acvr1a (Figure
197	2b left panel, $F_{(2,36)} = 34.7$, p < 0.001), acvr1c (Figure 2d left panel, $F_{(2,36)} = 56.97$, p < 0.001),
198	smad2 (Figure 2e left panel, $F_{(2,36)} = 23.73$, p < 0.001), and smad3 (Figure 2f left panel, $F_{(2,36)} =$
199	72.33, p < 0.001). Interestingly, CORT+FLX responders showed increased expression of
200	Activin A (Figure 2a), acvr1a (Figure 2b), acvr1c (Figure 2d), and smad3 (Figure 2f) (p < 0.001
201	for all, Bonferroni corrected) relative to CORT only treated mice and non-responders to
202	CORT+FLX. When comparing CORT+FLX non-responders to CORT+VEH mice, we found a
203	significant difference in activin A (p = 0.047, Bonferroni corrected) and smad2 expression (p <
204	0.001, Bonferroni corrected), but not in acvr1a, acvr1b, acvr1c, or smad3 expression (all p >
205	0.999, Bonferroni corrected). Finally, we directly compared NSF latency to feed with DG
206	expression of these genes. Significant relationships emerged between NSF latency to feed and
207	expression of activin A (Pearson $r = -0.817$, p < 0.0001), with linear regression line ($y =$

ACTIVIN SIGNALING IN DG MEDIATES THE ANTIDEPRESSANT RESPONSE

208	$-3.23x + 2480$, $F_{(1,23)} = 46.2$, p < 0.0001) (Figure 2a right panel), acvr1a (Pearson $r = -0.76$, p
209	< 0.0001), with linear regression line ($y = -0.219x + 243$, $F_{(1,25)} = 31.5$, p < 0.0001) (Figure
210	2b right panel), acvr1c (Pearson $r = -0.815$, p < 0.0001), with linear regression line ($y =$
211	$-0.271x + 269$, $F_{(1,23)} = 49.9$, p < 0.0001) (Figure 2d right panel), smad2 (Pearson $r = 0.727$,
212	p < 0.0001), with linear regression line ($y = 0.108x + 69.3$, $F_{(1,23)} = 49.9$, p < 0.0001) (Figure
213	2e right panel), and smad3 (Pearson $r = -0.858$, p < 0.0001), with linear regression line ($y =$
214	$-0.221x + 240$, $F_{(1,23)} = 49.9$, p < 0.0001) (Figure 2f right panel). Taken together, all of these
215	data demonstrate that DG Activin signaling is significantly different between responders and
216	non-responders to FLX treatment.
217	
218	Responders and Non-Responders to FLX treatment following chronic social defeat stress
219	replicate the behavioral and DG Activin signaling expression data from the CORT
21)	repression and for the control and for the control of the control
220	administration paradigm
220	administration paradigm
220 221	<i>administration paradigm</i> To confirm that these effects on behavior and Activin signaling were due to differential
220 221 222	<i>administration paradigm</i> To confirm that these effects on behavior and Activin signaling were due to differential responses to FLX treatment and not a direct or secondary effect of CORT administration, we
220221222223	<i>administration paradigm</i> To confirm that these effects on behavior and Activin signaling were due to differential responses to FLX treatment and not a direct or secondary effect of CORT administration, we next repeated these experiments using a distinct chronic stress paradigm. Chronic social defeat
 220 221 222 223 224 	<i>administration paradigm</i> To confirm that these effects on behavior and Activin signaling were due to differential responses to FLX treatment and not a direct or secondary effect of CORT administration, we next repeated these experiments using a distinct chronic stress paradigm. Chronic social defeat stress (CSDS) is a widely used stress paradigm that involves exposing mice to multiple daily
 220 221 222 223 224 225 	<i>administration paradigm</i> To confirm that these effects on behavior and Activin signaling were due to differential responses to FLX treatment and not a direct or secondary effect of CORT administration, we next repeated these experiments using a distinct chronic stress paradigm. Chronic social defeat stress (CSDS) is a widely used stress paradigm that involves exposing mice to multiple daily defeats by a conspecific from a larger, more aggressive strain. To this end, we exposed a large
 220 221 222 223 224 225 226 	<i>administration paradigm</i> To confirm that these effects on behavior and Activin signaling were due to differential responses to FLX treatment and not a direct or secondary effect of CORT administration, we next repeated these experiments using a distinct chronic stress paradigm. Chronic social defeat stress (CSDS) is a widely used stress paradigm that involves exposing mice to multiple daily defeats by a conspecific from a larger, more aggressive strain. To this end, we exposed a large cohort (n=125) of 8-week-old male C57BL/6J mice to 10 days of either control or CSDS by
 220 221 222 223 224 225 226 227 	<i>administration paradigm</i> To confirm that these effects on behavior and Activin signaling were due to differential responses to FLX treatment and not a direct or secondary effect of CORT administration, we next repeated these experiments using a distinct chronic stress paradigm. Chronic social defeat stress (CSDS) is a widely used stress paradigm that involves exposing mice to multiple daily defeats by a conspecific from a larger, more aggressive strain. To this end, we exposed a large cohort (n=125) of 8-week-old male C57BL/6J mice to 10 days of either control or CSDS by CD1 male mice prescreened for aggressive behavior (timeline in Figure 3a). The C57BL/6J

231	a social interaction test, which indicated that n=35 of the CSDS exposed mice were susceptible
232	(SUS) to the CSDS (Supplemental Figure 3). Control and SUS mice were next administered
233	either VEH or FLX (18mg/kg/day) for 3 weeks and then exposed to a series of negative
234	behavior valence tests. Similar to CORT, SUS mice had an increased latency to feed in NSF
235	relative to control (SUS+VEH vs VEH, $p = 0.0003$, logrank Mantel-Cox test with Bonferroni
236	correction) (Figure 3b left) and administration of FLX to SUS mice significantly reduced
237	latency to feed (SUS+FLX vs SUS+VEH, $p < 0.0001$, logrank Mantel-Cox test with Bonferroni
238	correction). Interestingly, similar to CORT, the individual latencies of the SUS+FLX mice
239	showed a bimodal distribution indicative of responders and non-responders to FLX treatment
240	(Figure 3b right).
241	The same cohort of mice were next exposed to EPM and FST, and two-way ANOVAs
242	revealed significant effects of FLX treatment for EPM open arm entries ($F_{(1,67)} = 14.6$, p =
243	0.0003) (Figure 3c small panel), EPM open arm duration ($F_{(1,67)} = 13.35$, p = 0.0005) (Figure
244	3c small panel), and FST immobility ($F_{(1,67)} = 14.68$, p = 0.00030) (Figure 3d small panel) and
245	of CSDS on EPM open arm duration ($F_{(1,67)} = 6.993$, p = 0.0102) (Figure 3c small panel).
246	Subsequent one-way ANOVAs revealed significant differences in EPM open arm entries
247	$(F_{(2,32)} = 20.17, p < 0.001)$ (Figure 3c large panel), EPM open arm duration $(F_{(2,32)} = 19.12, p < 0.001)$
248	0.001) (Figure 3c large panel), and FST immobility ($F_{(2,32)} = 23.34$, p < 0.001) (Figure 3d large
249	panel), with SUS+FLX responders showing increased EPM open arm entries and duration and
250	decreased FST immobility relative to SUS+FLX non-responders and SUS+VEH mice (p $\!<\!$
251	0.001 for all, Bonferroni corrected). SUS+FLX non-responders were not significantly different
252	than SUS+VEH mice in EPM open arm entries, EPM open arm duration, and FST immobility
253	(p > 0.999 for all, Bonferroni corrected). A two-way ANOVA assessing negative affect index

