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Abstract: 

The driver tissues or cell-types of many human diseases, in which susceptibility genes cause the 

diseases, remain elusive. We developed a framework to detect the causal-tissues of complex diseases 

or traits according to selective expression of disease-associated genes in genome-wide association 

study (GWAS). The core method of the framework is a new robust z-score to estimate genes’ 

expression selectivity. Through extensive computing simulations and comparative analyses in a 

large-scale schizophrenia GWAS, we demonstrate the robust z-score is more sensitive than existing 

methods to detect multiple selectively expressed tissues, which further lead to the estimation of more 

biological sensible driver tissues. The effectiveness of this framework is further validated in five 

representative complex diseases with the usage of GWAS summary statistics and transcript-level 

expression in GTEx project. Finally, we also demonstrate that the prioritized tissues and the robust 

selective expression can enhance characterization of directly associated genes of a disease as well. 

Interesting results include the estimation of lung as a driver tissue of rheumatoid arthritis, consistent 

with clinical observations of morbidity between rheumatoid arthritis and lung diseases. 

 

Introduction 

Tissue-selectivity is an important feature of many complex diseases [1] and the selective expression 

of their susceptibility genes may determine the tissue-selective pathology [2, 3]. It is common that a 

complex disease often involves multiple affected tissues; and it is usually tricky to characterize the 

causal or driver tissues [4]. This can be explained by an example of schizophrenia. It is certain that 

brain must be a relevant organ of schizophrenia. However, as human brains consist of multiple 

heterogeneous areas, it is crucial to know which areas are the exact drivers [5]. Besides, our current 

knowledge on the tissue selectivity of complex diseases is often biased toward clinical observations. 

It should be noted many clinically observed tissues are not necessarily the driver- or causal tissues. 

For most of human diseases, the primary driver tissues remain elusive [6]. Many studies showed that 

disease causal genes tend to have elevated selective expression in the pathogenic tissues [1, 2], 

implicating a basis for the tissue selectivity or driver of diseases. Analyses of genes’ selective 

expression profiles can expand the knowledge on human diseases[7] and even facilitate 

characterizing new causal genes [8]. Ongen et al. proposed to estimate the causal tissues for complex 

traits and diseases by measuring the GWAS-associated variants’ eQTL activity in different tissues[9]. 

But this study did not straightforwardly consider genes’ selectivity expression and its requirement of 

eQTL may also limit the application of their approach.  

 

Tissue selective expression refers to much higher or lower expression of a gene in one or some 

minority tissues than majority tissues[10]. However, it is difficult to quantify the relative difference 

due to ambiguous boundaries between the minority and the majority in practice. There are several 

methods for detecting tissue selective expression of genes (See method description in the review 

[11]). Most early methods can only tell whether a gene has overall selective expression [12, 13]; and 

most recent methods are underpowered to detect selective expression at individual tissues when there 

is more than one tissue with selective expression [14]. Several large collaborative projects including 

GTEx [15-17] [18, 19] have produced transcriptomes across many human tissues. These 
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ever-increasing resources are calling for more powerful selective expression measures and more 

studies on tissue-selective pathology of human diseases. 

 

In this study we proposed a framework to estimate driver-tissues or cell-types of complex diseases or 

traits by robust selective expression (DIRSE) of genes derived from genome-wide association study 

(GWAS) summary statistics. The core method of the framework is a novel robust z-score for 

detecting selectively expressed tissues. After examining the statistical performance of the robust 

z-score, we applied it to produce selective expression profiles at transcript- and gene-levels in 50 

tissues and cell-types from GTEx Project [18]. Using summary statistics from a schizophrenia 

GWAS, we compared its effectiveness of identifying schizophrenia’s driver tissues with three 

alternative selective expression measures. We further applied this approach to identify potential 

driver-tissues of 5 representative complex diseases and investigated how the prioritized tissues can 

enhance detection of susceptibility genes in post GWAS analyses. For simplicity, we omit the 

terminology cell-types throughout the paper, but it should be noted the statement of tissues also 

includes cell-types in the present paper.  

 

Results 

The proposed framework of estimating driver tissues and its robust z-score for selective 

expression 

The framework aims to estimate driver tissues by tissue-selective expression of GWAS genes (See 

the workflow in Figure 1). The assumption is that the tissue selective expression of causal or 

susceptibility genes determines the tissues where complex diseases happen primarily, which are 

called driver tissues. Therefore, a cause tissue is very likely to have an enrichment of selective 

expression by the susceptibility genes of a disease. The inputs of the framework include two types of 

data, standardized expression values of multiple tissues and GWAS summary statistics or p-values 

for a certain disease at variants. The expression values at genes and transcripts are used to evaluate 

selective expression by a novel robust score. The GWAS p-values are used to detect susceptibility 

genes by a conditional gene-based association test we published recently [20]. The driver tissues are 

estimated by enrichment analysis of GWAS associated genes with selective expression. The selective 

expression and enrichment analyses are implemented in an online tool, 

http://grass.cgs.hku.hk:8080/dirse/. 

 

The core method of the framework is the robust z-score for detecting tissue selective expression. It 

subtly constructs a fitted line for ranked expression at a gene, and integrates expression deviation and 

expression variation to measure a robust selective expression (See details in the Method section). 

Under null hypothesis, it can approximate valid p-values (See the QQ plots in Figure S2 and S3), 

which will greatly facilitate statistical inference of selective expression. Extensive computer 

simulations show that the robust z-score is more powerful than the conventional z-score when there 

are multiple selectively expressed tissues (Table S1). This advantage lends itself to public datasets 

(including GTEx) in which the number of selectively expressed tissues and sample sizes of each 

tissue are often variable. 
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Tissue selective expression profiles in 50 tissues produced by the robust z-score 

The robust z-score approach was then applied to generate tissue selective expression profiles by 

using RNA-Seq data from GTEx project (V7) [18] after stringent quality control (See details in 

Methods and Material Sections). While the number of selectively expressed genes varies from tissues 

to tissues (Table S3), the profiles have three common interesting features. First, the pair-wise 

correlations based on the robust z-scores are substantially different from those based on the original 

expression values (TPM). Many tissues have the correlation over 0.7 (Pearson coefficients) based on 

the expression values (Figure S4 and S5) while most of them have zero correlation based on the 

robust z-score (Figure S6 and S7). However, tissues of similar origins have high Pearson correlations 

(>0.8) based on the robust z-scores, such as Brain-Spinalcord vs. Brain-Substantianigra pair, 

Cervix-Ectocervix vs. Vagina pair, and Skin-SunExposed(Lowerleg) vs. 

