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Abstract 

The qPCR method provides an inexpensive, rapid method for estimating relative average telomere 

length across a set of biological samples. Like all laboratory methods, it involves some degree of 

measurement error. The estimation of relative telomere length is done subjecting the actual 

measurements made (the Cq values for telomere and a control gene) to non-linear transformations 

and combining them into a ratio. Here, we use computer simulations, supported by mathematical 

analysis, to explore how errors in measurement affect qPCR estimates of relative telomere length, 

both in cross-sectional and longitudinal data. We show that errors introduced at the level of Cq values 

are magnified when the TS ratio is calculated. If the errors at the Cq level are normally distributed and 

independent of telomere length, those in the TS ratio are positively skewed and proportional to 

telomere length. The repeatability of the TS ratio declines abruptly with increasing error in 

measurement of the telomere sequence and/or the control gene. In simulated longitudinal data, 

measurement error alone can produce a pattern of low correlation between successive measures of 

telomere length, coupled with a strong dependency of the rate of change on initial telomere length. 

Our results illustrate the importance of control of measurement error: a small increase in error in Cq 

values can have large consequences for the power and interpretability of qPCR estimates of relative 

telomere length. They also illustrate the importance of characterising the measurement error that 

exists in each dataset—coefficients of variation are generally unhelpful, and researchers should report 

standard deviations of Cq values and/or repeatabilities of TS ratios—and allowing for the known 

effects of measurement error when interpreting patterns of TS ratio change over time.   
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Introduction 

The length of telomeres—DNA-protein caps on the ends of linear chromosomes—has emerged across 

several fields as a key integrative biomarker to be studied in relation to ageing [1,2], environmental 

exposures [3], early-life experience [4,5], social determinants of health [6], stress [7], disease [8], and 

reproduction [9]. The widespread use of telomere length as a biomarker in epidemiological and 

ecological studies depends on the availability of a convenient and high-throughput method of 

estimating the relative average telomere lengths of a sample of individuals. That method comes from 

quantitative PCR (qPCR) [10]. In a recent large meta-analysis of the human telomere epidemiology 

literature, qPCR was used in 80% of the 143 studies, including almost all the studies with a sample size 

greater than 100 individuals [11]. The cheapness and simplicity of the qPCR method is a key enabling 

factor for the explosion of interest in the field of in vivo telomere dynamics.  

There has been considerable debate concerning the impact of measurement error on the reliability of 

qPCR relative telomere length measurement. This debate concerns such issues as, for example, how 

much less reliable qPCR measurement is than other, more time-intensive methods [12–15]; what the 

sources are of variability in measurements [16–20]; and laboratory best practices for keeping 

measurement error to a minimum [21,22]. The purpose of this paper is rather different: regardless of 

what the source of measurement error is, what are its typical consequences for our datasets? 

Measurement error is classically modelled as the addition of a normally-distributed ‘noise’ term, 

whose standard deviation can be large or small depending on the precision of the technique, to the 

true value of the underlying quantities being measured. However, in qPCR telomere studies the actual 

laboratory values measured are first subjected to a non-linear transformation, and then combined 

into a ratio in order to estimate relative telomere length (the T/S ratio; henceforth we omit its ‘/’ to 

avoid confusion in formulae). Moreover, in longitudinal studies, the outcome variable is often the 

difference between two TS ratios. The likely consequences of measurement error for such variables 

as the TS ratio, or the change in TS ratio, are thus not obvious. We therefore sought to examine them 

through computer simulation of qPCR datasets, in which we could incorporate different amounts of 

error at the level of actual laboratory measurements, and examine the consequences of this for the 

outcome variables that qPCR telomere studies typically use.  

The qPCR method of telomere length measurement follows the general principles of real-time DNA 

amplification using PCR: primers are used to amplify specific DNA sequences from a DNA sample; a 

fluorescent reporter allows detection of the abundance of the amplicon; and the measured variable 

is the Cq, the fractional number of PCR cycles required for a pre-chosen threshold of fluorescence to 

be reached. Because amplified DNA doubles successively during the PCR (assuming effectively perfect 

efficiency), Cq values should be linearly related to the base-two logarithm of the amount of the 

complementary sequence to the primer [10]. Thus, 2−𝐶𝑞 is taken to be proportional to the amount of 

the target DNA sequence in the sample. (It is possible to incorporate imperfect amplification efficiency 

by using the measured slope of a standard curve [23] rather than 2, but that does not change the 

general principles that follow). 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 10, 2018. ; https://doi.org/10.1101/491944doi: bioRxiv preprint 

https://doi.org/10.1101/491944
http://creativecommons.org/licenses/by/4.0/


3 
 

The amount of telomeric DNA present in a sample is the product of how many copies of the genome 

are present and the amount of telomeric DNA per genome copy. Hence, to estimate relative telomere 

length, it is important to normalize for the amount of DNA in the sample. This is done by amplifying a 

control genetic sequence that does not vary in copy number. Following Cawthon’s original 

terminology [10] we refer to this control sequence as the single-copy gene, although in fact all that 

matters is that its copy number is non-variable. The Cq for the single-copy gene is again transformed 

to 2−𝐶𝑞. The critical estimator of relative telomere length—the TS ratio—has 2−𝐶𝑞 for telomere in its 

numerator, and 2−𝐶𝑞 for the single-copy gene in its denominator.  

Our simulation approach is based on generating large datasets in which we first generate ‘true’ 

distributions of telomere length and of the number of genome copies in each sample. We then 

generate Cq values that reflect these quantities, but also incorporate random, normally-distributed 

measurement errors of varying magnitudes. We then use the Cq values to compute TS ratios, or the 

change in TS ratio for longitudinal cases. For simulations, unlike the usual empirical situation, we know 

what the ‘true’ underlying variables are, and thus we are able to compute the magnitude of the 

deviations between true and measured values, as well as other measures of reliability. Many of our 

key results were also derivable analytically, and these analytical findings are reported in the Appendix, 

section 1, and referred to in Results where relevant. Analytical and simulation findings were always 

concordant. In order to validate our assumptions, parameterize our simulations, and compare 

simulated to empirical outcomes, we also drew on two sets of empirical human qPCR data—one in 

which the same biological sample was measured multiple times under standard conditions, and a 

second that compared the results of multiple longitudinal human telomere studies.  