254	in this cohort of mice demonstrated a significant effect of FLX treatment ($F_{(1,67)}$ = 18.8, p <
255	0.0001) (Figure 3e small panel). The subsequent one-way ANOVA found significant group
256	differences ($F_{(2,32)} = 64.66$, p < 0.001) (Figure 3e large panel), with SUS+FLX responders
257	showing a decreased negative affect index relative to SUS+VEH and SUS+FLX non-
258	responders (p < 0.001 for both, Bonferroni corrected). SUS+FLX non-responders were not
259	significantly different than SUS+VEH mice (p > 0.999, Bonferroni corrected). Significant
260	relationships also emerged when we directly compared NSF latency to feed to EPM open arm
261	duration (Pearson $r = -0.723$, p = 0.0007), with linear regression line ($y = -4.05x + 641$,
262	$F_{(1,16)} = 17.5$, p = 0.0007), and to FST immobility (Pearson $r = 0.864$, p < 0.0001), with linear
263	regression line ($y = 4.22x - 302$, $F_{(1,16)} = 47.2$, p < 0.0001) (Figure 3f). Taken together, these
264	data replicate the CORT behavioral data and demonstrate that FLX response status across NSF,
265	EPM, and FST is conserved in mice susceptible to CSDS.
266	We next assessed mRNA expression of Activin signaling components in the DG of the
267	CSDS cohort of mice. Two-way ANOVAs revealed significant effects of FLX treatment on DG
268	
	expression of Activin A (Figure 4a middle panel, $F_{(1,26)} = 37.45$, p < 0.0001), acvr1a (Figure 4b
269	expression of Activin A (Figure 4a middle panel, $F_{(1,26)} = 37.45$, p < 0.0001), acvr1a (Figure 4b middle panel, $F_{(1,26)} = 7.717$, p = 0.0127), acvr1c (Figure 4d middle panel, $F_{(1,26)} = 15.58$, p =
269 270	
	middle panel, $F_{(1,26)} = 7.717$, p = 0.0127), acvr1c (Figure 4d middle panel, $F_{(1,26)} = 15.58$, p =
270	middle panel, $F_{(1,26)} = 7.717$, p = 0.0127), acvr1c (Figure 4d middle panel, $F_{(1,26)} = 15.58$, p = 0.0005), and smad3 (Figure 4f middle panel, $F_{(1,26)} = 12.64$, p = 0.0015) and of CSDS on
270 271	middle panel, $F_{(1,26)} = 7.717$, p = 0.0127), acvr1c (Figure 4d middle panel, $F_{(1,26)} = 15.58$, p = 0.0005), and smad3 (Figure 4f middle panel, $F_{(1,26)} = 12.64$, p = 0.0015) and of CSDS on acvr1b (Figure 4c middle panel, $F_{(1,26)} = 5.808$, p = 0.023). Subsequent one-way ANOVAs
270 271 272	middle panel, $F_{(1,26)} = 7.717$, p = 0.0127), acvr1c (Figure 4d middle panel, $F_{(1,26)} = 15.58$, p = 0.0005), and smad3 (Figure 4f middle panel, $F_{(1,26)} = 12.64$, p = 0.0015) and of CSDS on acvr1b (Figure 4c middle panel, $F_{(1,26)} = 5.808$, p = 0.023). Subsequent one-way ANOVAs found significant group differences for Activin A (Figure 4a left panel, $F_{(2,15)} = 54.65$, p <
270 271 272 273	middle panel, $F_{(1,26)} = 7.717$, p = 0.0127), acvr1c (Figure 4d middle panel, $F_{(1,26)} = 15.58$, p = 0.0005), and smad3 (Figure 4f middle panel, $F_{(1,26)} = 12.64$, p = 0.0015) and of CSDS on acvr1b (Figure 4c middle panel, $F_{(1,26)} = 5.808$, p = 0.023). Subsequent one-way ANOVAs found significant group differences for Activin A (Figure 4a left panel, $F_{(2,15)} = 54.65$, p < 0.001), acvr1a (Figure 4b left panel, $F_{(2,15)} = 9.82$, p = 0.002), acvr1b (Figure 4c left panel,
270 271 272 273 274	middle panel, $F_{(1,26)} = 7.717$, p = 0.0127), acvr1c (Figure 4d middle panel, $F_{(1,26)} = 15.58$, p = 0.0005), and smad3 (Figure 4f middle panel, $F_{(1,26)} = 12.64$, p = 0.0015) and of CSDS on acvr1b (Figure 4c middle panel, $F_{(1,26)} = 5.808$, p = 0.023). Subsequent one-way ANOVAs found significant group differences for Activin A (Figure 4a left panel, $F_{(2,15)} = 54.65$, p < 0.001), acvr1a (Figure 4b left panel, $F_{(2,15)} = 9.82$, p = 0.002), acvr1b (Figure 4c left panel, $F_{(2,15)} = 3.78$, p = 0.047), acvr1c (Figure 4d left panel, $F_{(2,15)} = 16.24$, p < 0.001), smad2 (Figure 4d left panel, $F_{(2,15)} = 16.24$, p < 0.001), smad2 (Figure 4d left panel, $F_{(2,15)} = 16.24$, p < 0.001), smad2 (Figure 4d left panel), $F_{(2,15)} = 16.24$, p < 0.001), smad2 (Figure 4d left panel), $F_{(2,15)} = 16.24$, p < 0.001), smad2 (Figure 4d left panel), $F_{(2,15)} = 16.24$, p < 0.001), smad2 (Figure 4d left panel), $F_{(2,15)} = 16.24$, p < 0.001), smad2 (Figure 4d left panel), $F_{(2,15)} = 16.24$, p < 0.001), smad2 (Figure 4d left panel), $F_{(2,15)} = 16.24$, p < 0.001), smad2 (Figure 4d left panel), $F_{(2,15)} = 16.24$, p < 0.001), smad2 (Figure 4d left panel), $F_{(2,15)} = 16.24$, p < 0.001), smad2 (Figure 4d left panel), $F_{(2,15)} = 16.24$, p < 0.001), smad2 (Figure 4d left panel), $F_{(2,15)} = 16.24$, p < 0.001), smad2 (Figure 4d left panel), $F_{(2,15)} = 16.24$, p < 0.001), smad2 (Figure 4d left panel), $F_{(2,15)} = 16.24$, p < 0.001), smad2 (Figure 4d left panel), $F_{(2,15)} = 16.24$, p < 0.001), smad2 (Figure 4d left panel), $F_{(2,15)} = 16.24$, p < 0.001), smad2 (Figure 4d left panel), $F_{(2,15)} = 16.24$, p < 0.001), smad2 (Figure 4d left panel), $F_{(2,15)} = 16.24$, p < 0.001), smad2 (Figure 4d left panel), $F_{(2,15)} = 16.24$, p < 0.001), smad2 (Figure 4d left panel), F_{(2,15)} = 16.24, p < 0.001), smad2 (Figure 4d left panel), F_{(2,15)} = 16.24, p < 0.001), smad2 (Figure 4d left panel), F_{(2,15)} = 16.24, p < 0.001), smad2 (Figure 4d left panel), F_{(2,15)} = 16.24, p

ACTIVIN SIGNALING IN DG MEDIATES THE ANTIDEPRESSANT RESPONSE

277	4a), acvr1a (Figure 4b, SUS+VEH vs SUS+FLX-R (p = 0.004), SUS+FLX-R VS SUS+FLX-
278	NR ($p = 0.006$)), acvr1c (Figure 4d), and smad3 (Figure 4f) (all Bonferroni corrected, $p < 0.001$
279	for all except acvr1a) relative to SUS+VEH mice and SUS+FLX non-responders. By contrast,
280	similar to CORT, expression of acvr1a, acvr1c, and smad3 were not significantly different
281	between SUS+FLX non-responders and SUS+VEH mice (p > 0.999 for all, Bonferroni
282	corrected). Activin A expression was significantly increased in SUS+FLX non-responders
283	relative to SUS+VEH mice ($p = 0.035$, Bonferroni corrected).
284	Finally, we directly compared NSF latency to feed with DG expression of these genes in
285	responders and non-responders. Significant relationships emerged between NSF latency to feed
286	and expression of activin A (Pearson $r = -0.900$, p < 0.0001), with linear regression line ($y =$
287	$-3.70x + 2920$, $F_{(1,10)} = 42.5$, p < 0.0001) (Figure 4a right panel), acvr1a (Pearson $r = -0.765$,
288	p = 0.0038), with linear regression line ($y = -0.145x + 189$, $F_{(1,10)} = 14.1$, p = 0.0038) (Figure
289	4b right panel), acvr1c (Pearson $r = -0.848$, p = 0.0005), with linear regression line (y =
290	$-0.278x + 259$, $F_{(1,10} = 25.7$, p = 0.0005) (Figure 4d right panel), and smad3 (Pearson r = -
291	0.832, p = 0.0008), with linear regression line ($y = -0.261x + 263$, $F_{(1,10)} = 22.4$, p = 0.0008)
292	(Figure 4f right panel). Taken together, these data replicate the CORT Activin data and
293	demonstrate that DG Activin signaling is significantly different between responders and non-
294	responders to FLX treatment. Furthermore, in two distinct stress paradigms, FLX response
295	status is conserved across behavior and DG Activin signaling.
296	
297	Chronic Activin A infusions into DG convert FLX non-responders into responders
298	Since our gene expression data indicate that several components of DG Activin signaling,

299 including Activin A itself, are decreased in FLX non-responders relative to responders, we

300	wanted to test whether this altered signaling underlies the lack of behavioral response to FLX.
301	Acute Activin A infusions directly into DG yield an antidepressant-like response in FST ^{16,17} , so
302	we reasoned that development of a chronic Activin A infusion paradigm into DG could
303	potentially convert non-responders to FLX into responders. Since CORT+FLX response status
304	persists for at least six months, we exposed a large cohort of C57BL/6J mice to CORT+FLX,
305	and then non-responders (n=36) received bilateral cannula implants and were infused once
306	daily for two weeks with either vehicle (0.1% BSA), Activin A peptide (1.0 μ g per hemisphere)
307	into DG, or Activin A peptide (1.0 μ g per hemisphere) into CA1 (timeline in Figure 5a). These
308	mice were then exposed to NSF, EPM, and FST. Remarkably, CORT+FLX non-responders that
309	received chronic Activin A infusions into DG had reduced latency to eat in the NSF relative to
310	non-responders that received vehicle ($p < 0.0001$, logrank Mantel-Cox test with Bonferroni
311	correction) or chronic Activin A infusions into CA1 ($p < 0.0001$, logrank Mantel-Cox test with
312	Bonferroni correction) (Figure 5b). Closer inspection of individual latencies demonstrated that
313	all CORT+FLX non-responders that received DG Activin A infusions were converted into
314	responders in the NSF. Group differences were also observed in the EPM for open arm entries
315	$(F_{(2,33)} = 31.6, p < 0.0001, Figure 5c)$ and duration $(F_{(2,33)} = 58.9, p < 0.0001, Figure 5c)$ and in
316	the FST for immobility ($F_{(2,33)} = 57.4$, p < 0.0001, Figure 5d). CORT+FLX non-responders that
317	received DG Activin A infusions had increased open arm entries and duration and decreased
318	immobility relative to non-responders that received vehicle ($p < 0.0001$ for all, Bonferroni
319	corrected) or chronic Activin A infusions into CA1 (p < 0.0001 for all, Bonferroni corrected).
320	These data indicate that non-responders to CORT+FLX were converted into responders in
321	NSF, EPM, and FST. The negative affect index also demonstrated group differences ($F_{(2,33)}$ =
322	647, p < 0.0001), with CORT+FLX non-responders that received DG Activin A infusions

ACTIVIN SIGNALING IN DG MEDIATES THE ANTIDEPRESSANT RESPONSE

323	showing reduced negative affect relative to CORT+FLX non-responders that received vehicle
324	or Activin A infusions into CA1 ($p < 0.0001$ for both, Bonferroni corrected). Significant
325	relationships also emerged when we directly compared NSF latency to feed to EPM open arm
326	duration (Pearson $r = -0.873$, p < 0.0001), with linear regression line ($y = -5.81x - 864$,
327	$F_{(1,34)} = 109$, p < 0.0001), and to FST immobility (Pearson $r = 0.891$, p < 0.0001), with linear
328	regression line ($y = 3.77x - 160$, $F_{(1,34)} = 131$, p < 0.0001) (Figure 5f). Taken together, these
329	data demonstrate that supplementing Activin signaling in DG can convert FLX non-responders
330	into responders across NSF, EPM, and FST.