Skin-NotSunExposed(Suprapubic) pair. The biologically sensible consistency suggests the robust 

z-score scores quantify selective expression of the tissues correctly. Second, the original expression 

values have low correlation with the selective expression values at most genes. As shown in Figure 

S8 and S9, only 12 tissues have moderate Spearman correlation co-efficient, r∈[0.3,0.6] between 

the expression values and robust z-score values at gene levels. Most tissues have nearly zero or even 

negative Spearman correlations. For example, the left heart ventricle has a negative correlation, -0.21. 

In the left heart ventricle, the MT-CO1 gene has the largest expression value, 77005.9 TPM while 

the robust z-score is only 3.3. This is also true for many other mitochondrial protein coding genes, 

e.g., MT-ATP6, MT-CO3 and MT-ND4. On the other hand, some genes have low or moderate 

expression values but very high robust z-scores, e.g., LINC02500 (2.0 TPM vs. 912.0) and XIRP1 

(251.9 TPM vs. 2392.1). Many genes encoding myosin light chain (e.g. MYL2 and MYL2) have 

both high expression values and large robust z-scores. The myosin light chains are critical for 

functions of heart cells [21] and quite a few genes encoding myosin light chains have been linked to 

cardiovascular diseases, e.g. MYL2[22] and MYL4 [23]. The correlation patterns of selective 

expression based on the transcript-level expression are similar to those based on gene levels.  

 

Third, the expression data at transcript level lead to discovery of much more selectively expressed 

genes. In most tissues, the usage of transcript-level expression detects on average 54% extra 

selectively expressed genes which are missed by the usage of gene-level expression (Table S3). 

Although the conservative Bonferroni correction for multiple transcripts of a gene may lead to the 

missing of some selectively expressed genes, the unique genes selectively expressed according to 

transcript-level expression are still on average 5.5 times more than that according to gene-level 

expression in the 50 tested tissues. Here is an individual example. The transcript ENST00000568186 

of TCF4 has very high standardized tissue selective expression score 14.8 (p=1.46×10-49) in brain 

frontal cortex while averaged expression value of the gene has no selective expression (z=0.96, 

p=0.34) in the same tissue. TCF4 is an important gene linked to multiple brain disorders including 

epilepsy [24], intellectual disability [25], and schizophrenia [26].  Biologically, the transcript level 

expression would be closer to what happens. 

 

Compare the performance of different selective expression methods for estimating driver 

tissues of schizophrenia  
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With the usage of expression data, we investigated the performance of the robust z-scores and three 

other metrics for prioritizing driver-tissues by GWAS-genes on the above proposed framework. In a 

large-scale Meta-GWAS study [27], 108 genes associated with schizophrenia detected by the 

conditional gene-based association analysis[20] were used as the benchmark dataset (See more in the 

method section and gene list in Excel Table S1). Table 1 shows the top five tissues enriched by the 

associated genes with selective expression detected by different approaches. Based on the robust 

selective expression by the proposed z-score, all the estimated top five driver-tissues of 

schizophrenia in brain. Four estimated driver tissues (anterior cingulate cortex, frontal cortex, 

amygdala and hippocampus) out of the top five tissues based on the gene-level selective expression 

are overlapped with that based on the transcript-level selective expression, suggesting the robustness 

of the approach. There have been numerous studies implicating them as primary causal tissues of 

schizophrenia e.g.,[28] [29-32]. However, the transcript-level selective expression leads to much 

higher significance and more selectively expressed genes than the gene-level selective expression at 

the estimate tissues (e.g., p=1.6×10-6 vs. 1.4×10-9 and n=27 vs. 44 at anterior cingulate cortex), 

suggesting a higher power of the former. The top tissue according to the transcript-level selective 

expression is the cerebellum. This supports a recent finding that the 'little brain' plays a major role in 

schizophrenia[33].  

  

The estimated driver tissues according to the alternative selective expression metrics are generally 

less biologically sensible. The usage of conventional z-scores led to much fewer selectively 

expressed genes. Using the gene-level expression, it results in only one significant tissue, brain 

putamen. Using transcript-level expression, it ranks artery-tibial, artery-coronary and adrenal gland 

as the top three driver tissue of schizophrenia. There are few literatures linking these tissues to 

schizophrenia. Another widely-used robust z-score by median absolute deviation (MDA) with the 

usage of gene level expression failed to detect any significant tissues. The transcript level selective 

expression produced no results because of the zero MAD values. The measure of SPM [14] also 

prioritized many brain regions with the usage of gene-level expression. Its top five tissues belong to 

the brain. However, the top tissue, tibial artery, according to the transcript-level selective expression 

is an unlikely relevant tissue. The comparison showed the selective expression produced by proposed 

robust z-score is more effective than that by other metrices to prioritize driver tissue candidates of 

complex diseases, which is particularly true for transcript-level expression. We therefore employed 

the transcript-level selective expression by the proposed robust z-score to investigate tissue-selective 

pathogens of other complex diseases in the paper. 