  

Methods 

Basic simulation framework 

In all simulations, we first assign each biological individual in a cohort of n individuals a true average 

telomere length (tl). This is a normally-distributed quantity with mean 1 and specifiable standard 

deviation σt. The variable tl represents how much longer or shorter than a typical individual that 

particular person’s telomeres are; thus, it is the true biological quantity that we wish to estimate by 

calculating a TS ratio from qPCR data.  

Next, we generate DNA samples from each individual. The amount of single-copy-gene DNA in each 

sample, DNAs, is drawn from a normal distribution with mean µs and standard deviation σs.  

The true amount of telomeric DNA in a given sample can thus be calculated: 

𝐷𝑁𝐴𝑡 = 𝑎 ∙ 𝑡𝑙 ∙ 𝐷𝑁𝐴𝑠 

Here, a is a scaling constant (a >> 1) representing how many fold more abundant the telomeric 

sequence is than the single copy sequence in the average genome.  

Now, we assume that qPCR is performed. In the ideal situation (no measurement error), since the Cq 

value from qPCR is linearly and negatively related to the base-2 logarithm of the amount of DNA in 
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the sample, the error-free values of the Cq for the single-copy gene and for the telomeric sequence 

would be as follows (the i before the variable name indicates the ideal, error-free value): 

𝑖𝐶𝑞𝑠 = 𝑓 − log2(𝐷𝑁𝐴𝑠) 

𝑖𝐶𝑞𝑡 = 𝑓 − log2(𝐷𝑁𝐴𝑡) 

Here, f represents a constant set by the chosen fluorescence threshold. 

Next, we introduce measurement error. We model this by the addition of a normally distributed 

measurement error term to each error-free Cq value. The Cqs that would actually be measured are 

thus as follows (the m indicates the measured as opposed to the ideal value): 

𝑚𝐶𝑞𝑠 = 𝑖𝐶𝑞𝑠 +𝜀𝑠 

𝑚𝐶𝑞𝑡 = 𝑖𝐶𝑞𝑡 +𝜀𝑡 

The measurement errors 𝜀 are drawn from normal distributions with mean 0 and standard deviations 

of 𝜎𝜀𝑠 and 𝜎𝜀𝑡 respectively. We henceforth refer to 𝜎𝜀𝑠 and 𝜎𝜀𝑡 as the ‘error σ’ for the single copy gene 

and telomere assay respectively. Our assumption unless otherwise stated is that the 𝜀𝑠 and 𝜀𝑡 are 

uncorrelated. However, there are circumstances in which this may not hold and the errors may be 

positively correlated; we explore the consequences of this in the Appendix, section 2.  

The measured Cq values are combined to give the TS ratio. In its simplest form, this is given by: 

 

𝑚𝑇𝑆 =
2−𝑚𝐶𝑞𝑡

2−𝑚𝐶𝑞𝑠
 

= 2−(𝑚𝐶𝑞𝑡−𝑚𝐶𝑞𝑠) 

In practice, empiricists typically use Cqs measured from a standard sample to normalize their TS ratios. 

These standard Cq values can come from one individual sample, a pool of samples, or even the mean 

of the Cqs from all the samples. They are constants for any given study. As such, their effect is simply 

to rescale the TS ratio. Since the TS ratio is only a relative measure of telomere length, any constant 

rescaling has no impact on its reliability or relative precision. In our simulations we use the mean Cq 

for the telomere assay and single-copy gene in the whole cohort as the reference values. This has the 

effect of making the mean TS ratio approximately 1. No conclusions would be altered by using zeroes 

or two other values for the reference values. Incorporating the values from the standard samples 

(rCqs), the full formula for the TS ratio is:  

𝑚𝑇𝑆 = 
2−(𝑚𝐶𝑞𝑡−𝑟𝐶𝑞𝑡)

2−(𝑚𝐶𝑞𝑠−𝑟𝐶𝑞𝑠)
 

= 2−(𝑚𝐶𝑞𝑡−𝑟𝐶𝑞𝑡−𝑚𝐶𝑞𝑠+𝑟𝐶𝑞𝑠) 

For each individual in all our simulations, we saved the true value of tl, alongside the measured Cqs 

(mCqt and mCqs) and TS ratio (mTS). We also saved the ideal values of the Cqs (i.e. the values that 

would have been observed had there been no measurement error; iCqt and iCqs). From these we could 
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also calculate an ideal TS ratio (iTS). By subtracting the ideal from measured values, we were able to 

characterise the measurement error in each variable.  

Default parameter values for the simulations were chosen in light of known telomere biology, and so 

as to produce values similar to those seen in empirical studies (table 1). Results were generally robust 

to numerical variation in the parameter values chosen. The code for the simulations is freely available 

at https://zenodo.org/record/1994387, and instructions for using it are included in the Appendix, 

section 3.   
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Table 1. Default values chosen for simulation parameters.  

Parameter Description Default 

value 

Comment/justification 

n Number of individuals in 

the cohort 

10000 Interested in establishing patterns with high statistical 

power 

µs and σs Mean and standard 

deviation across 

individuals of true amount 

of single-copy sequence 

present in sample 

10 and 1 Variation in amount of DNA present in each sample 

assumed to be small relative to the mean amount 

a Constant to represent how 

much more abundant the 

telomere sequence is than 

the single-copy sequence 

in the average genome 

1000 Telomeric sequence many-fold more abundant than 

single copy gene in genome; Cq values for single copy 

gene typically more than double those for telomeric 

assay in real datasets [20]. 

σt True standard deviation 

across individuals in 

relative abundance of the 

telomere sequence in the 

genome 

0.1 Inter-individual standard deviation of adult telomere 

length measured by terminal restriction fragment is of 

the order of 10% of the mean (humans: 700bp / 7000bp 

[24,25]) 

f Fluorescence threshold 28 Produces Cq values in similar range (around 10 to 25) to 

empirical data [18,20] 

𝜎𝜀𝑠 and 𝜎𝜀𝑡 The error σ for single-copy 

gene and telomere 

respectively; effectively, 

the standard deviation 

when the Cq of the same 

sample is measured many 

times 

0 to 0.3 Examined range from 0 to well above values likely to be 

encountered in practice (which may typically be of the 

order of 0.05, see Results) 

 

 

Simulation applications 

Our initial investigations involved simulating datasets with different values of the error σs, to 

understand how measurement error in the Cqs affected the distribution of errors in mTS, and the 

relationships of mTS and its error to tl.  