331

332 Inhibition of Activin signaling in DG converts FLX responders into non-responders

333 Since chronic Activin A infusions into DG can convert FLX non-responders into 334 responders, we next wanted to test whether DG Activin signaling was necessary for the 335 behavioral response to FLX. Specifically, we sought to determine whether inhibition of Activin 336 signaling in DG converts FLX responders into non-responders. Inhibin is an endogenously 337 occurring protein complex that has nearly opposite biological effects to Activin⁴¹. Inhibin binds 338 directly to Activin receptor complexes, where Activin and Inhibin act as mutual antagonists to 339 each other⁴¹. Therefore, a cohort of C57BL/6J CORT+FLX responders (n=36) received 340 bilateral cannula implants and were infused once daily for two weeks with either vehicle (0.1% 341 BSA), Inhibin A peptide (1.0 µg per hemisphere) into DG, or Inhibin A peptide (1.0 µg per 342 hemisphere) into CA1 (timeline in Figure 6a). These mice were then exposed to NSF, EPM, 343 and FST. Excitingly, CORT+FLX responders that received chronic Inhibin A infusions into 344 DG had increased latency to eat in the NSF relative to non-responders that received vehicle (p 345 < 0.0001, logrank Mantel-Cox test with Bonferroni correction) or chronic Inhibin A infusions

ACTIVIN SIGNALING IN DG MEDIATES THE ANTIDEPRESSANT RESPONSE

346	into CA1 (p < 0.0001, logrank Mantel-Cox test with Bonferroni correction) (Figure 6b). Group
347	differences were also observed in the EPM for open arm entries ($F_{(2,33)} = 12.9$, p < 0.0001,
348	Figure 6c) and duration ($F_{(2,33)} = 24.1$, p < 0.0001, Figure 6c) and in the FST for immobility
349	$(F_{(2,33)} = 39.4, p < 0.0001, Figure 6d)$. CORT+FLX responders that received DG Inhibin A
350	infusions had decreased open arm entries and duration and increased immobility relative to
351	responders that received vehicle ($p = 0.0003$ for open arm entries, $p < 0.0001$ for open arm
352	duration and immobility, Bonferroni corrected) or chronic Inhibin A infusions into CA1 (p =
353	0.0003 for open arm entries, $p < 0.0001$ for open arm duration and immobility, Bonferroni
354	corrected). The negative affect index also demonstrated group differences ($F_{(2,33)} = 120$, p <
355	0.0001) (Figure 6e), with CORT+FLX responders that received DG Inhibin A infusions
356	showing increased negative affect relative to CORT+FLX responders that received vehicle or
357	Inhibin A infusions into CA1 (p < 0.0001 for both, Bonferroni corrected). Significant
358	relationships also emerged when we directly compared NSF latency to feed to EPM open arm
359	duration (Pearson $r = -0.776$, p < 0.0001), with linear regression line ($y = -5.99x - 748$,
360	$F_{(1,34)} = 51.3$, p < 0.0001), and to FST immobility (Pearson $r = 0.864$, p < 0.0001), with linear
361	regression line ($y = 4.46x - 391$, $F_{(1,34)} = 100$, p < 0.0001) (Figure 6f). Taken together, these
362	data demonstrate that Activin signaling in the DG is necessary for the behavioral effects of
363	FLX treatment as directly inhibiting Activin signaling in DG converts FLX responders into
364	non-responders across NSF, EPM, and FST. Furthermore, these data demonstrate that FLX
365	behavioral response status can be bidirectionally modified by manipulating DG Activin
366	signaling.

ACTIVIN SIGNALING IN DG MEDIATES THE ANTIDEPRESSANT RESPONSE

368 Coinfusion of Activin A and Inhibin A into Non-Responders blocks the effects of Activin A on 369 behavior

370	To confirm that the effects of chronic DG Activin A infusions into CORT+FLX non-
371	responders were directly due to manipulation of Activin signaling as opposed to an off-target
372	effect, we next assessed whether chronic coinfusion of Inhibin A and Activin A blocked the
373	behavioral effects seen with Activin A alone. To this end, a cohort of C57BL/6J CORT+FLX
374	non-responders (n=48) received bilateral cannula implants and were infused once daily for two
375	weeks with either vehicle (0.1% BSA), Activin A peptide into DG (1.0 µg per hemisphere),
376	Inhibin A peptide (1.0 μ g per hemisphere) into DG, or both Activin A and Inhibin A peptides
377	(1.0 μ g of each per hemisphere) into DG (timeline in Figure 7a). These mice were then exposed
378	to NSF, EPM, and FST. In the NSF, chronic DG Activin A infusions into CORT+FLX non-
379	responders decreased latency to eat relative to vehicle, Inhibin A, and Activin A+Inhibin
380	infusions (p < 0.0001 for all, logrank Mantel-Cox test with Bonferroni correction) (Figure 7b).
381	Activin A+Inhibin A coinfusions were not significantly different than vehicle ($p = 0.129$, log-
382	rank Mantel-Cox test with Bonferroni correction) or Inhibin A (p = 0.031, log-rank Mantel-Cox
383	test not significant with Bonferroni correction). Group differences were also observed in the
384	EPM for open arm entries ($F_{(3,44)} = 27.3$, p < 0.0001, Figure 7c) and duration ($F_{(3,44)} = 34$, p <
385	0.0001, Figure 7c) and in the FST for immobility ($F_{(3,44)} = 48.2$, p < 0.0001) (Figure 7d).
386	CORT+FLX non-responders that received DG Activin A had increased open arm entries and
387	duration and decreased immobility relative to responders that received vehicle, Inhibin A, or
388	Activin A+Inhibin infusions (p < 0.0001 for all, Bonferroni-corrected). Activin A+Inhibin
389	coinfusions were not significantly different than vehicle or Inhibin A for EPM open arm
390	entries, open arm duration, or FST immobility ($p > 0.9999$ for all, Bonferroni corrected). The

ACTIVIN SIGNALING IN DG MEDIATES THE ANTIDEPRESSANT RESPONSE

391	negative affect index also demonstrated group differences ($F_{(3,44)} = 538$, p < 0.0001) (Figure
392	7e), with CORT+FLX non-responders that received DG Activin A infusions showing decreased
393	negative affect relative to vehicle, Inhibin A, and Activin A+Inhibin infusions ($p < 0.0001$ for
394	all, Bonferroni corrected). Significant relationships also emerged when we directly compared
395	NSF latency to feed to EPM open arm duration (Pearson $r = -0.821$, p < 0.0001), with linear
396	regression line ($y = -5.23x - 826$, $F_{(1,46)} = 95$, p < 0.0001), and to FST immobility (Pearson r
397	= 0.863, p < 0.0001), with linear regression line ($y = 3.67x - 139$, $F_{(1,46)} = 135$, p < 0.0001)
398	(Figure 7f). Taken together, these data demonstrate that coinfusion of Inhibin A blocks the
399	ability of chronic DG Activin A infusions to convert FLX non-responders into responders
400	across NSF, EPM, and FST, and further suggests that the effects of Activin A infusions are
401	mediated through downstream Activin signaling.
402	
403	Activin A infusions into DG are a more effective augmentation therapy than commonly used

404 *second-line treatments*

405 When human patients do not remit to initial antidepressant therapy, they are usually 406 switched to a new antidepressant. For example, in the large NIMH funded STAR*D study², 407 patients were first treated with citalopram (Celexa, a SSRI). Approximately 33% were found to 408 display remission of depression symptoms. The 67% that did not remit were then subdivided 409 into several groups and switched to either sertraline (Zoloft, a SSRI), bupropion (Wellbutrin, a 410 norepinephrine/dopamine reuptake inhibitor), or venlafaxine (Effexor, a 411 serotonin/norepinephrine reuptake inhibitor). Other groups either remained on citalopram and 412 were augmented with bupropion or received other treatments. Our data suggests that chronic 413 DG Activin A infusions are a very effective augmentation strategy for non-responders to FLX

ACTIVIN SIGNALING IN DG MEDIATES THE ANTIDEPRESSANT RESPONSE

414	treatment. Therefore, we next wanted to assess whether switching mice from FLX to other
415	antidepressants or augmenting FLX with other antidepressants is as effective in converting non-
416	responders into responders as augmenting FLX with Activin A infusions into DG. To this end
417	we exposed a large cohort (n=250) of C57BL/6J mice to chronic CORT+FLX and then
418	assessed their behavior in NSF, where we found that n=79 were non-responders to FLX
419	treatment. Two weeks later, we cannulated all 79 FLX non-responders to bilaterally target the
420	DG and then housed the mice two per cage with a divider (timeline of experiment in Figure 8a).
421	One week after cannulation, we subdivided these non-responders into 6 groups of mice (n=12-
422	14 per group). Two groups remained on FLX, one group was switched to sertraline (SER,
423	10mg/kg/day) ⁴² , one group was switched to bupropion (BUP, 10mg/kg/day) ⁴³ , one group was
424	switched to venlafaxine (VEN, 20mg/kg/day) ⁴⁴ , and the remaining group remained on FLX but
425	also began receiving bupropion (FLX+BUP, 10mg/kg/day of BUP). Then, one week after the
426	groups were formed, we began bilateral infusions. One of the two groups that remained on FLX
427	alone received Activin A infusions, while the other five groups received vehicle infusions.
428	Infusions were given once per day (over a time course of 15 minutes per hemisphere) for two
429	weeks. We then retested these six groups of mice in NSF (Figure 8b). The mice that remained
430	on FLX only and received vehicle infusions remained non-responders. Consistent with the
431	results in Figures 5 and 7, 100% (12/12) of the mice that remained on FLX alone and received
432	Activin A infusions into DG showed decreased latency to eat and were converted into
433	responders (p < 0.0001 relative to FLX alone, logrank Mantel-Cox test with Bonferroni
434	correction) (Figure 8b-c). By contrast, only 28.5% (4/14) of the mice switched to sertraline ($p =$
435	0.0408 relative to FLX alone, logrank Mantel-Cox test, not significant with Bonferroni
436	correction), 30.8% (4/13) of the mice switched to bupropion ($p = 0.0329$, logrank Mantel-Cox

- 437 test, not significant with Bonferroni correction), 35.6% (5/14) of the mice switched to
- 438 venlafaxine (p = 0.0193, logrank Mantel-Cox test, not significant with Bonferroni correction),
- 439 and 38.5% (5/13) of the mice that remained on FLX and were augmented with bupropion (p =
- 440 0.0145, logrank Mantel-Cox test, not significant with Bonferroni correction) were converted
- 441 into responders. Therefore, only the chronic DG Activin A infused group showed a
- significantly decreased latency to eat in NSF relative to the FLX only group. These data
- 443 strongly suggest that direct modulation of Activin signaling in the DG may be a more effective
- 444 augmentation strategy than those that are currently used.