 

Contribution of genes with low expression to the prioritization of disease related tissues 

We also noticed that lowly expressed genes cannot be ignored in the prioritization of disease-related 

tissues. A removal of lowly expressed genes led to substantial decrease in enrichment significance 

when the transcript-level selective expression was used for the estimation. Table 2 shows the 

enrichment significance of three important brain regions for schizophrenia (cerebellar hemisphere, 

anterior cingulate cortex and frontal cortex) when lowly expressed genes are removed according to 

different cutoffs. For example, the p-values for enrichment at cerebellar hemisphere is 6.3×10-10 

when genes with transcript level expression as low as 0.01 TPM is included. However, the p-value 

becomes 8.4×10-5 after excluding genes with transcript level expression <1 TPM at all tissues. The 

number of selectively expressed GWAS genes also decreases from 68 to 54 accordingly. In the other 

two tissues, the influence of expression cutoffs is similar. Here are some examples of individual 

genes. For example, CACNA1C and TCF4 are well-known candidate susceptibility genes of 

schizophrenia [34, 35]. CACNA1C encodes calcium voltage-gated channel subunit alpha1 C which 

is important for brain functions. This gene has 26 transcripts with expression in GTEx dataset and 23 

has no significant expression. The transcript (ENST00000399641) has the largest selective 

expression z-score 210.3 in frontal cortex (p<1.0×10-200). However, it has only 0.2 TMP expression 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 17, 2018. ; https://doi.org/10.1101/491878doi: bioRxiv preprint 

https://doi.org/10.1101/491878


in frontal cortex and nearly zero TPM in most tissues. TCF4 encodes the basic Helix-Loop-Helix 

(bHLH) transcription factor 4, which is among the few schizophrenia-risk genes that have been 

consistently replicated. It has 43 transcripts with expression in GTEx dataset but only two has 

significant selective expression in frontal cortex. The transcript ENST00000568186 has the highest 

expression 0.298 TPM in frontal cortex and nearly zero TPM in most majority of tissues, which leads 

to a robust z-score 14 (p=1.6×10-44) in frontal cortex. A TPM cutoff even as low as 0.4 will exclude 

these important candidate genes of schizophrenia.  

 

Identify driver tissues in five representative complex diseases/traits 

The above success in the benchmark GWAS dataset, schizophrenia, motivated us to validate the 

effectiveness of selective expression in five representative complex diseases or traits as 

proof-of-principle examples. Figure 2 and S10 shows the prioritized tissues. Generally, for all the 

five diseases/traits, not only did the proposed framework confirm previous findings, it also detected 

multiple new candidate driver tissues. Some of the tissue are not intuitive (e.g., lung for rheumatoid 

arthritis and nerve cells for coronary artery disease), which requires further experimental validation. 

 

 

Bipolar disorder (BD) 

The top ten driver tissues of bipolar disorder estimated by the proposed approach all fall into brain 

areas. Similar to schizophrenia, the most significant tissue is also cerebellar hemisphere (p 

=2.72×10-6), which has been implicated with BD by many studies [36]. However, it also has different 

prioritization results to schizophrenia. For example, brain amygdala is prioritized as the 14th 

significant tissue for BD, while the fourth for schizophrenia, probably implying the different 

pathogens of the two brain disorders. Most of these significant brain areas have been suggested as 

pathogenic tissues of bipolar disorder, including hippocampus [37], hypothalamus [38], basal ganglia 

[39]. Interestingly, the brain cervical spinal cord C1 is prioritized as the second most significant 

driver tissue, yet there have been no studies implicating this tissue for BD by far. As a bridge 

between brain and other body parts, cervical spinal cord may have a potential contribution to the 

development of BD. This is subject to validation by experiments in the feature.  

 

Coronary artery disease (CAD) 

CAD causes impaired blood flow in the arteries that deliver blood from the heart to other body parts. 

As expected, coronary artery (p =2.63×10-4) is reported as the top one enriched tissue by the 

selective expression of associated genes. We also find that the aorta and tibial artery have relatively 

high enrichment in CAD, probably because CAD associated genes are also selectively expressed 

among different types of artery. It should be noted that the adipose tissue is prioritized as the third 

most significant driver tissue, which is consistent with the present studies suggesting the relevance 

between adipose tissues and CAD [[40], [41], [42]]. Unexpectedly, the nerve is prioritized as the 

second most significant driver tissue, which we failed to verify in literature survey and requires 

further research. 

 

Rheumatoid arthritis (RA) 

RA is a common autoimmune disease mainly attacking the joints. In the selective expression 

enrichment analysis, two tissues out of the three most significant tissues fall into immune system, 
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spleen and lymphocytes. Unexpectedly, the lung is prioritized as the most significant tissue. 

However, there have been multiple studies suggesting the lung may play a role in the pathogenesis of 

RA [43]. There are also studies suggesting lung disease as a major contributor to morbidity and 

mortality for RA [44]. Some studies suggested lung disease in RA results from targeting of the lung 

from circulating autoimmunity, but some studies found lung generation of autoimmunity can be 

present before the onset of joint symptoms42. Hence, our results about RA and lung may shed some 

insights into the relationship between them. 

 

Total cholesterol (TC) 

For a complex clinical trait, TC, our analysis only detected one significant tissue, liver (p = 

4.27×10-10). This is consistent with common knowledge that the liver is responsible for 80% of the 

endogenous cholesterol synthesis. 30 genes out of 83 TC associated genes are selectively expressed 

in liver. Among them, several genes have been identified as the causal genes of TC. For example, 

mutations in PCSK9 has been identified to cause autosomal dominant hypercholesterolemia [45]. 

Furthermore, recent studies have showed that the monoclonal PCSK9 antibodies could reduce 

LDL-C in patients with familial and primary hypercholesterolemia alone [[46], [47]]. 

 

Height 

For an anthropometric trait, height, 20 significant tissues are detected, which suggests complex 

biological mechanisms in the development of human height. However, the most significant tissue is 

fibroblast (p < 10-16), which is the most common cells of connective tissue in animals. Consistent 

with our results, multiple studies, two have also reported connective tissue as the most enriched 

tissue type for height[47], [48]. Notably, there are also multiple tissues with highly significant 

p-values (p < 10-7), such as artery, lung, muscle, adipose, which may provide some new insights into 

the mechanism of height. 