In addition to simulations of a single dataset, we performed simulations where sampled twice from 

the same n individuals, where the underlying telomere lengths tl were assumed to have not changed 

at all. A number of different analyses were possible using these repeated-sample datasets. We 

calculated the repeatability of mTS, that is, the extent to which it produces the same result when 

performed again on the same individuals in the absence of any true change. Repeatability can be 

assessed using the intra-class correlation coefficient (ICC) [26], here implemented as the ‘consistency’ 
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ICC from the R package ‘irr’. We also used our repeated-sample simulated datasets as if they were the 

time 1 and time 2 measures from longitudinal studies where individuals’ true relative telomere lengths 

have not in fact changed during the study period. This allowed us to explore the consequences of 

varying the error σs for the apparent change in mTS between first and second measurement points 

(ΔmTS). 

 

 

Empirical datasets 

We drew on two sets of empirical data, The first dataset (henceforth, dataset 1) comes from a recent 

methodological study using human samples [20] (we thank the study authors for generously providing 

us with their data in a rawer form than the published dataset). As part of this study, the same human 

DNA sample was run a total of 1728 times for telomere and 1728 times for single-copy gene over 

several plates, using three different light cyclers. This dataset is thus ideal for estimating the variability 

due to measurement error, since the biological sample, and hence relative telomere length, is always 

the same. We used only the light-cycler 1 data (576 telomere and 576 single-copy measurements over 

two sets of plates), since any normal study would be likely to analyse all samples on the same 

equipment.  

The second dataset (dataset 2) comes from a recent paper on longitudinal studies of human telomeres 

[27]. Bateson, Eisenberg and Nettle collated data from seven human cohort studies in which telomere 

length had been measured twice in the same individuals, an average of 8.5 years apart (range 6.0 to 

9.5 years; see [27] for full details). Five studies used qPCR, and two measured terminal restriction 

fragment using Southern blot. Of the various data collated, we extracted the correlation coefficient 

between the time 1 and time 2 telomere length measurement, and the correlation coefficient 

between the time 1 measurement and the change in telomere length between time 1 and time 2.   

 

Results 

Validating and parameterizing the simulation framework 

All our simulations are based on the assumption that measurement error can be modelled as the 

addition of a normally-distributed noise term to the ideal Cq values for telomere and single-copy gene. 

In order to validate this assumption and gain a plausible range for the values of error σ in the 

simulations, we examined the distribution of Cq values in dataset 1 (which was, to recall, composed 

of the same biological sample run many times over two sets of plates). The observed Cq values did 

vary, and inspection suggests this variation can be reasonably modelled as the addition of a normal 

random variable to the central Cq value (figure 1). For telomere, the standard deviation of the Cq 

distribution was 0.053. This was not an artefact of combining data from two plates: for each plate 

separately, the standard deviations were 0.050 and 0.055. For the single copy gene, the standard 
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deviation of the Cq distribution was 0.095. Again, there was variability within each plate (standard 

deviations per plate 0.091 and 0.098).   

 

Figure 1. Observed distributions of Cq values for telomere (A) and single-copy gene (B) in 

dataset 1. For the single-copy gene where there the mean Cq varied significantly by plate, 

each plate is shown in a different shading. Lines show a superimposed normal density 

(separately by plate for single-copy gene).  

In qPCR telomere studies, samples are usually run in triplicate and the replicate Cq values averaged to 

reduce measurement error. Assuming that adjacent wells are largely independent of one another, the 

consequence of this should be to reduce the effective error σ by a factor of √3 or approximately 1.73. 

Accordingly, in dataset 1, the standard deviation of means of three adjacent samples are 0.034 for 

telomere and 0.080 for telomere and single copy gene respectively (i.e. reductions by factors of 1.55 

and 1.20 respectively compared to no replication). In the simulations that follow, the error σ discussed 

is the effective error σ after any averaging together of technical replicates has been carried out. The 

values from the dataset 1 suggest that post-averaging error σs of the order of 0.05 may be usual. Since 

our aim is to explore the potential consequences of increasing measurement error, we will consider 

error σ values from 0 all the way to 0.3.   

Consequences of error in Cq for TS ratio values 

We simulated datasets with the error σs set to 0.05 for both reactions, and all other parameters at 

their default values. We calculated the error (measured minus ideal value) for each mCq, and also for 

each mTS. We scaled these by the standard deviation of the ideal Cq values and TS, so that ±1 indicates 

under- or over-estimating by a standard deviation of the ideal quantity under examination. Figure 2 

plots the distribution of errors. As the figure shows, with these parameter values, the spread of 

relative errors in the mTS is larger than that in either of the mCqs (standard deviations for one run: A: 

0.23; B: 0.37; C: 0.52). Whereas the errors in the mCqs are normally distributed (by assumption), the 

distribution of errors in mTS is not. For example, for one run of the simulation skewness values (with 
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p-values from Agostino tests for skewness) were: error in mCq for telomere 0.005 (p = 0.83); error in 

mCq for single copy gene 0.003 (p = 0.90); error in mTS 0.12 (p < 0.001). Kurtosis values (with p-values 

from Shapiro-Wilks-Chen tests) were: error in mCq for telomere 0.01 (p = 0.92); error in mCq for single 

copy gene -0.05 (p = 0.32); error in mTS 0.19 (p < 0.001).  Thus, even if the errors introduced in 

measuring the Cq values are normally distributed, the error in the computed TS ratio is both positively 

skewed (more large overestimates than large underestimates), and leptokurtic (more extreme outliers 

than would be found in a normal distribution). In the Appendix (section 1) we show that this is because 

the error in the TS ratio belongs to a class of distribution known as a normal-log-normal mixture 

distribution; these distributions are generally skewed and leptokurtic [28].  

 

Figure 2. Distribution of errors in Cq values (telomere, A, and single-copy gene, B) and the 

resulting TS ratio (C) for runs of the simulation with n = 1000 and 𝜎𝜀𝑠 =𝜎𝜀𝑡 = 0.05. The scale 

in each case is standard deviations of the ideal (error-free) quantity in the simulated sample.  