ACTIVIN SIGNALING IN DG MEDIATES THE ANTIDEPRESSANT RESPONSE

445 **DISCUSSION**

446 Our results demonstrate that FLX response status is conserved across several negative 447 valence behavior tests (mice that show a response to FLX in NSF also show a response in EPM 448 and FST and vice versa for non-responders) regardless of whether chronic corticosterone or 449 chronic social defeat stress was used to induce a negative affective state. Furthermore, FLX 450 response status was highly correlated with DG expression of multiple Activin signaling 451 components. Functionally, chronic activation of Activin signaling in the DG successfully 452 converted behavioral non-responders to FLX into responders. By contrast, chronic inhibition of 453 Activin signaling in the DG converted responders to FLX into non-responders. This bidirectional 454 modification is the first evidence that response or resistance to an antidepressant can be altered. 455 Furthermore, these results strongly suggest that Activin signaling in the DG is a necessary 456 component of achieving a behavioral response to antidepressant. Finally, chronic activation of 457 Activin signaling proved to be a more effective augmentation strategy for non-responders to 458 FLX than several commonly used second-line treatments.

459

460 Antidepressant Treatment Resistance

461 Within the United States, approximately 16% of the population will experience an 462 episode of major depression in their lifetime¹. Although commonly used treatments, such as 463 SSRIs, are prescribed to relieve symptoms, only a subset of patients (\sim 33%) achieve remission 464 with initial treatment³. Given that SSRIs are also prescribed widely for several anxiety disorders 465 and obsessive-compulsive disorder, this treatment resistance results in clinicians using decision-466 tree medical algorithms, such as the Texas Medication Algorithm Project (TMAP)⁴⁵, in attempts 467 to combat mood disorders in patients that do not remit to initial lines of treatment. As patients 468 move through different levels of these treatment algorithms, remission rates drop dramatically

ACTIVIN SIGNALING IN DG MEDIATES THE ANTIDEPRESSANT RESPONSE

(~35% with second treatment to ~16% with fourth treatment)^{2,46,47}. Therefore, failure to achieve 469 470 remission within two treatments results in very poor outcomes. These issues plague modern 471 psychiatry and indicate that drugs targeting monoaminergic systems have reached a limit in 472 terms of effectiveness. Much research now focuses on developing drugs that take aim at distinct 473 targets, including glutamate modulators, anticholinergic agents, and opioid modulators rather than monoaminergic systems⁴⁸⁻⁵³. However, it remains unclear why SSRIs and other 474 475 monoaminergic drugs are only effective for a subset of patients. Our unique approach here to 476 assess SSRI treatment resistance in mice suggests that individual molecular differences within 477 the neural circuitry underlying the antidepressant response may underlie response status. Direct 478 activation of Activin signaling in the DG proved to be more effective in converting non-479 responders to FLX treatment into responders. Therefore, similar directed molecular or even 480 neural circuit-based approaches may ultimately prove to be more effective augmentation 481 strategies than blindly switching treatments.

482

483 Dentate Gyrus is a critical component of the neural circuitry mediating the antidepressant 484 response

We assessed molecular differences between FLX responders and non-responders in the DG of mice exposed to chronic stress. Our data suggests that manipulation of DG Activin signaling can bidirectionally alter the behavioral response to FLX. These data further support a growing preclinical literature utilizing ablation, genetic, and neural circuit-based approaches to demonstrate that the DG is a principal component of the neural circuitry regulating both mood and the antidepressant treatment response^{6,9,11,12,19-22}. It remains to be determined whether neural

ACTIVIN SIGNALING IN DG MEDIATES THE ANTIDEPRESSANT RESPONSE

491 circuit-based approaches to modify the DG can alter antidepressant response status in a similar492 fashion to Activin A infusions.

493 Several distinct populations of cells in the DG, including the young adult born granule cells (younger than 8 weeks)^{7,9,11}, mature granule cells (developmentally born or adult born 494 495 granule cells older than 8 weeks)⁶, and cytocholecystokinin (CCK)-positive GABAergic interneurons²² are implicated in mediating the antidepressant treatment response. In all 496 497 likelihood, these distinct populations work in concert via local microcircuitry. One common 498 thread among these cell types is that the young adult born granule cells and CCK-positive 499 interneurons provide an inhibitory influence over the mature granule cells in the ventral DG that 500 is critical for both stress resilience and the antidepressant response^{20,22}. Furthermore, inhibitory 501 5-HT1A receptors on mature granule cells are required for the antidepressant response⁶. Our 502 preliminary microarray data that implicated Activin signaling components in the antidepressant 503 response and all data in this manuscript were from microdissections of the granule cell layer 504 (GCL) of the DG³⁸, which is primarily composed of densely packed mature granule cells and 505 sparse young adult born granule cells⁵⁴. Therefore, we hypothesize that the Activin signaling 506 components are being altered within these cell types. However, it will be important for future 507 work to detail the exact effects of Activin signaling on DG neuronal ensembles, and how Activin 508 signaling affects DG activity and ultimately other components of the neural circuitry underlying 509 the antidepressant response.

510

511 The role of Activin signaling in the antidepressant response

The importance of Activin and Inhibin signaling, as part of the TGF-β superfamily, is
well-understood in the context of development, where Activin plays important roles in erythroid

ACTIVIN SIGNALING IN DG MEDIATES THE ANTIDEPRESSANT RESPONSE

514	cell differentiation, induction of the dorsal mesoderm, and craniofacial development ^{41,55,56} .
515	Activin also plays an essential role in pituitary follicle-stimulating hormone (FSH) production,
516	while Inhibin inhibits FSH production ^{41,55} . However, the roles of these protein complexes are
517	less understood in the context of the developed brain. While basal levels are low, Activin A is
518	rapidly induced in the hippocampus by electroconvulsive seizures and long-term potentiation
519	(LTP)-inducing high frequency stimulation, where it plays a role in the maintenance of long-term
520	memory and late-LTP ⁵⁷⁻⁶⁰ . Activin A and Acvr1A mRNA are upregulated in the DG by chronic
521	treatment with the antidepressant paroxetine and Smad2 phosphorylation is induced by
522	fluoxetine treatment ^{16,17} . Environmental enrichment (EE) induces Activin A mRNA expression
523	in DG and CA3 and increases Smad2/3 phosphorylation in the hippocampus ⁶⁰ . Overexpression
524	of a dominant-negative Acvr1B in mouse forebrain under the CamKII α promoter resulted in
525	anxiolytic-like behavioral effects, a decreased behavioral response to benzodiazepines, enhanced
526	spontaneous GABA release, and increased GABA tonus ⁶¹ . Inducible transgenic expression of
527	Activin A under the CamKIIa promoter resulted in anxiolytic-like behavioral effects in the Open
528	Field, EPM, and Light-Dark Test, while expression of Follistatin, an inhibitor of Activin
529	signaling, under the CamKII α promoter had anxiogenic effects ⁶² . Furthermore, acute Activin A
530	infusions into DG but not CA1 or Amygdala, reduces immobility in FST ^{16,17} . Acute Activin B
531	infusions had no effect. Finally, a human genetic association study found 166 single nucleotide
532	polymorphisms (SNPs) within 10 genes belonging to the Activin signaling pathway as being
533	associated with antidepressant treatment response ¹⁷ . Genetic variants in the betaglycan gene
534	(TGFBR3), a member of the human Activin system, showed the best association, as homozygote
535	carriers of the major allele were significantly more frequent among the responders to

- 536 antidepressant treatment¹⁷. Taken together with our results, it is now clear that Activin signaling
- 537 in the DG is a critical component of the behavioral response to antidepressant treatment.

ACTIVIN SIGNALING IN DG MEDIATES THE ANTIDEPRESSANT RESPONSE

538 ACKNOWLEDGEMENTS

- 539 This work was supported by: NIMH (R01MH112861 and K01MH098188, B.A.S.) and BBRF
- 540 NARSAD Young Investigator Award (B.A.S.). The authors thank Dr. Rene Hen for his guidance
- and mentorship throughout this project, Alice Hu for technical support, and Drs. Dirk Moore and
- 542 John McGann for their advice on statistical analyses.
- 543

544 AUTHOUR CONTRIBUTIONS

- 545 B.A.S. conceived experiments. B.A.S., M.R.L., C.N.Y., and M.M.G. performed the experiments.
- 546 B.A.S., M.M.G., and C.N.Y. analyzed the data and made the figures. C.N.Y., M.M.G., and
- 547 B.A.S. wrote the manuscript.
- 548

549 COMPETING INTERESTS STATEMENT

550 Authors declare no competing interests.

551

ACTIVIN SIGNALING IN DG MEDIATES THE ANTIDEPRESSANT RESPONSE

553 METHODS

Mice. Adult 8-week-old male mice purchased from Jackson labs were housed in groups of three to five per cage with *ad libitum* access to food and water. Mice were on a 12:12-h light/dark schedule. All behavioral testing was conducted during the light period and using the same testing time throughout the experiments. Mouse protocols were approved by the Institutional Animal Care and Use Committee at either Columbia University or at Rutgers, The State University of New Jersey.

560

561 **Drug administration**. Animals were either placed on chronic doses of either vehicle, which 562 consisted of 0.45% β-cyclodextrin in water, or corticosterone (5mg/kg) dissolved in vehicle for 563 duration of experiments. After 4 weeks of either vehicle or corticosterone administration, a 564 subgroup of animals received either vehicle (autoclaved water) or fluoxetine (18mg/kg) via daily 565 oral gavage for throughout the experiment. On the days when mice were subjected to behavioral 566 testing, fluoxetine or vehicle administrations were conducted after the mice completed the testing 567 in order to avoid any acute effects. For additional therapies mice were then treated for 3 weeks 568 with either: bupropion (10mg/kg), venlafaxine (20mg/kg), sertraline (10mg/kg), or fluoxetine + 569 bupropion (18mg/kg, 10mg/kg, respectively) via oral gavage.