 

Comparison of driver tissues detected by our proposed method to another method 

We also compared the performance of the proposed framework to a recent method for estimating 

causal tissues by Ongen et al. [9]. The Figure 2 shows the prioritized tissues of both methods in the 

above five representative diseases/traits. For bipolar disorder (BD), using our approach, the top ten 

significant tissues fall into brain areas, most of which have been identified to be relevant with BD 

[[36], [37], [38], [39]] as mentioned above. However, with Ongen's approach, only three brain 

tissues are among the top ten significant tissues. The most significant tissue by Ongen's approach 

was prostate, which we failed to verify in literature survey. For coronary artery disease (CAD), 

coronary artery is correctly prioritized as the most significant tissue by our method, while coronary 

artery is prioritized as third significant tissue by Ongen's method. For the autoimmune disease RA, 

the two immune tissues are prioritized in the top three significant tissues by our proposed method. 

Unexpectedly, with Ongen's method, the top five significant tissues even include artery and skin. We 

do not find studies supporting artery and skin are causal tissues of RA. For total cholesterol, the liver 

is correctly enriched as most likely causal tissue by both methods. For another complex trait, our 

results show the fibroblast cells as the most significant causal cells of height, while Ongen’s results 

suggest the putamen as most significant driver tissues of height. However, in literature few studies 
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investigate the driver tissues of height and it is difficult to evaluate the results of both methods. In 

general, our proposed framework produced more biologically sensible driver-tissues for complex 

diseases/traits than Ongen's method. 

 

Tissue-selectivity prioritization enhances detection of susceptibility genes in a post GWAS 

analysis 

Finally, we asked how tissue-selectivity prioritization of a disease can be used to enhance detection 

of susceptibility genes in a post GWAS analysis. In the schizophrenia benchmark dataset, the 

selective expression ranking leads to ~30% different significant genes from the default statistical 

significance ranking in a conditional gene-based test[20]. Among the different significant genes, a 

rough in silico validation in PubMed shows the selective expression ranking results in more genes 

implicated in schizophrenia by literature than the statistical significance ranking (n=16 vs. 10, See 

details in Supplementary Excel Table 1). Here are some individual detailed examples. In a set of 

physically close genes, the tissue-selective expression ranking and statistical significance ranking 

lead to different significant genes, DRD2 and MIR4301, respectively. The DRD2 gene is selectively 

expressed in multiple prioritized pathogenic tissues [including Brain-Anteriorcingulatecortex, 

Brain-Cortex, Brain-Putamen(basalganglia) and Brain-Spinalcord] and has over 100 papers 

co-mentioning the gene and schizophrenia in their titles or abstracts in PubMed database. In contrast, 

there is no paper suggesting MIR4301’s relatedness to schizophrenia. In another set of physically 

close genes, the tissue-selective expression ranking and statistical significance ranking lead to 

different significant genes, MIR137HG and MIR2682 respectively. MIR137HG is specifically 

expressed in above multiple prioritized tissues for schizophrenia [including Brain-Cerebellum, 

Brain-Anteriorcingulatecortex, and Brain-Hypothalamus]. MIR2682 even had no expression values 

in any tissues of the GTEx dataset. Moreover, there have been multiple papers (e.g., [49, 50]) 

suggesting MIR137HG’s contribution to schizophrenia. A bioinformatics prediction by TargetScan 

(http://www.targetscan.org) suggests this miRNA gene targets multiple empirically validated 

candidate genes of schizophrenia, e.g., CACNA1C, ZNF804A and TCF4. Among the significant 

genes based on the statistical significance ranking, ABCB1 has the largest number of PubMed hits. 

This gene also has selective expression in several prioritized tissues, including 

Brain-Anteriorcingulatecortex, Brain-FrontalCortex(BA9), and Brain-Substantianigra. Its conditional 

gene-based association p-value according to the tissue-selective expression ranking is suggestively 

significant p=8.7×10-6.  

 

In the five representative diseases/traits, the tissue-selective expression ranking consistently results in 

more previously reported genes than the statistical significance ranking in the conditional gene-based 

association analysis (See details in Supplementary Excel Table 1). Here are some interesting 

individual examples. TNF has a significant p-value for rheumatoid arthritis, 3.32×10-25, according to 

the tissue-selective expression ranking while it only has a p-value 1.0 according to the statistical 

significance ranking. The TNF is specifically expressed in immune-related tissues and cells and there 

are over 100 papers co-mentioning the gene and rheumatoid arthritis in the titles or abstracts in 

PubMed database. What’s more, TNF-α has been identified as a key molecule in the control of the 

inflammatory changes that occur in the RA synovium [PMID: 11934972] and the approach of 
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targeting TNF-α has considerably improved the success in the treatment of RA [PMID: 25651945]. 

For bipolar disorder, MAD1L1 is only detected by the tissue-selectivity prioritization-based method, 

which has been identified as the candidate gene of bipolar disorder by several studies [[51], [52]]. 

VEGFA is only detected as the candidate gene of CAD by tissue-selective expression ranking, which 

has over 100 PubMed hits. Many studies have showed VEGF is dysfunctional in CAD and suggested 

that VEGF could be used as the biomarker and therapy target for CAD [e.g., [52] [53]]. LIN28B has 

been identified as an associated gene of height by many studies [e.g., [54]]. While the statistical 

significance ranking failed to detect it, the tissue-selective expression ranking leads to a very 

significant p-value (5.46×10-36). For total cholesterol, SORT1 is only detected by the tissue-selective 

expression ranking and has been identified as the causal gene of lipid levels [55]. These results 

suggest the tissue-selectivity prioritization by the proposed robust z-score can enhance detection of 

true susceptibility genes in a post-GWAS analysis. 