 

Relationship between measured TS ratio and telomere length 

We examined the association between tl and mTS for simulated datasets with three different levels 

of error σ (figure 3). With 𝜎𝜀𝑠 =𝜎𝜀𝑡 = 0, mTS is perfectly correlated with tl, as expected (see also 

Appendix, section 1, results 1 and 2). As the error σs increase, there is increasing scatter in the 

association of mTS to tl (figure 3, panels B, C), and the scatter is greater for longer telomere lengths 

(figure 3, panels E, F). We confirmed analytically that the expected magnitude of the measurement 

error in mTS is proportional to tl and hence greater for individuals with longer telomeres (see 

Appendix, section 1, result 3).  
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Figure 3. Association between measured TS ratio and true telomere length as measurement 

error increases. Top row: scatterplots of mTS against tl for 𝜎𝜀𝑠 =𝜎𝜀𝑡 = 0.00 (A); 𝜎𝜀𝑠 =𝜎𝜀𝑡 =

0.05 (B); and 𝜎𝜀𝑠 = 𝜎𝜀𝑡 = 0.15 (C). Bottom row: The absolute magnitude of the difference 

between mTS and iTS, for 𝜎𝜀𝑠 =𝜎𝜀𝑡 = 0.00 (D); 𝜎𝜀𝑠 =𝜎𝜀𝑡 = 0.05 (E); and 𝜎𝜀𝑠 =𝜎𝜀𝑡 = 0.15 

(F). Red dotted lines indicate linear regressions of mTS on tl.  

 

Repeatability of the measured TS ratio 

We next examined the repeatability of mTS by simulating datasets where two separate samples are 

taken from each biological individual, and true tl is unchanged. The repeatability (intra-class 

correlation) should therefore be equal to 1, and any deviation from 1 reflects measurement error. 

Figure 4A shows how repeatability varies with 𝜎𝜀𝑠 and 𝜎𝜀𝑡. Thus, figure 4A suggests that error σs of 

less than around 0.08 are required for repeatability of greater than 0.75 in mTS; and that error σs of 

greater than around 0.11 will produce mTS whose repeatability is less than 0.6. The two error σs affect 

repeatability equally and symmetrically. An alternative to calculating repeatability for these datasets 

would be to calculate the correlation coefficients between either of the mTS and the tl. Such a 

calculation gives a very similar pattern to figure 4A. Indeed, the repeatability of mTS and the 

correlation between mTS and tl are closely linked: when repeatability is high, it is because both mTS 

values are highly correlated with tl, and hence with one another.  

The advantage of calculating mTS over just using the raw telomere Cq (or 2−𝐶𝑞) as the estimator of 

relative telomere length is that it corrects for variation in the amount of DNA present. However, 

calculating mTS also has the drawback of introducing a second source of measurement error. Figure 
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4B fixes the telomere error σ at 0.05 and examines how varying the error σ for the single-copy gene 

affects the repeatability advantage of calculating mTS over the mCqt. mTS is much more repeatable 

than mCqt (and also much better correlated with tl) when 𝜎𝜀𝑠 is small, but the gap reduces sharply as 

𝜎𝜀𝑠 increases. If 𝜎𝜀𝑠 reaches around 0.15 or more (under the parameter values used here), then mTS 

is no more repeatable than mCqt, since its advantage in controlling for DNA variation is entirely offset 

by the extra measurement error introduced by considering the single copy gene.  

 

Figure 4. Effects of measurement error on repeatability of the measured TS ratio. A. 

Repeatability (intra-class correlation coefficient) of the TS ratio as measurement error in the 

two Cq values varies. B. Repeatability of the measured TS ratio (black line, filled circles) and 

the measured telomere Cq (red circles), as measurement error in the single-copy gene 

increases. The error σ for telomere is fixed at 0.05. The point where the two lines cross is the 

point where the advantage of controlling for sample-to-sample variation in the amount of 

DNA present is offset by the extra measurement error introduced.  

We also investigated how the pattern of repeatability in figure 4A is affected by allowing the errors in 

the single-copy gene and the telomere reaction for the same biological sample to be non-independent. 

In general, positive correlation between the errors reduces the impact of measurement error in the 

Cqs on the TS ratio and its repeatability (see Appendix, section 2, figure S1). To see why this is the 

case, consider what would happen if the two errors were perfectly correlated: the measurement error 

in the telomere Cq would be matched by an identical error in the single-copy gene, the two errors 

would cancel, and the resulting TS ratio would be error-free (Appendix, section 1, result 5). However, 

the impact of more modest correlations on measurement error in the TS ratio is small.    

Association between successive measurements and regression to the mean 

We again simulated datasets where the same biological individuals are measured twice with no true 

telomere length change. Figure 5 plots the association between mTS at the first time point and mTS 

at the second, for no measurement error (panel A), 𝜎𝜀𝑠 =𝜎𝜀𝑡 = 0.05 (panel B), and 𝜎𝜀𝑠 =𝜎𝜀𝑡 = 0.15 
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(panel C). As the error σs increase, the regression line through the data is rotated around the bivariate 

means and increasingly flattened relative to the line y = x. Thus, the variance in the second 

measurement explained by the first measurement (the r2, which in the absence of measurement error 

should be 1) declines (figure 5D). We also calculated the strength of association between mTS at time 

1 and subsequent apparent change (ΔmTS) as error σs increase (figure 5E). With increasing 

measurement error, ΔmTS comes to depend increasingly strongly on time 1 mTS. This is a known effect 

due to regression to the mean: in two largely uncorrelated measurements, if the first is far from the 

centre of the distribution, the second will on average tend to be closer to the centre.  

Figure 5F replots the simulated data from figure 5D and 5E so that the correlation in mTS between 

time 1 and time 2 is shown on the horizontal axis, and the correlation between ΔmTS and time 1 mTS 

is shown on the horizontal axis. The simulations suggest that a signature of measurement error in 

longitudinal datasets, if in fact true telomere length is largely stable, is the combination of low 

correlation between time 1 and time 2 mTS, and strong dependency of change in mTS on time 1 mTS. 

We would thus predict that where studies have a low time 1-time 2 correlation due to measurement 

error, they should also have a strong dependency of apparent telomere length change on time 1 

telomere length. Data relevant to this prediction come from dataset 2, which reported the correlation 

between time 1 and follow-up TS ratio, and between time 1 TS ratio and change in TS ratio, for seven 

human cohorts in which relative telomere length had been measured twice. The empirical data are 

superimposed on figure 5F. Those studies that have a high correlation between time 1 and time 2 TS 

ratio (which were non-qPCR studies) show a negligible dependency of TS ratio change on time 1 TS 

ratio, whereas those with a low correlation between time 1 and time 2 show a strong dependency. 