570

571 *Behavioral testing*. Behavioral testing was conducted after 3 weeks of antidepressant

administration, in the following order: EPM, NSF and then FST. Mice were given 3 days

573 between behavioral tests to avoid contaminating stressors as well as before sacrifice. Prior to

574 each behavioral test mice were acclimated to the room for 30 mins of habituation.

575 *Elevated plus maze*. EPM was performed as previously described⁶. The plus maze consisted of

576 two closed arms and two open arms 2 feet above the floor. Mice were placed into the central area

ACTIVIN SIGNALING IN DG MEDIATES THE ANTIDEPRESSANT RESPONSE

577 facing one closed arm and allowed to explore the maze for 5 mins. Data were scored using 578 Ethovision software (Noldus), in which open arm time and open arm entries were recorded. 579 Between animals, the maze was cleaned with 70% ethanol between each run. 580 *Novelty-suppressed feeding*. NSF was performed as described^{6,63}. The testing apparatus consisted 581 of a plastic box $(50 \times 50 \times 20 \text{ cm})$, the floor of which was covered with approximately 2 cm of 582 bedding. 18 h before behavioral testing, mice were weighed and food deprived. At the time of 583 testing, a single pellet of food was placed on a white paper platform in the center of the box beneath a gooseneck lamp illuminating the center of the area at about 1500 lux. A mouse was 584 585 placed in a corner of the box and latency to approach and eat the food pellet was recorded with a 586 maximum of 10 mins. Immediately after the testing period, the mice were transferred to their 587 home cages and latency to feed in the home cage as well as consumption was recorded. After 588 completing testing, animals were weighed again and % change in body weight was calculated 589 with respective to pre-testing weights. 590 *Forced swim test.* As previously described⁶, mice were placed into clear plastic buckets 20 cm in 591 diameter and 23 cm deep, filled two-thirds of the way up with 26 °C water and were videotaped.

592 Mice were in the forced swim buckets for 6 mins, but only the last 4 mins were scored. Scoring 593 was automated using Videotrack software (ViewPoint).

594

595 Social Defeat Stress. Paradigm was conducted as previously described. In brief, defeat stress 596 was carried out using similar methods to those already published^{20,31}. Prior to social defeat stress, 597 male retired breeder CD1 mice (Charles River Labs) were screened for aggression. CD1 mice 598 that attacked screener mice (C57/BL6J) for two consecutive days in less than 60 seconds were 599 selected. After selection of aggressors, experimental mice were exposed to a different CD1

ACTIVIN SIGNALING IN DG MEDIATES THE ANTIDEPRESSANT RESPONSE

600 aggressor mouse each day for 5 min over 10 days. After contact, experimental mice were 601 inspected for injury and separated from the aggressor and placed in an adjacent compartment of 602 the same cage as the CD1 mouse, separated by a plastic divider with holes. Control test mice 603 were housed in equivalent cages but with members of the same strain, which were changed daily. 604 Twenty-four hours after the last session, all mice were housed individually for the remainder of 605 the study. Following 10 days of social defeat stress, animals were run through a social interaction 606 test in which mice were placed in an open field for 2.5 minutes for baseline exploration in the 607 absence of a novel CD1, and then for another 2.5 minutes in the presence of a CD1. Mice were deemed susceptible if they spent less time in the interaction zone when the social target was 608 609 present than absent AND a total time spent interacting with the social target <30s, and resilient if 610 the they spent more time in the interaction zone when the social target was present than absent 611 AND total time spent interacting with the social target >60s.

612

613 *Gene Expression*. Animals were sacrificed via rapid decapitation and dentate gyrus was 614 microdissected, flash frozen, and then stored at -80°C until further processing. RNA was 615 extracted from tissue samples using a RNA/DNA Purification kit (Norgen Biotek). Total RNA 616 was then converted into cDNA using Superscript III enzyme (Invitrogen). Quantitative-PCR was 617 performed in triplicate reactions with Tagman Fast Advanced Mastermix and Tagman probes for 618 activin a, acvr1a, acvr1b, acvr1c, smad2, smad3, and rn18s (Life Technologies) on a StepOne 619 Plus Real-Time PCR System (Applied Biosystems). Data was analyzed using the $\Delta\Delta C_T$ method, 620 triplicate cycle thresholds per gene per sample were averaged, normalized to control gene 621 (rn18s) to obtain ΔC_T , and were then converted to $\Delta \Delta C_T$ values by normalizing to mean ΔC_T 's of

ACTIVIN SIGNALING IN DG MEDIATES THE ANTIDEPRESSANT RESPONSE

the vehicle group. Final values were then expressed as an expression percentage relative to thevehicle group values.

624

625	Intracerebral infusions. Mice were anesthetized with sodium pentobarbital (diluted 1:10 from
626	stock of 50mg/ml and injected at a volume of 10 ml/kg) and guide cannulae with dummy
627	cannulae (Plastics 1) were implanted. For ventral DG the coordinates used were: -3.5 mm and
628	± 2.8 mm from bregma at a depth of 3.6mm from the skull surface, and for CA1 the coordinates
629	used were: -3.1mm and \pm 3.0mm from the bregma at a depth of 2.0mm from the skull surface. 1-
630	2 weeks after surgery, animals began to receive bilateral infusions of either vehicle (0.1% BSA),
631	1µg of mouse Activin A peptide (R&D Systems), 1µg of mouse Inhibin A peptide (R&D
632	Systems), or 1µg each of Activin A+Inhibin A in vehicle once per day (over a time course of 15
633	minutes per side, 10 minutes of infusion and an additional 5 minutes with tubing left in place) for
634	2 weeks prior to behavioral testing. Each day connector assemblies with tubing were connected
635	to internal cannulae, which were then inserted into the guide cannulae. Infusions were delivered
636	by a standard infusion only syringe pump (Harvard Apparatus). A total volume of $1.0 \ \mu$ l was
637	infused in each hemisphere per day. Animals were freely moving in their cage during infusions.
638	
639	Statistics. All statistics were performed using Prism Software 7 (Graphpad). Parametric
640	hypotheses were assessed with parametric tests. Two-way ANOVAs assessing stress
641	pretreatment x antidepressant treatment were used for EPM, FST, Negative Affect Index, and

642 gene expression. One-way ANOVAs were then subsequently used to assess Stress+VEH,

643 Stress+FLX responders, and Stress+FLX non-responders. NSF was assessed using non-

644 parametric Kaplan Meier survival analysis with log-rank Mantel-Cox. Correlational analysis

- 645 between individual animal behavioral values (NSF and either EPM or FST) were performed
- 646 using Pearson *r* and best-fit values with a linear regression analysis and slopes with analysis
- 647 significant non-zeroes were analyzed. Post hoc Bonferroni corrections were used where
- 648 appropriate.

ACTIVIN SIGNALING IN DG MEDIATES THE ANTIDEPRESSANT RESPONSE

649 FIGURE LEGENDS

- 650 **Figure 1** Behavioral Responders and Non-Responders to FLX treatment following CORT
- 651 administration (a) Timeline of experiment. (b) Kaplan-Meier survival curve (large panel) and
- 652 scatterplot (small panel) of NSF data showing individual latency to eat values across all four
- treatment groups. (c-e) Two-way ANOVA of all treatment groups (small panel) and One-Way
- 654 ANOVA of CORT+VEH, CORT+FLX responders and CORT+FLX non-responders (large
- panel) for EPM open arm entries (c left panel), EPM open arm duration (c right panel), FST
- 656 immobility (d), and Negative Affect Index (e). (f) Regression analyses correlating NSF latency
- 657 to eat with FST immobility (left) and EPM open arm duration (right). (g) In a separate cohort of
- 658 CORT+FLX mice, persistence of response was determined by assessing NSF behavior after 3
- weeks of FLX (time point 0), and then again 1, 4, and 6 months later. For survival curves, line
- shading shows SEM of each group (n=15-23 per group). Scatterplots, horizontal lines, and bars
- show group means with errors bars indicating SEM (n=7-16 per group).
- 662
- Figure 2 Dentate Gyrus mRNA expression of Activin signaling components correlates with
 behavioral response to FLX treatment following CORT administration (a-f) Two-Way ANOVA
 of all treatment groups (middle panels), One-Way ANOVA of CORT+VEH, CORT+FLX
 responders and CORT+FLX non-responders (left panels), and regression analyses correlating
 NSF latency to eat with DG mRNA expression of activin A (a), acvr1a (b), acvr1b (c), acvr1c
 (d), smad2 (e), and smad3 (f). Scatterplots, horizontal lines, and bars show group means with
 errors bars indicating SEM (n=12-14 per group).
- 670

ACTIVIN SIGNALING IN DG MEDIATES THE ANTIDEPRESSANT RESPONSE

671 **Figure 3** Behavioral Responders and Non-Responders to FLX treatment following CSDS (a)

- 672 Timeline of experiment and diagram of CSDS and Social Interaction (SIT) protocol. (b) Kaplan-
- 673 Meier survival curve (large panel) and scatterplot (small panel) of NSF data showing individual
- 674 latency to eat values across all four treatment groups. (c-e) Two-way ANOVA of all treatment
- 675 groups (small panel) and One-Way ANOVA of SUS+VEH, SUS+FLX responders and
- 676 SUS+FLX non-responders (large panel) for EPM open arm entries (c left panel), EPM open arm
- duration (c right panel), FST immobility (d), and Negative Affect Index (e). (f) Regression
- analyses correlating NSF latency to eat with FST immobility (left) and EPM open arm duration
- 679 (right). For survival curves, line shading shows SEM of each group (n=12-14 per group).
- 680 Scatterplots, horizontal lines, and bars show group means with errors bars indicating SEM (n=6-

681 18 per group).

682

683 **Figure 4** Dentate Gyrus mRNA expression of Activin signaling components correlates with

684 behavioral response to FLX treatment following CSDS administration (a-f) Two-Way ANOVA

- of all treatment groups (middle panels), One-Way ANOVA of CORT+VEH, CORT+FLX
- responders and CORT+FLX non-responders (left panels), and regression analyses correlating
- 687 NSF latency to eat with DG mRNA expression of activin A (a), acvr1a (b), acvr1b (c), acvr1c
- (d), smad2 (e), and smad3 (f). Scatterplots, horizontal lines, and bars show group means with
- 689 errors bars indicating SEM (n=6-12 per group).