 

 

Discussion 

To our knowledge, this is the first study to explore how tissue selective expression can be integrated 

into post-GWAS analysis for identifying potential driver-tissues of complex diseases. Because the 

associated genes from GWAS are unbiased and potential drivers of diseases, this study provides an 

unbiased way to precisely explore driver-tissues of complex diseases. Not only can it interpret the 

mechanism of tissue selective pathogen observed in clinical diagnosis, it can also reveal more 

comprehensive and primarily relevant tissues than clinical diagnosis. Moreover, the high 

accessibility of resource data may encourage many explorations of tissue selective pathogen of 

complex diseases in the future. The expression data and GWAS summary data used in our analysis 

framework can be downloaded from independent public domains for free and no privacy-sensitive 

data (e.g., genotypes) are needed. We demonstrated this approach works in six complex diseases or 

traits of different anatomic systems. First, it systematically confirms many known causal tissues of 

these diseases. For example, the brains areas are always prioritized for schizophrenia and bipolar 

disorder. The subtle difference between the prioritized brain tissues may also provide some clues for 

different clinical manifestation of the two brain diseases. The important immune tissues and 

cell-types, spleen and lymphocyte cells are significant for rheumatoid arthritis. These biological 

sensible results in the real examples sufficiently validate the hypothesis that susceptibility genes’ 

tissue selective expression determines diseases’ tissue selectivity. Second, the comprehensive 

analysis suggested multiple new candidate driver tissues for further validation, e.g., lung for 

rheumatoid arthritis and artery for height.  

 

The identified tissues will facilitate transcriptomic and molecular genetic studies of complex diseases. 

Understanding the path from DNA variation to phenotype variation is a long-held mission of 

genetics. The recent wave of GWAS consistently implicated that most majority variants confer risk 

for complex diseases through regulating gene expression[56]. To further study the underlying 

mechanism, we must know the primitive pathogenic tissues. The experiments in irrelevant tissues 

will waste time and resources. Although our analyses do not provide direct evidence on how 

sequence variants change the specific expression in patients to cause a disease, it is unlikely that the 
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significant enrichment of associated genes in many biologically sensible tissues occurred just by 

chance. One can extrapolate that the tissue selectivity of complex diseases is determined by tissue 

selective expression of susceptibility genes. Probably due to their selective expression, sequence 

variation at these genes will impose higher impact on the development of complex diseases. For the 

detailed mechanism, more molecular biological experiments in the prioritized tissues are needed.    

 

Based on the above extrapolation, we also proposed to use the tissue selective expression to prioritize 

susceptibility genes in post-GWAS analyses. LD is a tricky problem in GWAS for discriminating 

true susceptibility genes from indirectly associated genes. Li et al (2018) proposed a powerful 

statistical framework to isolate possible directly associated genes[20]. However, the original analysis 

was carried out according to a rank of statistical significance assuming the true susceptibility genes 

had the more significant p-values. But this is not always true due to expression fluctuations. After 

ranking genes according to their selective expression in the prioritized tissues for a given disease, we 

reperformed the conditional gene-based analysis with the new rank. It turned out the selective 

expression ranks from independent resources led to more significant genes supported by literatures 

for the six representative complex diseases/traits. These results suggest that integration of selective 

expression can enhance the power of identifying susceptibility genes. We believe this strategy will 

also work for many other complex diseases. It will be an effective framework to mine new 

susceptibility genes in the post-GWAS analyses. Again, the high accessibility of resource data will 

also encourage similar studies in the post-GWAS era.   

 

A prerequisite of the success in our identification of driver tissues and susceptibility genes is the 

powerful detection of selectively expressed genes in a tissue. In the comparison of different measures 

for selective expression, we showed that proposed robust z-score led to the highest significance in 

the biologically sensible tissues for schizophrenia (Table 2). In contrast, other measures led to either 

less significant p-values or unlikely tissues. This can be explained by the improved power of the 

proposed robust z-score in detecting multiple selectively expressed tissues (Table 1). The improved 

performance is attributed to its technical innovations to conquer problems in real data. The structure 

of tissue samples in GTEx dataset is complicated with two issues. First, the origin structure of the 

tissue samples is complex. Some tissues have many similar tissues (e.g. different brains regions) 

while some have few similar tissues. Second, the size of a tissue sample varies from 5 to 564, which 

leads to different expression estimation precision. These problems in data are challenging the 

detection of selective expression. The two issues are not unique for the GTEx dataset; and many 

other expression datasets have the same problems. The proposed robust z-score was designed on a 

robust regression of ranked expression and a consideration of expression fluctuation. The robust 

regression produced robust weights to estimate expression mean and standard error of majority 

tissues, which circumvents arbitrary partition of the majority and minority tissue. These technical 

innovations led to improved power in detecting multiple selectively expressed tissues and 

subsequently disease-related tissues, compared to other selective expression metrics.  

 

The current study also provides abundant data demonstrating that transcript-level selective 

expression is more powerful for prioritizing driver tissues of complex diseases than that of gene level. 
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Although this looks apparent, few studies have investigated the details. Previous studies often used 

gene-level selective expression to look into the tissue selective pathogen [2, 14]. In the present study, 

we show that the usage of transcript level expression (after Bonferroni correction for multiple 

isoforms) identifies more selectively expressed genes at every tissue [Table 2]. Moreover, the 

transcript-level selective expression increases the significance p-value for enrichment from 5.8×10-6 

to 5.7×10-14 at the top tissue of schizophrenia. The comparison suggests studies on transcriptome of 

complex diseases should pay more attention to transcript level expression. Otherwise, many 

important expression patterns of susceptibility genes may be overlooked. Moreover, our results also 

suggest lowly expressed genes or transcripts may be also important for complex diseases when they 

have large selective expression. The inclusion of lowly expressed genes also led to more significant 

p-values in the prioritization of driver tissues of schizophrenia (Table 2) 

 

In the five representative examples, we showed the proposed method outperformed the Ongen’s 

method for estimating causal tissues. The two approaches have different strategies and rationales. 

Our proposed method is built on the hypothesis that tissue selective expression of susceptibility 

genes determines the pathogenic selectivity of complex diseases. The powerful gene level 

association and precise transcript level selective expression are used to estimate the driver tissues. In 

contrast, the Ongen’s method resorts to an overlap between eQTL in a tissue and GWAS associated 

variants to estimate the driver tissue. Because of multiple testing burden and small effect size, the 

variant level association analysis is generally less powerful than the gene level association 

analysis[57]. Therefore, in theory, the proposed method is more powerful than the Ongen’s. This is 

also proved in all the tested real examples.   