Thus, one interpretation of these data is that some of the qPCR studies feature a high degree of 

measurement error, and show the predicted combination of low time 1-time 2 correlation and 

apparent dependence of the rate of change on the time 1 telomere length.  
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Figure 5. Consequences of measurement error for patterns in longitudinal datasets. Panels A 

to C: Association between mTS at time 1 and mTS at time 2 assuming no true change, for no 

measurement error (A), 𝜎𝜀𝑠 =𝜎𝜀𝑡 = 0.05 (B); and 𝜎𝜀𝑠 =𝜎𝜀𝑡 = 0.15 (C). Panel D: The 

variance in mTS at time 2 explained by mTS at time 1 with no true change and increasing levels 

of measurement error (𝜎𝜀𝑠 =𝜎𝜀𝑡).Panel E: The variance in change in mTS  between time 1 

and time 2 explained mTS at time 1, assuming no true change and increasing levels of 

measurement error (𝜎𝜀𝑠 =𝜎𝜀𝑡). Panel F: Time 1-time 2 correlation against Change-time 1 

correlation for simulated datasets (black circles and lines). Measurement error increases from 

0 at bottom right to 0.2 at top left (𝜎𝜀𝑠 =𝜎𝜀𝑡). Superimposed are empirical values from the 

seven large human longitudinal cohorts from dataset 2. qPCR studies are shown in red and 

studies measuring terminal restriction fragment by Southern blot in blue.  

 

 

Discussion 

Using a combination of computer simulation and mathematical analysis, we were able to elucidate 

some important features of the potential impact of measurement error in datasets where relative 

telomere length is estimated by calculating a TS ratio from qPCR. First, because of the way two 

independent measurement errors (in the telomere and single-copy gene reaction) are exponentiated 

and combined, any error at the level of Cqs is magnified into a proportionately larger error in the TS 
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ratio. Confirming this, papers reporting some estimate of measurement error for both the individual 

Cqs and the TS ratio do report proportionately greater error for the TS ratio (e.g. [4,20]). Repeatability 

of the TS ratio is high (greater than 0.75) as long as measurement errors in Cq are of the order of 0.075 

or less, but it declines rapidly as error in the Cqs becomes greater. To illustrate with some concrete 

numbers, according to our simulations, repeatability of the TS ratio should be about 0.80 with error σ 

values of 0.05, 0.51 with error σ values of 0.1, and 0.28 with error σ values of 0.15. A widespread 

conclusion when surveying the qPCR telomere epidemiology literature is that there is a great deal of 

heterogeneity between studies [29,30]. Our findings suggest that small differentials in errors in the 

laboratory would be sufficient to drive large heterogeneity in outcomes.  

The general consequence of measurement error is to attenuate power to detect true associations. If 

measurement error in the TS ratio is substantial, the inferential security of resulting claims is 

undermined. Most obviously, the greater the measurement error, the more likely it is that reported 

null associations represent false negatives. Perhaps less obviously, ‘significant’ results that are found 

are more likely to represent false positives when measurement error is greater [31]. This is because, 

as measurement error increases and power declines, the rate of true positive findings reduces, but 

the rate of false positive findings remains the same (1/20 for a threshold p < 0.05). Thus, in the set of 

associations with p < 0.05, the ratio of true to false positives becomes worse.  

The advantage of calculating a TS ratio, namely control for variation in DNA concentration in the 

sample, is substantial when the single-copy gene can be measured with low error, but eroded as 

measurement error in the single-copy gene increases. The simulations show that there is a level of 

single-copy gene measurement error at which the TS ratio becomes no more repeatable than the 

telomere Cq. The measurement error could well be worse for single-copy gene than for telomere: the 

precision of qPCR is thought to increase with copy number [32], and this is necessarily lower for the 

single-copy gene. In line with this, in dataset 1 analysed here, the error variation in Cq for single-copy 

gene was larger than for telomere. We are not suggesting that single-copy gene measurement error 

is typically large enough in practice to undermine the utility of calculating a TS ratio. However, 

according to our simulations, the measurement error in the single-copy gene would only have to be 

around twice what we observed empirically in dataset 1 for the TS ratio to be no more repeatable 

than the uncorrected Cq for telomere (under our simulation assumptions about the amount of true 

variation in DNA abundance). This is a rather clear illustration of why even modest increases in 

measurement error are corrosive in qPCR telomere studies.  

Our main results are derived on the assumption that the errors in the Cqs of telomere and the single-

copy gene are independent for a given biological sample. This may be a reasonable approximation, 

particularly for traditional methods where the two reactions occur in different wells. However, plate 

or well location effects, or issues with DNA extraction or purity, could affect both telomere and single-

copy gene reactions for the same sample, and thus some correlation in errors cannot be dismissed as 

a possibility. Moreover, in the multiplex assay [33], the two reactions occur in the same well, and thus 

the scope for non-independence of the two measurement errors is even greater. The general 

consequence of non-independence is to reduce the impact of the measurement error at the level of 

the TS ratio. Thus, if the multiplex assay produces more highly correlated measurement errors, this is 
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an advantage. In a sense, this advantage was already understood in the development of the assay: a 

key argument for it was to make sources of variability like pipetting affect telomere and single-copy 

gene alike [33]. Overall, though, our simulations show that modest non-independence between the 

two errors has only a very small mitigating effect on the consequences of measurement error for the 

TS ratio.  

The error in the TS ratio is proportional to true telomere length, being larger for individuals with 

relatively longer telomeres. This is true even though the simulations assume that the measurement 

errors at the Cq level are independent of telomere length: it follows directly from the TS ratio formula. 

This is an issue with potentially complex consequences. For example, telomere length shortens rapidly 

with age in very young individuals [4,34]. In a cohort whose ages span this period, relative telomere 

length would be estimated with greater error in the youngest age group (equally, in an experimental 

design where the treatment has a dramatic effect on relative telomere length, the experimental group 

might be estimated with less or more error than the control group). This violates assumptions of 

homoscedasticity central to many statistical analyses. More generally, researchers often report that 

the distribution of TS they observe is positively skewed, and resort to logarithmic transformations to 

correct this (e.g. [35–38]). Our simulations suggest that measurement error will predictably produce 

this skew, and also considerable kurtosis (the presence of more extreme outliers than found in a 

normal distribution), even if the underlying distribution of relative telomere lengths is normal.  