- 691 **Figure 5** Chronic Activin A infusions into DG convert FLX non-responders into responders (a)
- 692 Timeline of experiment and coordinates of infusions for ventral DG and ventral CA1. (b)
- 693 Kaplan-Meier survival curve (large panel) and scatterplot (small panel) of NSF data showing

ACTIVIN SIGNALING IN DG MEDIATES THE ANTIDEPRESSANT RESPONSE

694	individual latency to eat values across all three non-responder treatment groups. (c-e) One-Way
695	ANOVA of VEH, Activin A infusions into DG (ACTIVIN _{DG}), and Activin A infusions into CA1
696	(ACTIVIN_{CA1}) for EPM open arm entries (c left panel), EPM open arm duration (c right panel),
697	FST immobility (d), and Negative Affect Index (e). (f) Regression analyses correlating NSF
698	latency to eat with EPM open arm duration (left) and FST immobility (right). For survival
699	curves, line shading shows SEM of each group (n=12 per group). Scatterplots, horizontal lines,
700	and bars show group means with errors bars indicating SEM.
701	
702	Figure 6 Inhibition of Activin signaling in DG converts FLX responders into non-responders (a)
703	Timeline of experiment and coordinates of infusions for ventral DG and ventral CA1. (b)
704	Kaplan-Meier survival curve (large panel) and scatterplot (small panel) of NSF data showing
705	individual latency to eat values across all three responder treatment groups. (c-e) One-Way
706	ANOVA of VEH, Inhibin A infusions into DG (INHIBIN $_{DG}$), and Inhibin A infusions into CA1
707	(INHIBIN _{CA1}) for EPM open arm entries (c left panel), EPM open arm duration (c right panel),
708	FST immobility (d), and Negative Affect Index (e). (f) Regression analyses correlating NSF
709	latency to eat with EPM open arm duration (left) and FST immobility (right). For survival
710	curves, line shading shows SEM of each group (n=12 per group). Scatterplots, horizontal lines,
711	and bars show group means with errors bars indicating SEM.
712	

Figure 7 Coinfusion of Activin A and Inhibin A into Non-Responders blocks the effects of Activin
A on behavior (a) Timeline of experiment and coordinates of infusions for ventral DG. (b)
Kaplan-Meier survival curve (large panel) and scatterplot (small panel) of NSF data showing
individual latency to eat values across all four non-responder treatment groups. (c-e) One-Way

717	ANOVA of VEH, Activin A infusions into DG (ACTIVIN $_{DG}$), Inhibin A infusions into DG
718	(INHIBIN _{DG}), and combined Activin A and Inhibin A infusions into DG
719	(ACTIVIN+INHIBIN _{DG}) for EPM open arm entries (c left panel), EPM open arm duration (c
720	right panel), FST immobility (d), and Negative Affect Index (e). (f) Regression analyses
721	correlating NSF latency to eat with EPM open arm duration (left) and FST immobility (right).
722	For survival curves, line shading shows SEM of each group (n=12 per group). Scatterplots,
723	horizontal lines, and bars show group means with errors bars indicating SEM.
724	
725	Figure 8 Activin A infusions into DG are a more effective augmentation therapy than
726	commonly used second-line treatments (a) Timeline of experiment. (b) Kaplan-Meier survival
727	curve (large panel) and scatterplot (small panel) of NSF data showing individual latency to eat
728	values across all six CORT+FLX non-responder treatment groups. (c) Graphical depiction of
729	proportion of CORT+FLX non-responders converted into responders following the different
730	second-line treatments.
731	
732	Supplemental Figure 1. NSF data for DG mRNA expression cohort of mice and serum FLX
733	levels (a) Timeline of experiment. (b) Kaplan-Meier survival curve (large panel) and scatterplot
734	(small panel) of NSF data showing individual latency to eat values across all four treatment
735	groups. (c) Two-way ANOVA of all treatment groups (small panel) and One-Way ANOVA of
736	CORT+VEH, CORT+FLX responders and CORT+FLX non-responders (large panel) for serum
737	FLX levels following three weeks of FLX administration. For survival curves, line shading
738	shows SEM of each group (n=15-23 per group). Scatterplots, horizontal lines, and bars show
739	group means with errors bars indicating SEM.

ACTIVIN SIGNALING IN DG MEDIATES THE ANTIDEPRESSANT RESPONSE

740

- 741 Supplemental Figure 2. Identification and classification of susceptible mice in Figures 3 and 4
- (a) Timeline of experiment and diagram of CSDS and Social Interaction (SIT) protocol. (b) Time
- spent in social interaction zone reveal significant difference ($F_{(3,67)} = 106$, p < 0.0001) only in the
- 744 presence of a CD1 aggressor. The only difference between groups was CNTRL animals
- compared to SUS+VEH (p < 0.0001, Bonferroni-corrected), SUS+FLX-R (p < 0.0001,
- 746 Bonferroni-corrected), or SUS+FLX-NR (p < 0.0001, Bonferroni-corrected). (b) Social
- interaction ratios were significantly different ($F_{(4,66)} = 62.2$, p < 0.0001). The only difference
- 748 between groups was CNTRL animals compared to SUS+VEH (p < 0.0001, Bonferroni-
- corrected), SUS+FLX-R (p < 0.0001, Bonferroni-corrected), and SUS+FLX-NR (p < 0.0001,
- 750 Bonferroni-corrected).

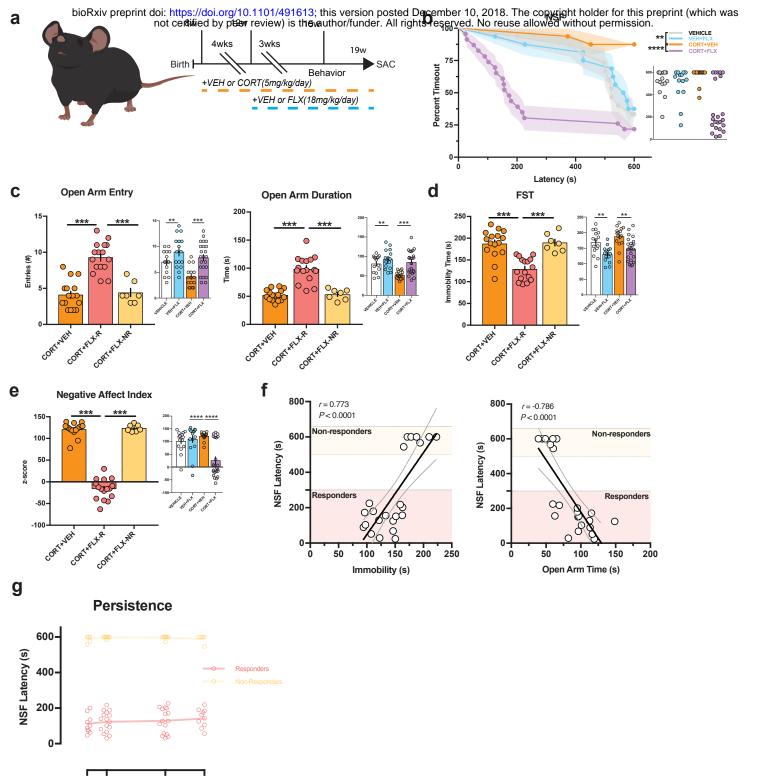
751

ACTIVIN SIGNALING IN DG MEDIATES THE ANTIDEPRESSANT RESPONSE

753 **REFERENCES**

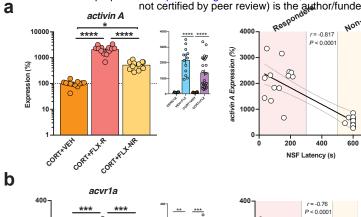
- Kessler, R. C. *et al.* The epidemiology of major depressive disorder: results from the
 National Comorbidity Survey Replication (NCS-R). *JAMA* 289, 3095-3105,
 doi:10.1001/jama.289.23.3095 (2003).
- Warden, D., Rush, A. J., Trivedi, M. H., Fava, M. & Wisniewski, S. R. The STAR*D
 Project results: a comprehensive review of findings. *Curr Psychiatry Rep* 9, 449-459
 (2007).
- Trivedi, M. H. *et al.* Evaluation of outcomes with citalopram for depression using
 measurement-based care in STAR*D: implications for clinical practice. *The American journal of psychiatry* 163, 28-40, doi:10.1176/appi.ajp.163.1.28 (2006).
- 763 4 Drevets, W. C. Neuroimaging and neuropathological studies of depression: implications
 764 for the cognitive-emotional features of mood disorders. *Curr Opin Neurobiol* 11, 240-249
 765 (2001).
- 766 5 Nestler, E. J. *et al.* Neurobiology of depression. *Neuron* **34**, 13-25 (2002).
- Samuels, B. A. *et al.* 5-HT1A receptors on mature dentate gyrus granule cells are critical
 for the antidepressant response. *Nature Neuroscience* 18, 1606-1616,
 doi:10.1038/nn.4116 (2015).
- 770 7 Malberg, J. E., Eisch, A. J., Nestler, E. J. & Duman, R. S. Chronic antidepressant
 771 treatment increases neurogenesis in adult rat hippocampus. *J Neurosci* 20, 9104-9110
 772 (2000).
- Wang, J.-W., David, D. J., Monckton, J. E., Battaglia, F. & Hen, R. Chronic fluoxetine
 stimulates maturation and synaptic plasticity of adult-born hippocampal granule cells. *J Neurosci* 28, 1374-1384, doi:10.1523/JNEUROSCI.3632-07.2008 (2008).
- Santarelli, L. *et al.* Requirement of hippocampal neurogenesis for the behavioral effects
 of antidepressants. *Science* 301, 805-809, doi:10.1126/science.1083328 (2003).
- 77810Li, Y. *et al.* TrkB regulates hippocampal neurogenesis and governs sensitivity to779antidepressive treatment. Neuron **59**, 399-412, doi:10.1016/j.neuron.2008.06.023 (2008).
- David, D. J. *et al.* Neurogenesis-dependent and -independent effects of fluoxetine in an
 animal model of anxiety/depression. *Neuron* 62, 479-493,
 doi:10.1016/j.neuron.2009.04.017 (2009).
- Airan, R. D. *et al.* High-speed imaging reveals neurophysiological links to behavior in an
- animal model of depression. *Science* 317, 819-823, doi:10.1126/science.1144400 (2007).
 Shirayama, Y., Chen, A. C., Nakagawa, S., Russell, D. S. & Duman, R. S. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. *J*
- *Neurosci* 22, 3251-3261, doi:20026292 (2002).
 Warner-Schmidt, J. L. & Duman, R. S. VEGF is an essential mediator of the neurogenic and behavioral actions of antidepressants. *Proc Natl Acad Sci USA* 104, 4647-4652.
- 790 doi:10.1073/pnas.0610282104 (2007).
- Warner-Schmidt, J. L. & Duman, R. S. VEGF as a potential target for therapeutic intervention in depression. *Current Opinion in Pharmacology* 8, 14-19, doi:10.1016/j.coph.2007.10.013 (2008).
- Dow, A. L., Russell, D. S. & Duman, R. S. Regulation of activin mRNA and Smad2
 phosphorylation by antidepressant treatment in the rat brain: effects in behavioral models. *J Neurosci* 25, 4908-4916, doi:10.1523/JNEUROSCI.5155-04.2005 (2005).