 

Due to lack of data, the selective expression profiles in 50 tissues are far from complete and the 

information of developmental stages are lacked either, which is a limitation of the present study. For 

example, a liver has lobes, surfaces and impressions. In GTEx dataset, liver has no sub-tissues. Due 

to lack precise tissues, some estimated driver tissues may be still rough in our analysis. Probably due 

to the same reason, some promising candidate genes have no significant selective expression in any 

of the prioritized tissues of a disease. The significance in the enrichment analysis may be increased 

when expression of more related sub-tissues at suitable developmental age is available. However, as 

more and more expression data are accumulating, this limitation is diminishing. The tissue selective 

expression will become a powerful resource for identifying driver tissues, developmental stage and 

new susceptibility genes of human diseases.  

 

 

Methods  

The proposed robust measure of tissue selective expression 

There are N different tissues, and each tissue has multiple transcriptomes. A gene (or transcript) has 

expression means and standard errors (SE) at the N tissues, 𝑦1, … , 𝑦𝑁 and 𝑠1, … , 𝑠𝑁. Assume 

majority expression values approximately follow a certain distribution (say, normal distribution, or 

uniform distribution) while a minority of values deviate from the majority due to selective 

expression. 
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We notice that the seemingly mussy values in the majority group can often approximately form a line 

after sorting (See illustration in Supplementary Figure S1). In contrast, the selective expression 

values will deviate from the line. In addition, as expression means of a gene in tissues with smaller 

SEs are often more reliable than that with larger SEs, we extended the Huber robust linear regression 

[58] to weight the expression deviation and reliability. The Huber regression is particularly efficient 

to outliers in the response variable than other alternative approaches[59, 60], so it can effectively 

down-weight the expression values deviating from the majority and having large SEs. The regression 

framework produces smaller weights for the expression values with larger deviation from the fitted 

line and larger SEs:  

{

𝑦(𝑖) = 𝛽0 + 𝛽1 ∗ 𝑖 + 𝑒(𝑖)

𝑤(𝑖) = {
1 𝑠(𝑖)⁄ |𝑒(𝑖)| ≤ 𝑘

𝑘 [𝑠(𝑖) ∗ |𝑒(𝑖)|]⁄ |𝑒(𝑖)| > 𝑘

  (1) 

where, 𝛽0 and 𝛽1 are the regression parameters, 𝑖 ∈ [1 … 𝑁] is the rank of a gene expression in 

the N tissues. The 𝑦(𝑖) denotes the ith expression mean in an ascendingly sorted list, and 𝑒(𝑖) denotes 

the residual. When each tissue only has one subject, yi, is the expression value of the subject and si is 

set to be 1. The 𝑤(𝑖) is a weight of 𝑦(𝑖). The k is a tuning constant and is equal to 1.345×standard 

deviation of the weighted residuals[58]. The iteratively reweighted least-square procedure of robust 

linear regression is used to generate the converged weights, 𝑤1, … , 𝑤𝑁. 

 

The converged weights are standardized, 

ẁi =
wi

∑ wj
N
j=1

 , 

and are used to produce a robust mean,  

�̂�𝑤 = ∑ �̀�𝑖 ∗ 𝑦𝑖

𝑁

𝑖=1
 

and a robust standard deviation, 

�̂�𝑤 = √
∑ �̀�𝑖(𝑦𝑖−𝜇𝑤)2𝑁

𝑖=1

1−∑ �̀�𝑖
2𝑁

𝑖=1

. 

The proposed robust z-score for selective expression at tissue i is defined as: 

𝑧�̀� =
𝑦𝑖−�̂�𝑤

�̂�𝑤∗𝜆
. 

The 𝑧�̀� quantifies the expression deviation from the homogenous majority expression values. The 𝜆 

is a constant factor to adjust the p-values to follow uniform distribution for hypothesis test. Extensive 

simulations suggested that an empirical factor of √1.5 led to approximately uniformly distributed 

p-values (Figure S2 and S3). The p-value is then approximated based on the standard normal 

distribution, 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 17, 2018. ; https://doi.org/10.1101/491878doi: bioRxiv preprint 

https://doi.org/10.1101/491878


𝑝𝑖 = {
2 ∗ [1 − 𝛷(�̀�𝑖)], �̀�𝑖 ≥ 0

2 ∗ 𝛷(�̀�𝑖), �̀�𝑖 < 0
, where 𝛷(𝑥) is the cumulative distribution function of the standard 

normal distribution.  

 

Estimated drive-tissue of diseases by selective expression of disease-associated genes 

The driver tissues of a disease are estimated by enrichment analysis of selective expression among 

genes associated with the disease. The underlying assumption is that tissue selective expression of 

associated or susceptibility genes of a disease determines the tissue where complex diseases happen 

primarily, which are called driver tissues. Therefore, a cause tissue is very likely to have an 

enrichment of selective expression by the susceptibility genes of a disease. We use hypergeometric 

distribution to evaluate the enrichment. Let’s define that a disease having m associated genes. Given 

a p-value cutoff c(=10-6), there are mc genes with significant selective-expression in a tissue among 

the m genes, (𝑝𝑖 ≤ c). Let Tc denote the number of genes with selective expression in a tissue one 

whole genome according to c as well  (𝑝𝑖 ≤ c). T denotes the number of all genes having expression 

values. The enrichment p value is calculated by the probability mass function of hypergeometric 

distribution 

𝑝 = ∑
(

𝑇𝑐
𝑖

)(
𝑇−𝑇𝑐
𝑚−𝑖

)

( 𝑇
𝑚)

𝑚
𝑖=𝑚𝑐

, 

where (𝑥
𝑦

) denotes the combinational formula. A significant p-value suggest many associated genes 

of a disease have selective expression in the tested tissue, indicating the possible driver tissue of the 

disease.  

 

For a gene with multiple selective expression p-values because of multiple transcripts in a tissue, the 

smallest p-value of transcripts after Bonferroni correction is used to determine significant selective 

expression.  