When applied to longitudinal studies, measurement error alone can produce a pattern of low 

correlation between the first and second telomere length measurements, coupled with a strong 

dependence of the apparent telomere length change on the initial telomere length. This pattern has 

already been recognized and discussed specifically in relation to telomere length [39–42], and in 

longitudinal data more generally [43]. It is not a consequence of the TS ratio in particular, but of any 

set of repeated measurements where there is measurement error. An implication is that because at 

least part of the apparent association of initial telomere length and subsequent change is spuriously 

created by measurement error, controlling for initial telomere length in regression models in which 

the outcome variable is telomere length change is often invalid and biases inferences [27]. Specifically, 

it biases the estimate of the effect on telomere length change of any predictor variable that is 

associated with telomere length at baseline.  

Our longitudinal simulations are all based on the assumption that true telomere length is a highly 

stable individual characteristic over time. High individual stability, across adulthood at least, is what is 

seen in human longitudinal studies that measure telomere length with Southern blot ([44], see also 

figure 5F), assumed to be a higher-fidelity method than qPCR. If we assume that these studies capture 

a gold standard of what human telomere dynamics through adulthood are typically like, then the 

combination of low time 1-time 2 correlation and high dependency of change on time 1 length found 

in some human qPCR cohort studies (as shown here in figure 5F) probably suggests that these studies 

are characterised by a level of measurement error that seriously undermines reliability. However, we 

should be wary of inferring that just because measurement error alone can produce an apparently 

low correlation between time 1 and time 2 telomere length, then all such low correlations are 

necessarily attributable to measurement error. In populations living under variable ecological 
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conditions, telomere length may truly be more dynamic over the course of life [3,45]. Likewise, it 

would be invalid to assume that because measurement error alone can produce an apparent 

association between initial telomere length and subsequent change, then all such associations are 

completely reducible to measurement error. On the contrary, there is evidence suggesting that longer 

telomeres may shorten faster even after correction for measurement error [39,41]. Such cases 

illustrate the importance of researchers understanding and characterizing the measurement error in 

their data. If the level of measurement error is known, then it is possible to generate the appropriate 

null hypotheses about what the association between initial and follow-up length, or between initial 

length and change, should look like if there are no biological dynamics at work. Our simulations allow 

for estimation of what the time 1-time 2 correlation should be in the TS ratio under the null hypothesis 

of no telomere length change, as long as the error σ values can be estimated from the data. For 

dependence of change on the initial length, our simulations or Blomquist’s formula (see [43]) provide 

simple ways of predicting what the apparent dependence should be under the null hypothesis if there 

is a specified level of measurement error.  

The empirical value that comes closest to the error σ of our simulations is simply the standard 

deviation of Cq when replicates of the same samples are run repeatedly. This is one of two 

recommended reporting alternatives given in the MIQE guidelines for characterising measurement 

error [32]. These values can be compared directly to those in our simulation, recalling that averaging 

k technical replicates together reduces the effective error σ by √𝑘, as long as we can assume that the 

replicates are independent.  

In practice, more researchers appear to use the MIQE guidelines’ [32] second alternative reporting 

item, namely a coefficient of variation (CV). Though the guidelines prescribe a CV on the 2−𝐶𝑞 values, 

and our experience is that it is often on the raw Cqs that a CV is reported; this has long been known 

to imply a misleadingly low level of measurement error [46]. The CV is problematic for a number of 

reasons, particularly when attempting to compare across studies or methods, as has been discussed 

elsewhere [13,29]. It can also give a misleading impression when comparing measurement error in 

telomere and single-copy gene: since the single-copy gene is much rarer than the telomere sequence, 

the denominator of its CV will be much larger (for Cq), or smaller (for 2−𝐶𝑞). Thus, reporting CVs makes 

it non-obvious whether the measurement error for the telomere reaction is larger, smaller, or the 

same as those for the single-copy gene in absolute terms. Thus, we would strongly recommend 

reporting standard deviations of Cq from technical replicates in preference to CVs. In addition, the 

intra-class correlation coefficient of TS ratios from a suitable set of test samples run multiple times is 

an easily comprehensible summary of the repeatability of a measurement technique [13]. Our figure 

4A shows that the value of intra-class correlation coefficient is directly governed by the effective error 

σs of the Cqs.  

Our simulations have a number of limitations. First, we assume that each individual has a unitary 

relative telomere length. This is itself a simplification: every individual has a distribution of telomere 

lengths, and this distribution will vary between as well as within cells. Our simulations do not model 

this level of variability, but start from the assumption that relative telomere length can be adequately 

represented as a single quantity (an assumption central to the qPCR approach). Sample to sample 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 10, 2018. ; https://doi.org/10.1101/491944doi: bioRxiv preprint 

https://doi.org/10.1101/491944
http://creativecommons.org/licenses/by/4.0/


17 
 

biological variability (i.e. sampling or temporal variation in cellular composition of samples) is simply 

incorporated here with other sources of measurement error, rather than modelled as a biological 

process that may be of interest in its own right. Second, all of the measurement error we model is 

non-systematic, as exemplified by our use of independent drawings from a normal distribution of 

errors. In empirical studies, some error is however likely to be systematic, with consistent differences 

between plates, or well positions on a plate [17]. Where error is systematic, it can be mitigated 

through appropriate statistical correction. By carefully examining plate and well differences and 

correcting for them, researchers can thus reduce their effective error σ values somewhat further. 

Third, our simulations did not include any correction for amplification efficiency, although such 

corrections have been proposed and are often employed [23]. Our simulations effectively capture the 

case where amplification efficiencies are the same for telomere and the single copy gene (in which 

case amplification efficiency-corrected and uncorrected T/S ratio coincide). If this is not the case, 

correction may be applied. Thus, researchers have multiple ways of keeping the effective error σ 

values to a minimum; our simulations deal with the effects of the residual error that remains once all 

such steps have been taken. However, if statistical corrections include estimating parameters 

empirically (such as, for example, the estimating the amplification efficiency of each particular 

reaction), then of course more error is potentially introduced in the estimation, and that error gets 

incorporated into the statistical correction. Thus, the impact on the overall reliability of the relative 

telomere length measurement is hard to predict.  

Conclusions 

We have presented a simple simulation framework for exploring the impact of errors in measurement 

of Cq values on estimation of relative telomere length measurement using the T/S ratio. The results 

illustrate the potentially large consequences for reliability of small increments in measurement error, 

and hence underline the need for researchers to both minimise and understand the measurement 

error that exists in their datasets. They also illustrate the value of simulation and mathematical 

analysis as tools for to guide empirical practices.  
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Appendix 

Section 1: Analytical treatment of measurement error in the TS ratio 

This section examines the TS ratio under measurement error, providing analytical results to support 

simulation findings.  