ACTIVIN SIGNALING IN DG MEDIATES THE ANTIDEPRESSANT RESPONSE


797	17	Ganea, K. et al. Convergent animal and human evidence suggests the activin/inhibin
798		pathway to be involved in antidepressant response. Transl Psychiatry 2, e177,
799		doi:10.1038/tp.2012.104 (2012).
800	18	Yun, S. et al. Stimulation of entorhinal cortex-dentate gyrus circuitry is antidepressive.
801		Nat Med 24, 658-666, doi:10.1038/s41591-018-0002-1 (2018).
802	19	Kheirbek, M. A. et al. Differential Control of Learning and Anxiety along the
803		Dorsoventral Axis of the Dentate Gyrus. Neuron 77, 955-968,
804		doi:10.1016/j.neuron.2012.12.038 (2013).
805	20	Anacker, C. et al. Hippocampal neurogenesis confers stress resilience by inhibiting the
806		ventral dentate gyrus. Nature 559, 98-102, doi:10.1038/s41586-018-0262-4 (2018).
807	21	Bagot, R. C. et al. Ventral hippocampal afferents to the nucleus accumbens regulate
808		susceptibility to depression. Nat Commun 6, 7062, doi:10.1038/ncomms8062 (2015).
809	22	Medrihan, L. et al. Initiation of Behavioral Response to Antidepressants by
810		Cholecystokinin Neurons of the Dentate Gyrus. Neuron 95, 564-576 e564,
811		doi:10.1016/j.neuron.2017.06.044 (2017).
812	23	Boldrini, M. et al. Hippocampal granule neuron number and dentate gyrus volume in
813		antidepressant-treated and untreated major depression. <i>Neuropsychopharmacology</i> 38 ,
814		1068-1077, doi:10.1038/npp.2013.5 (2013).
815	24	Treadway, M. T. et al. Illness progression, recent stress, and morphometry of
816		hippocampal subfields and medial prefrontal cortex in major depression. <i>Biol Psychiatry</i>
817		77, 285-294, doi:10.1016/j.biopsych.2014.06.018 (2015).
818	25	Katz, R. J. Animal model of depression: pharmacological sensitivity of a hedonic deficit.
819		Pharmacol Biochem Behav 16, 965-968 (1982).
820	26	Willner, P. Chronic mild stress (CMS) revisited: consistency and behavioural-
821		neurobiological concordance in the effects of CMS. <i>Neuropsychobiology</i> 52 , 90-110,
822		doi:10.1159/000087097 (2005).
823	27	Willner, P., Towell, A., Sampson, D., Sophokleous, S. & Muscat, R. Reduction of
824		sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic
825		antidepressant. Psychopharmacology (Berl) 93, 358-364 (1987).
826	28	Surget, A. et al. Drug-dependent requirement of hippocampal neurogenesis in a model of
827		depression and of antidepressant reversal. Biological Psychiatry 64, 293-301,
828		doi:10.1016/j.biopsych.2008.02.022 (2008).
829	29	Samuels, B. A. et al. Modeling treatment-resistant depression. Neuropharmacology 61,
830		408-413, doi:10.1016/j.neuropharm.2011.02.017 (2011).
831	30	Berton, O. et al. Essential role of BDNF in the mesolimbic dopamine pathway in social
832		defeat stress. Science 311 , 864-868, doi:10.1126/science.1120972 (2006).
833	31	Tsankova, N. M. et al. Sustained hippocampal chromatin regulation in a mouse model of
834		depression and antidepressant action. Nat Neurosci 9, 519-525, doi:10.1038/nn1659
835		(2006).
836	32	Krishnan, V. & Nestler, E. J. The molecular neurobiology of depression. <i>Nature</i> 455 ,
837		894-902, doi:10.1038/nature07455 (2008).
838	33	Ardayfio, P. & Kim, KS. Anxiogenic-like effect of chronic corticosterone in the light-
839		dark emergence task in mice. Behav Neurosci 120, 249-256, doi:10.1037/0735-
840		7044.120.2.249 (2006).

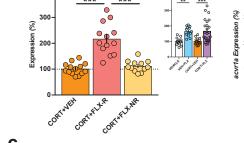
ACTIVIN SIGNALING IN DG MEDIATES THE ANTIDEPRESSANT RESPONSE

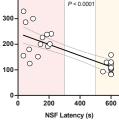
841	34	Gourley, S. L. <i>et al.</i> Regionally specific regulation of ERK MAP kinase in a model of
842		antidepressant-sensitive chronic depression. <i>Biological Psychiatry</i> 63 , 353-359, doi:10.1016/j.biomarch.2007.07.016 (2008)
843	25	doi:10.1016/j.biopsych.2007.07.016 (2008).
844	35	Gourley, S. L., Wu, F. J. & Taylor, J. R. Corticosterone regulates pERK1/2 map kinase in
845		a chronic depression model. Ann N Y Acad Sci 1148 , 509-514,
846	26	doi:10.1196/annals.1410.076 (2008).
847	36	Murray, F., Smith, D. W. & Hutson, P. H. Chronic low dose corticosterone exposure
848		decreased hippocampal cell proliferation, volume and induced anxiety and depression
849		like behaviours in mice. Eur J Pharmacol 583, 115-127,
850		doi:10.1016/j.ejphar.2008.01.014 (2008).
851	37	Slattery, D. A. & Cryan, J. F. Modelling depression in animals: at the interface of reward
852		and stress pathways. Psychopharmacology (Berl) 234, 1451-1465, doi:10.1007/s00213-
853		017-4552-6 (2017).
854	38	Samuels, B. A. et al. Global state measures of the dentate gyrus gene expression system
855		predict antidepressant-sensitive behaviors. PLoS One 9, e85136,
856		doi:10.1371/journal.pone.0085136 (2014).
857	39	Guilloux, J. P., Seney, M., Edgar, N. & Sibille, E. Integrated behavioral z-scoring
858		increases the sensitivity and reliability of behavioral phenotyping in mice: relevance to
859		emotionality and sex. J Neurosci Methods 197, 21-31,
860		doi:10.1016/j.jneumeth.2011.01.019 (2011).
861	40	Mekiri, M., Gardier, A. M., David, D. J. & Guilloux, J. P. Chronic corticosterone
862		administration effects on behavioral emotionality in female c57bl6 mice. Exp Clin
863		Psychopharmacol 25, 94-104, doi:10.1037/pha0000112 (2017).
864	41	Massagué, J. TGF-beta signal transduction. Annu Rev Biochem 67, 753-791,
865		doi:10.1146/annurev.biochem.67.1.753 (1998).
866	42	Maj, J. & Moryl, E. Effects of sertraline and citalopram given repeatedly on the
867		responsiveness of 5-HT receptor subpopulations. J Neural Transm Gen Sect 88, 143-156
868		(1992).
869	43	Kale, P. P. & Addepalli, V. Augmentation of antidepressant effects of duloxetine and
870		bupropion by caffeine in mice. Pharmacol Biochem Behav 124, 238-244,
871		doi:10.1016/j.pbb.2014.06.005 (2014).
872	44	Berrocoso, E. & Mico, J. A. Role of serotonin 5-HT1A receptors in the antidepressant-
873		like effect and the antinociceptive effect of venlafaxine in mice. Int J
874		<i>Neuropsychopharmacol</i> 12 , 61-71, doi:10.1017/S1461145708008766 (2009).
875	45	Gilbert, D. A. et al. Texas Medication Algorithm Project: definitions, rationale, and
876		methods to develop medication algorithms. J Clin Psychiatry 59, 345-351 (1998).
877	46	Rush, A. J. et al. Acute and longer-term outcomes in depressed outpatients requiring one
878		or several treatment steps: a STAR*D report. Am J Psychiatry 163, 1905-1917,
879		doi:10.1176/appi.ajp.163.11.1905 (2006).
880	47	Rush, A. J. et al. STAR*D: revising conventional wisdom. CNS drugs 23, 627-647,
881		doi:10.2165/00023210-200923080-00001 (2009).
882	48	Berman, R. M. et al. Antidepressant effects of ketamine in depressed patients. Biological
883		<i>Psychiatry</i> 47 , 351-354 (2000).
884	49	Zarate, C. A. <i>et al.</i> A randomized trial of an N-methyl-D-aspartate antagonist in
885		treatment-resistant major depression. Arch Gen Psychiatry 63, 856-864,
886		doi:10.1001/archpsyc.63.8.856 (2006).