 

Rank genes by tissue-selective expression in driver tissues 

The selective expression in the prioritized tissues is then used to rank candidate genes for a given 

disease. Assume a disease has g significant estimated driver tissues, with the enrichment p-values 

𝑝1, ⋯ , 𝑝𝑔. The ranking score of a gene j is 

s𝑗 = ∑ {
− log(𝑝𝑖) 𝑖𝑓 𝑔𝑒𝑛𝑒 𝑗 ℎ𝑎𝑠 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑖𝑛 𝑡𝑖𝑠𝑠𝑢𝑒 𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑔

𝑖=1

 

. The a gene with selective expression p-value (𝑝𝑖 ≤ c) of in a tissue is defined as significant p-value.  

A gene having selective expression in all prioritized tissues can be given the highest score while a 

gene having no selective expression in any prioritized tissues is given zero score. The higher score, 

the more likely to be a susceptibility gene. The ranking score is then used to determine the order in a 

conditional gene-based association analysis [20]. Genes with higher ranking scores are given higher 

priority to enter the conditional procedure, which will have a higher chance of getting smaller 

p-values. 
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The robust z-score approach, enrichment analysis and gene-ranking score have been implemented 

into an online tool (http://grass.cgs.hku.hk:8080/dirse/) to facilitate identification of tissue-selective 

pathogen and susceptibility genes of complex diseases. 

 

Conditional gene-based based association analysis with GWAS p-values 

The conditional gene-based association test, which has an advantage of excluding indirectly 

associated genes, on KGG (http://grass.cgs.hku.hk/limx/kgg/ [61]) is used to produce 

disease-associated genes by GWAS summary statistics.   For a given disease, the GWAS p-values 

of sequence variants were input into KGG. The variants within upstream and downstream 5 kb of a 

gene were assigned onto the gene according to the gene-model, RefGene hg19. Prior to the 

conditional gene-based association test, an unconditional gene-based test was carried out to detect 

significant genes by ECS on KGG. The phased genotypes (Phase3 v5 Shapeit2) of EUR panel in 

1000 Genomes Project [62] were used as reference genotypes to remove redundant association at 

sequence variants due to linkage disequilibrium (LD) in the gene-based association test. Among the 

significant genes detected by the unconditional gene-based association test, some genes may only 

have indirect association with the disease due to their LD with the true susceptibility genes. The 

conditional gene-based association analysis was then followed to remove the indirectly associated 

genes on KGG software [61] according to the same reference genotypes. The conditional gene-based 

association analysis was performed twice via two different entry orders of genes. At the first time, 

genes with smaller p-values were given higher priority to enter the iteration for conditional 

gene-based association analysis. At the second time, genes with higher ranking scores of 

tissue-selectivity were given higher priority to enter the iteration (See the general pipeline in Figure 

1). The basic assumption is that genes selectively expressed in the driver tissues of a complex disease 

are more likely to be susceptibility genes. If the true susceptibility genes enter first, the conditional 

gene-based association analysis will more effectively remove indirectly associated genes.  

 

Gene expression datasets and quality control  

The normalized expression datasets at gene level and transcript level were downloaded from GTEx 

project (V7)[63], GTEx_Analysis_2016-01-15_v7_RNASeQCv1.1.8_gene_tpm.gct.gz and 

GTEx_Analysis_2016-01-15_v7_RSEMv1.2.22_transcript_tpm.txt.gz. The sample sizes of each 

tissue were very different, ranging from 5 to 564 (Table S2). There were initially 196,520 transcripts 

and 56205 genes in 53 tissues. The expression values were measured by transcripts per kilobase 

million (TPM). As the relative measurement, TPM, has been effective for cross-tissue 

comparison[64], we did not retransform the expression values by other measurements. A series of 

quality control procedures were carried out. The mean and standard deviation of expression values of 

multiple genes in each tissue were produced. In the evaluation according to correlation, three tissues 

(Whole Blood, Pancreas, and Pituitary) had low Pearson correlation with other tissues (Figure S4 and 

S5) and were excluded. In the calculation of tissue selective expression, genes or transcripts having 

≤0.01 TPM in all tissues were excluded. Genes whose Ensembl IDs had no corresponding official 

HGNC gene symbols were excluded as well. Finally, 131,292 transcripts and 31,659 genes in 50 

tissues were retained for the following analysis.   
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Produce genes associated with 5 representative complex diseases or traits. 

We collected the GWAS meta-analysis p-values at single nucleotide polymorphisms (SNPs) of 5 

representative complex diseases or traits developing in different biological systems, bipolar disorder 

[65](a brain disease), rheumatoid arthritis (RA)[66](an autoimmune disease), coronary artery disease 

(CAD) [67](a cardiovascular disease), total cholesterol [68] (a metabolic trait), height [69](an 

anthropometric trait). Table S4 lists the sample sizes and downloading links of the datasets. The 

p-values of SNPs were combined for gene-based association on KGG (See detailed methods in the 

above section). The detected associated genes (after multiple testing correction) were used to detect 

potential driver-tissues and to re-identify additional susceptibility genes (See pipeline in Figure 1). 

 

Comparison of the proposed framework with another method for estimating driver-tissue 

We compared our proposed driver tissue identification method to another causal tissue estimating 

method proposed by Ongen et al. [9] recently, which was developed under different hypothesis. 

Ongen’s method estimated the causal tissues according to enrichment of active eQTL in tissues. For 

fair comparison, we selected the all of 41 overlap GTEx tissues between our study and Ongen et al. 

[9] for causal tissues estimation of the same diseases. However, because Ongen’s method has no 

publicly available tools, we directly extracted enrichment values from the Supplementary Table S5 

of their published paper [9]. According to Ongen et al., the tissues with the enrichment value over the 

null greater than 1 was consider as the causal tissues for the diseases/traits. 