As specified in the main paper, the ideal (i.e. error-free) Cq values for the telomere assay and single 

copy gene relate to the amounts of each kind of DNA present in the sample as given in (1) and (2). 

𝑖𝐶𝑞𝑠 = 𝑓 − log(𝐷𝑁𝐴𝑠)     (1) 

𝑖𝐶𝑞𝑡 = 𝑓 − log(𝐷𝑁𝐴𝑡)     (2)   

Here, f denotes a constant set by the chosen fluorescence threshold. The amount of telomeric DNA 

present is proportional to the amount of single copy gene DNA present, but scaled by the relative 

telomere length of the individual. 

𝐷𝑁𝐴𝑡 = 𝑎 ∙ 𝑡𝑙 ∙ 𝐷𝑁𝐴𝑠     (3) 

Hence, combining equations (2) and (3): 

𝑖𝐶𝑞𝑡 = 𝑓 − log(𝑎 ∙ 𝑡𝑙 ∙ 𝐷𝑁𝐴𝑠)    (4) 

The measured Cq values are the true Cq values plus a measurement error term, as follows:  

𝑚𝐶𝑞𝑠 = 𝑓 − log(𝐷𝑁𝐴𝑠) + 𝜀𝑠    (5) 

𝑚𝐶𝑞𝑡 = 𝑓 − log(𝑎 ∙ 𝑡𝑙 ∙ 𝐷𝑁𝐴𝑠) +𝜀𝑡   (6)  

Here, 𝜀𝑡 ~𝑁(0, 𝜎𝜀𝑡) and 𝜀𝑠~𝑁(0, 𝜎𝜀𝑠). The formulae for the ideal and measured TS ratio are given 

in (7) and (8). 

𝑖𝑇𝑆 = 2−(𝑖𝐶𝑞𝑡−𝑖𝐶𝑞𝑠)      (7) 

𝑚𝑇𝑆 =2−(𝑚𝐶𝑞𝑡−𝑚𝐶𝑞𝑠)     (8) 

Reference Cq values for a standard sample are typically subtracted from the Cqs for the single copy 

gene and telomeric assay in calculating TS ratios. The effect of this is simply to rescale the TS ratio; 

such rescaling can be ignored in what follows without loss of generality, and hence for clarity we do 

not include this step here (though see main paper for the TS formula with these reference values 

included).  

By substituting into (7) and (8) and rearranging, we have: 

𝑖𝑇𝑆 = 2−(𝑓−log(𝑎∙𝑡𝑙∙𝐷𝑁𝐴𝑠)−𝑓+log(𝐷𝑁𝐴𝑠)) 

𝑖𝑇𝑆 = 2(log(𝑎∙𝑡𝑙∙𝐷𝑁𝐴𝑠)−log(𝐷𝑁𝐴𝑠)) 

𝑖𝑇𝑆 = 2
(log(

𝑎∙𝑡𝑙∙𝐷𝑁𝐴𝑠
𝐷𝑁𝐴𝑠

))
  

𝑖𝑇𝑆 = 𝑎 ∙ 𝑡𝑙      (9) 

 

Thus, (9) gives us Result 1: The TS ratio, if measured without error, is proportional to the relative 

telomere length in the sample.  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 10, 2018. ; https://doi.org/10.1101/491944doi: bioRxiv preprint 

https://doi.org/10.1101/491944
http://creativecommons.org/licenses/by/4.0/


23 
 

For the measured TS ratio where there is measurement error, we have: 

𝑚𝑇𝑆 =2−(𝑓−log(𝑎∙𝑡𝑙∙𝐷𝑁𝐴𝑠)+𝜀𝑡−𝑓+log(𝐷𝑁𝐴𝑠)−𝜀𝑠) 

𝑚𝑇𝑆 =2(log(𝑎∙𝑡𝑙∙𝐷𝑁𝐴𝑠)−𝜀𝑡−log(𝐷𝑁𝐴𝑠)+𝜀𝑠) 

𝑚𝑇𝑆 =2
(log(

𝑎∙𝑡𝑙∙𝐷𝑁𝐴𝑠
𝐷𝑁𝐴𝑠

)−𝜀𝑡+𝜀𝑠) 

𝑚𝑇𝑆 =2
(log(

𝑎∙𝑡𝑙∙𝐷𝑁𝐴𝑠
𝐷𝑁𝐴𝑠

)−𝜀𝑡+𝜀𝑠) 

𝑚𝑇𝑆 =2(𝜀𝑠−𝜀𝑡)𝑎 ∙ 𝑡𝑙     (10) 

From (10), we have Result 2: The measured TS ratio is proportional to relative telomere length 

multiplied by 2(𝜀𝑠−𝜀𝑡), or two to the power of the difference between the measurement errors in 

the two Cq values.  

The error in the measured TS ratio is the difference between 𝑚𝑇𝑆 and 𝑖𝑇𝑆. From (9) and (10): 

𝜀𝑇𝑆 =2(𝜀𝑠−𝜀𝑡)𝑎 ∙ 𝑡𝑙 − 𝑎 ∙ 𝑡𝑙  

𝜀𝑇𝑆 = (2(𝜀𝑠−𝜀𝑡) − 1)𝑎 ∙ 𝑡𝑙    (11) 

By inspection of (11), we have Result 3: The error in the TS ratio is proportional to telomere length. 

This is true even though the errors in the Cq values were assumed to be independent of the amounts 

of telomere and single copy DNA in the samples.  

If 𝜀𝑡 ~𝑁(0, 𝜎𝜀𝑡) and 𝜀𝑠~𝑁(0, 𝜎𝜀𝑠), from properties of the normal distribution:   

𝜀𝑠 −𝜀𝑡 ~𝑁 (0,√𝜎𝜀𝑠
2 +𝜎𝜀𝑡

2 − 2𝜌𝜎𝜀𝑠𝜎𝜀𝑡)     

Here, 𝜌 is the correlation between 𝜀𝑠 and 𝜀𝑡. Hence, the distribution of 𝜀𝑇𝑆 is the distribution of: 

 (2
𝑁(0,√𝜎𝜀𝑠

2 +𝜎𝜀𝑡
2 −2𝜌𝜎𝜀𝑠𝜎𝜀𝑡)

− 1)𝑎 ∙ 𝑡𝑙   (12) 

From (12), we can make the following inferences for the case where the measurement errors in the 

Cq values are normally distributed: 

 Result 4: Positive correlations between 𝜀𝑠 and 𝜀𝑡 reduce the size of measurement errors in 

the TS ratio. From (12), given that 2𝜎𝜀𝑡𝜎𝜀𝑠 is positive, increasing 𝜌 will always reduce the size 

of √𝜎𝜀𝑠
2 +𝜎𝜀𝑡

2 − 2𝜌𝜎𝜀𝑠𝜎𝜀𝑡, and hence the standard deviation of 𝜀𝑇𝑆 .  