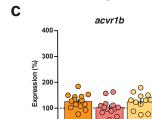

ACTIVIN SIGNALING IN DG MEDIATES THE ANTIDEPRESSANT RESPONSE

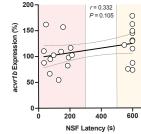
887 888	50	Sanacora, G. <i>et al.</i> Lanicemine: a low-trapping NMDA channel blocker produces sustained antidepressant efficacy with minimal psychotomimetic adverse effects. <i>Mol</i>
889	- 1	<i>Psychiatry</i> 19 , 978-985, doi:10.1038/mp.2013.130 (2014).
890	51	Furey, M. L. & Drevets, W. C. Antidepressant efficacy of the antimuscarinic drug
891		scopolamine: a randomized, placebo-controlled clinical trial. Arch Gen Psychiatry 63,
892		1121-1129, doi:10.1001/archpsyc.63.10.1121 (2006).
893 894	52	Carlezon, W. A., Jr., Beguin, C., Knoll, A. T. & Cohen, B. M. Kappa-opioid ligands in the study and treatment of mood disorders. <i>Pharmacol Ther</i> 123 , 334-343,
895		doi:10.1016/j.pharmthera.2009.05.008 (2009).
896	53	Samuels, B. A. et al. The Behavioral Effects of the Antidepressant Tianeptine Require
897		the Mu-Opioid Receptor. Neuropsychopharmacology 42, 2052-2063,
898		doi:10.1038/npp.2017.60 (2017).
899	54	Amaral, D. G., Scharfman, H. E. & Lavenex, P. The dentate gyrus: fundamental
900		neuroanatomical organization (dentate gyrus for dummies). Prog Brain Res 163, 3-22,
901		doi:10.1016/S0079-6123(07)63001-5 (2007).
902	55	Pauklin, S. & Vallier, L. Activin/Nodal signalling in stem cells. Development 142, 607-
903		619, doi:10.1242/dev.091769 (2015).
904	56	Ageta, H. & Tsuchida, K. Multifunctional roles of activins in the brain. Vitam Horm 85,
905		185-206, doi:10.1016/B978-0-12-385961-7.00009-3 (2011).
906	57	Andreasson, K. & Worley, P. F. Induction of beta-A activin expression by synaptic
907		activity and during neocortical development. <i>Neuroscience</i> 69 , 781-796 (1995).
908	58	Ageta, H. et al. Activin plays a key role in the maintenance of long-term memory and
909		late-LTP. Learn Mem 17, 176-185, doi:10.1101/lm.16659010 (2010).
910	59	Link, A. S., Zheng, F. & Alzheimer, C. Activin Signaling in the Pathogenesis and
911		Therapy of Neuropsychiatric Diseases. Front Mol Neurosci 9, 32,
912		doi:10.3389/fnmol.2016.00032 (2016).
913	60	Link, A. S. et al. Kdm6b and Pmepa1 as Targets of Bioelectrically and Behaviorally
914		Induced Activin A Signaling. <i>Mol Neurobiol</i> 53 , 4210-4225, doi:10.1007/s12035-015-
915		9363-3 (2016).
916	61	Zheng, F. et al. Activin tunes GABAergic neurotransmission and modulates anxiety-like
917		behavior. Mol Psychiatry 14, 332-346, doi:10.1038/sj.mp.4002131 (2009).
918	62	Ageta, H. et al. Activin in the brain modulates anxiety-related behavior and adult
919	-	neurogenesis. <i>PLoS ONE</i> 3 , e1869, doi:10.1371/journal.pone.0001869 (2008).
920	63	Samuels, B. A. & Hen, R. in <i>Mood and Anxiety Related Phenotypes in Mice:</i>
921	~~	<i>Characterization Using Behavioral Tests, Volume II Neuromethods</i> (ed Todd D Gould)
922		Ch. 7, 107-121 (Humana Press, 2011).
923		
/ 45		

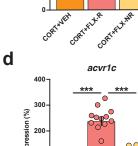
1 4 Time (mnths) 6

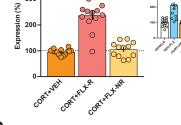

bioRxiv preprint doi: https://doi.org/10.1101/491613; this version posted December 10, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All wights reserved. No reuse allowed without permission.

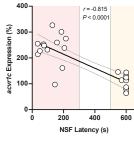


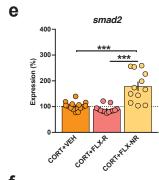

ADHOLE ADHARD ON THE COST

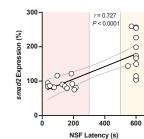

°.

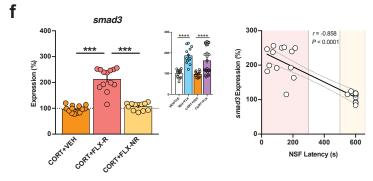

d

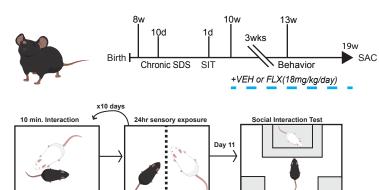


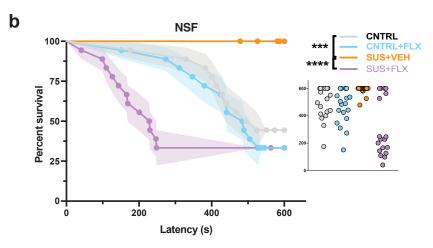


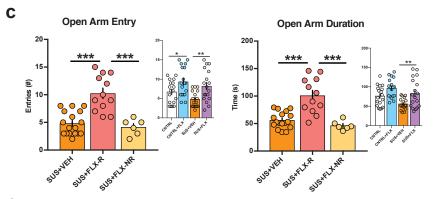


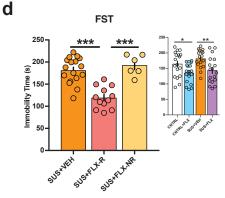


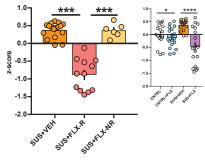

0

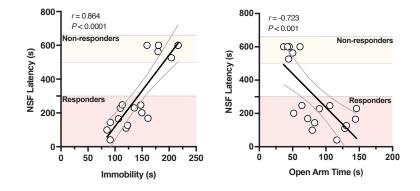


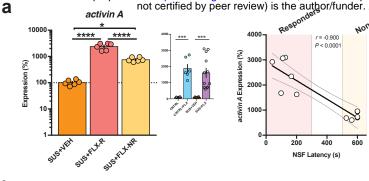


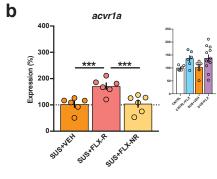


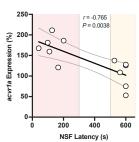


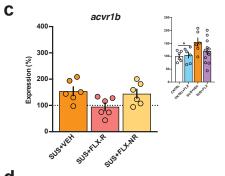


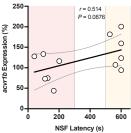


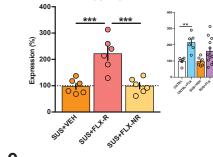

е

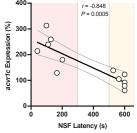


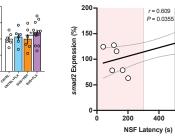


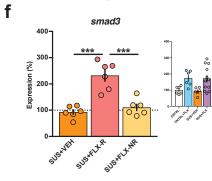

f

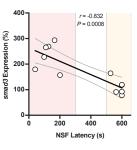

bioRxiv preprint doi: https://doi.org/10.1101/491613; this version posted December 10, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

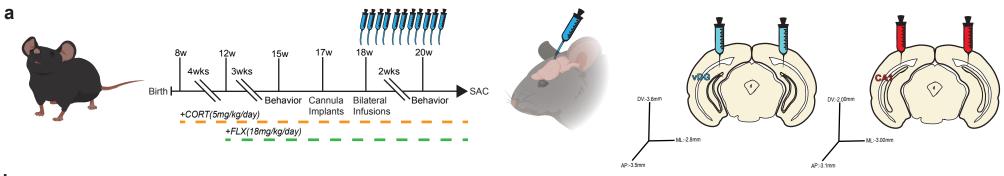


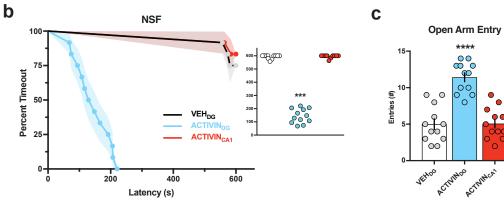


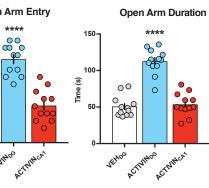


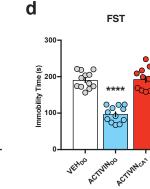


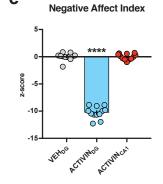

acvr1c

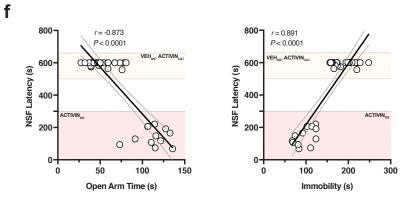


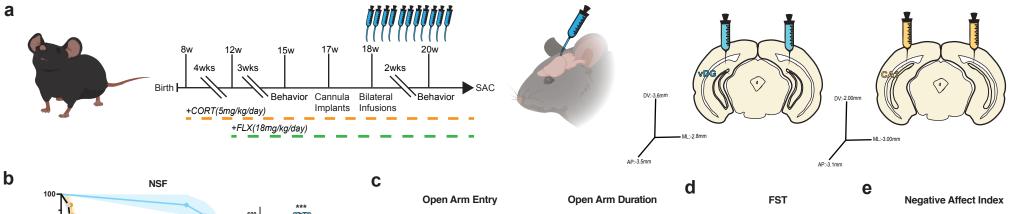


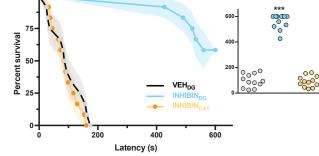




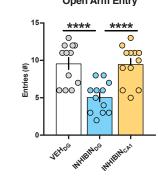


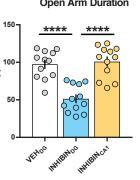


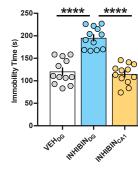


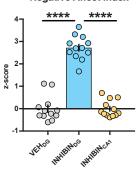


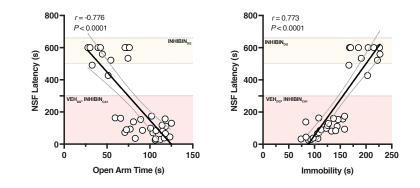
е






Time (s)




f