 

In silico validation by PubMed search 

We used PubMed search function to validate the detected genes for a complex disease. The 

underlying assumption is that multiple papers co-mentioning a gene and a disease name in the title or 

abstract may implicate the contribution of the gene to the disease. The more hit papers, the more 

likelihood the gene is related to the disease. Although this may be crude for a specific gene, it can 

produce a reliable systematic evaluation when there are many genes. We employed the web 

application programming interfaces (APIs) of PubMed to execute the search. The search link was, 

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=“DiseaseNames(inlcudin

g homonymies)”[tiab]%29+AND+“GeneSymbol (including RefSeq mRNA IDs)” [tiab]. The search 

results included PubMed ID and relevant data of the papers, if available, in extensible markup 

language (XML). 
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Figure Legends 

Figure 1: Analysis procedure to prioritize tissue selectivity and susceptibility genes of complex 

diseases  

The expression of multiple tissues (from GTEx) is input to measure selective expression of tissues by 

a robust z-score. The GWAS p-values are used to detect genes associated with a complex disease by 

a conditional gene-based association test on KGG. The causal tissues are then estimated by 

enrichment analysis of GWAS-genes with selective expression. The selective expression in the 

causal tissues is used to prioritize susceptibility genes by the conditional gene-based association test 

in turn. 

 

Figure 2: Driver tissues inferred by our proposed method and Ongen’s method in five representative 

complex diseases 

Each row shows one disease/trait. The left part shows results inferred by our proposed method, right 

shows by Ongen’s method. On the x axis, the 41 overlapped tissues are classified into 13 groups 

based on anatomy, which are filled with different colors as the legend shows. The tissues are sorted 

by the corresponding value on y axis in descending order. For our proposed method, the bar on y axis 

shows the negative log10-transformed enrichment p value of each tissue and the red horizontal line 

denotes the p value cutoff by Bonferroni correction. While for Ongen’s method, the bar on the y axis 

shows the enrichment over the null of each tissue and the red horizontal line shows enrichment over 

the null is 1. 
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Tables 

 

Table1: Prioritized pathogenic tissues of schizophrenia by different approaches 
 By gene level expression By transcript level expression 

 Tissue/Cell-Types  aSel.

Gene 

bp-value Tissue/Cell-Types  aSel.Ge

ne 

bp-value 

The 

proposed 

robust 

z-score 

Brain-Anteriorcingulatecortex(BA24) 27 1.6E-6 dBrain-CerebellarHemisphere 68 6.3E-10 

Brain-FrontalCortex(BA9) 30 2.9E-6 Brain-Anteriorcingulatecortex(BA24) 44 1.4E-9 

Brain-Amygdala 24 6.7E-6 Brain-Amygdala 39 1.8E-8 

Brain-Putamen(basalganglia) 23 8.0E-6 Brain-Hippocampus 40 2.7E-8 

Brain-Hippocampus 24 1.9E-5 Brain-FrontalCortex(BA9) 47 5.1E-8 

Convention

al 

z-score-10

% 

Brain-Putamen(basalganglia) 25 0.000197 Artery-Tibial 27 1.16e-05 

Brain-Anteriorcingulatecortex(BA24) 22 0.00268 Artery-Coronary 26 3.38e-05 

Brain-Amygdala 22 0.00268 AdrenalGland 26 3.38e-05 

Brain-Cortex 20 0.0119 Brain-Cortex 25 9.40e-05 

Brain-Caudate(basalganglia) 20 0.0119 Brain-Nucleusaccumbens(basalganglia) 24 0.000249 

MAD 

robust 

z-score-10

% 

Brain-Hippocampus 17 0.0741 c-   

Brain-Anteriorcingulatecortex(BA24) 17 0.0741    

Brain-Amygdala 17 0.0741    

Artery-Tibial 16 0.122    

Brain-Putamen(basalganglia) 16 0.122    

SPM-10% Brain-FrontalCortex(BA9) 34 6.57e-09 Artery-Tibial 28 3.80e-06 

Brain-Cortex 31 3.01e-07 Brain-Anteriorcingulatecortex(BA24) 27 1.16e-05 

Brain-Anteriorcingulatecortex(BA24) 30 9.91e-07 Brain-Cortex 26 3.38e-05 

Brain-Putamen(basalganglia) 30 9.91e-07 Brain-FrontalCortex(BA9) 26 3.38e-05 

Brain-Nucleusaccumbens(basalganglia) 29 3.12e-06 Brain-CerebellarHemisphere 26 3.38e-05 

 

Note: a: the selectively expressed genes out of the 130 genes associated with schizophrenia. b: the 

p-values were calculated by hypergeometric distribution test for enrichment. c: the selective 

expressions at most genes are not available due to the zero MAD values. Only the top five tissues are 

listed in the table. As the three alternative metrics have no valid p-values for statistical test, the upper 

10% genes ranked according to each metric are defined as selectively expressed genes. The proposed 

robust z-score adopt a p-value cutoff 10-6. In the quality control of excluding extremely lowly 

expressed genes, gene or transcripts having TPM <0.01 in 40 or more tissues are excluded. 

 

Table 2: The number of selectively expressed genes and enrichment statistical significance for 

different minimal expression values 

 
 Cerebellar Hemisphere Anterior cingulate Cortex Frontal Cortex 

 Gene-level 

expression 

Transcript-level 

expression 

Gene-level 

expression 

Transcript-level 

expression 

Gene-level 

expression 

Transcript-level 

expression 
aCutoff b#Gene cp-value #Gene p-value #Gene p-value #Gene p-value #Gene p-value #Gene p-value 

0.01 35 7.9E-5 68 6.3E-10 27 1.7E-6 44 1.4E-9 30 3.0E-6 47 5.1E-8 

0.05 35 8.5E-5 68 1.4E-9 27 2.8E-6 43 8.1E-9 30 4.6E-6 46 2.5E-7 

0.1 35 9.2E-5 68 2.0E-9 27 4.6E-6 43 1.2E-8 30 7.7E-6 46 3.7E-7 

0.5 35 1.0E-4 61 4.9E-7 28 4.9E-6 39 7.4E-7 31 9.2E-6 41 2.5E-5 

1 35 6.5E-5 54 8.5E-5 27 1.5E-5 38 1.5E-6 31 9.4E-6 40 3.3E-5 

 

Note: a: remove genes with expression < c in all tissues. b: the number of significant genes; c:the 

p-value for enrichment analysis calculated by hypergeometric test. According to a cutoff x, gene or 

transcripts having TPM <x in 40 or more tissues are excluded. 
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