 Result 5: Perfect positive correlation between the measurement errors of the Cq for 

telomere and the Cq for the single copy gene eliminates measurement error in the TS ratio 

entirely, as long as the extent of measurement error is the same for the two reactions. 

Where 𝜌 = 1 and 𝜎𝜀𝑡
2 =𝜎𝜀𝑠

2 ,√𝜎𝜀𝑠
2 +𝜎𝜀𝑡

2 − 2𝜌𝜎𝜀𝑠𝜎𝜀 = 0. Hence, from (12), the 

measurement errors in the TS ratio are: (2𝑁(0,0) − 1)𝑎 ∙ 𝑡𝑙 = 0. 

If we can assume that telomere length itself is normally distributed, then we can see from (12) that 

the error in the TS ratio contains a normally distributed component (tl) and a log-normally 

distributed component (since the logarithm of 2
𝑁(0,√𝜎𝜀𝑠

2 +𝜎𝜀𝑡
2 −2𝜌𝜎𝜀𝑠𝜎𝜀𝑡)

 is by definition normally 

distributed, 2
𝑁(0,√𝜎𝜀𝑠

2 +𝜎𝜀𝑡
2 −2𝜌𝜎𝜀𝑠𝜎𝜀𝑡)

 is log-normal). Thus, the distribution of 𝜀𝑇𝑆 belongs to the class 
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of normal-log-normal mixture distributions. Such distributions are typically skewed and leptokurtic 

(Yang 2008).  

 

Section 2: Simulation results with correlations between errors 

Simulation results reported in the main paper assume that the error in the telomere Cq and the 

error in the single-copy gene Cq are independent; that is, in the notation of section 1, 𝜌 = 0. We 

repeated the main simulations assuming positive values of 𝜌. Increasing values of 𝜌 attenuate the 

impact of measurement error at the Cq level on the TS ratio (see section 1, result 4). Although 𝜌 = 1 

makes the TS ratio error-free regardless of the magnitude of error in Cqs (see section 1, result 5), the 

effect of more modest non-zero values of 𝜌 is slight. For example, figure S1 shows how repeatability 

of mTS relates to the error ρ values under three different assumptions about 𝜌, namely zero 

correlation (repeating figure 4A of the main paper), a weak correlation, and a strong correlation. 

Even assuming a strong correlation, error σ values of less than around 0.15 are still necessary for 

repeatabilities above 0.6.   

 

Figure S1. Repeatability of the TS ratio (intra-class correlation coefficient) as the error σ values for 

the telomere assay and the single copy gene vary. A: Errors are uncorrelated. B: Weak positive 

correlation (𝜌 = 0.3) between the errors. C: Strong positive correlation (𝜌 = 0.07) between the 

errors. Simulations of n = 10000 are used at each 0.005 step of error σ, with other parameters 

having their default values.  

 

Repeating other simulated results with positive values of 𝜌 produces similar conclusions: increasing 

𝜌 attenuates the impact of error in measuring Cqs on the TS ratio, but the effect is slight until 𝜌 is 

close to 1.  
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Section 3: How to use the simulation R code 

We define a series of R functions, contained in the script ‘simulation.functions.r’, that return 

datasets with requested properties containing both the true values of the quantities (Cqs, TS, etc.), 

and their post-error measured values. This allows the user to determine the differences between 

true and measured values, and perform other analyses. All simulation parameter values are user-

specifiable. The script ‘paper.results.r’ reproduces all the figures and simulation results from the 

main paper.  

Datasets consist of observations from n individuals. The steps common to all of the simulation 

functions are as follows: 

 A vector of n true single copy gene abundances, true.dna.scg is defined, drawn from a 

normal distribution with mean b and standard deviation var.sample.size (b is a constant).  

 A vector of n relative telomere lengths, true.telo.var is defined, drawn from a normal 

distribution with mean 1 and standard deviation telomere.var. 

 Hence, the true abundance of the telomere sequence is defined, as 

a*true.dna.scg*true.telo.var. Here, a is a scaling constant representing how many copies of 

the telomeric sequence there are per single copy gene in the average sample.  

 Ideal Cq values for both reactions are defined as f – log2(true.dna.scg) and f – 

log2(true.dna.telo), where f is a constant representing the chosen fluorescence threshold. 

 Measurement errors in the Cqs are generated from a normal distribution with mean 0; 

standard deviations given by error.scg and error.telo; and a correlation between error.scg 

and error.telo given by error.cor. 

 Hence, measured Cqs are generated, which can be compared to the ideal Cq values.  

 TS ratios are calculated both on the measured Cqs, and the ideal ones.  

The following functions are available. Specify desired parameter values in the parenthesis, e.g. 

generate.one.dataset(n=10000, error.telo=0.1, error.scg=0.1, error.cor=0). Default values in the 

simulation functions are generally those given in table 1 of the main paper.  

 generate.one.dataset() returns a simple dataset (one telomere measurement per individual) 

for chosen values of all the variables described in section 1. As well as ideal and measured 

Cqs, it returns ideal and measured TS ratios. It also returns the difference between the ideal 

and measured TS ratio, calculated two ways, computed (error.computed), and using 

equation (11) of online supplement 1 (error.analytic). Both methods produce the same 

number. This was included as an additional check of correctness of the simulation.  

 generate.repeated.measure() returns a dataset where telomere lengths from the same 

individuals are measured twice, via two independent biological samples, and the true 

telomere length of each individual is assumed not to have changed at all. The data frame it 

returns is as for generate.one.dataset(), except that there are two of each variable (e.g. 

true.ts.1, true.ts.2, measured.ts.1, measured.ts.2, etc.).  

 calculate.repeatability() calculates the repeatability of the measured T/S ratio (intra-class 

correlation coefficient) when generate.repeated.measure() is implemented using the given 

values for all the parameters. It requires prior installation of R package ‘irr’. 

 compare.repeatability() returns the repeatability of the T/S ratio and the repeatability 

calculated on the raw Cq for the telomere reaction, for the given parameter values.  
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