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ABSTRACT

Making good decisions requires people to appropriately explore their available options and generalize what they have learned.
While computational models have successfully explained exploratory behavior in constrained laboratory tasks, it is unclear to
what extent these models generalize to complex real world choice problems. We investigate the factors guiding exploratory
behavior in a data set consisting of 195,333 customers placing 1,613,967 orders from a large online food delivery service. We
find important hallmarks of adaptive exploration and generalization, which we analyze using computational models. We find
evidence for several theoretical predictions: (1) customers engage in uncertainty-directed exploration, (2) they adjust their level
of exploration to the average restaurant quality in a city, and (3) they use feature-based generalization to guide exploration
towards promising restaurants. Our results provide new evidence that people use sophisticated strategies to explore complex,
real-world environments.

Introduction
When facing a vast array of new opportunities, a decision maker has two key tasks: to acquire information (often through direct
experience) about available options, and to apply that information to assess options not yet experienced. These twin problems
of exploration and generalization must be tackled by any organism trying to make good decisions, but they are challenging to
solve because optimal solutions are computationally intractable1. Consequently, the means by which humans succeed in doing
so—especially in the complicated world at large—have proven puzzling to psychologists and neuroscientists. Many heuristic
solutions have been proposed to reflect exploratory behavior2–4, inspired by research in machine learning5. However, most
empirical studies have used a small number of options and simple attributes6. To truly ascertain the limits of exploration and
generalization requires empirical analysis of behavior in the world outside the lab.

We study learning and behavior in a complex environment using a large data set of human foraging in the “wild”—online
food delivery. Each customer has to decide which restaurant to pick out of hundreds of possibilities. How do they make a
selection from this universe of options? Guided by algorithmic perspectives on learning, we look for signatures of adaptive
exploration and generalization that have been previously identified in the lab. This allows us not only to characterize these
phenomena in a naturally incentivized setting with abundant and multi-faceted stimuli, but also to weigh in on existing debates
by testing competing theories of exploratory choice.

We address two broad questions. First, how do people strategically explore new options of uncertain value? Different
algorithms have been proposed to describe exactly how uncertainty can guide exploration in qualitatively different ways, such as
by injecting randomness into choice, or by making choices directed toward uncertainty2, 3, 7. However, results have been mixed,
and these phenomena remain to be studied under real-world conditions. Second, how do people generalize their experiences to
other options? Modern computational theories make quantitative predictions about how feature-based similarity should govern
generalization, which can in turn guide choice. But again it is unclear whether these theories can successfully predict real-world
choices.

Our results indicate that customers explore (i.e., order from unexperienced restaurants) adaptively based on signals of
restaurant quality, and make better choices over time. Exploration is indeed risky and leads to worse outcomes on average, but
people are more willing to explore in cities where this downside is lower due to higher mean restaurant quality. Importantly, we
show that customers’ exploratory behavior takes into account not only the prospective reward from choosing a restaurant, but
also the degree of uncertainty in their reward estimates. Consistent with an optimistic uncertainty-directed exploration policy,
they preferentially sample lesser known options and exhibit higher sampling entropy after a bad (compared to a good) outcome.

We find that choices are best fit by a model that includes both an “uncertainty bonus” for unfamiliar restaurants, and
a mechanism for generalization by function learning (based on restaurant features). People appear to benefit from such
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generalization, as exploration yields better realized outcomes in cities where features have more predictive power. We also show
that people generalize their experiences across different restaurants within the same broad cuisine type, defined both empirically
within the data set, and by independent similarity ratings. As predicted by a combination of similarity-based generalization and
uncertainty-directed exploration, good experiences encourage selection of other restaurants within the same category, while bad
experiences discourage this to an even greater extent.

In order to set the stage for our analyses of purchasing decisions, we first review the algorithmic ideas that have been
developed to explain exploration in the laboratory.

Prior work on the exploration-exploitation dilemma
Uncertainty-guided algorithms
Most of what we know about human exploration comes from multi-armed bandit tasks, in which an agent repeatedly chooses
between several options and receives reward feedback8, 9. Since the distribution of rewards for each option is unknown at the
beginning of the task, an agent is faced with an exploration-exploitation dilemma between two types of actions: should she
exploit the options she currently knows will produce high rewards while possibly ignoring even better options? Or should
she explore lesser-known options to gain more knowledge but possibly forego high immediate rewards? Optimal solutions
only exist for simple versions of this problem1. These solutions are in practice difficult to compute even for moderately
large problems. Various heuristic solutions have been proposed. Generally, these heuristics coalesce around two algorithmic
ideas10, 11. The first one is that exploration happens randomly, for example by occasionally sampling one of the options not
considered to be the best12; or by so-called soft-maximization of the expected utilities for each option—i.e., randomly sampling
each option proportionally to its value. The other idea is that exploration happens in a directed fashion, whereby an agent
is explicitly biased to sample more uncertain options. This uncertainty-guidance is frequently formalized as an “uncertainty
bonus”5, 13 which inflates an option’s expected reward by its uncertainty.

There has been a considerable debate about whether or not directed exploration is required to explain human behavior14, 15.
For example, Daw and colleagues14 have shown that a softmax strategy explains participants’ choices best in a simple multi-
armed bandit task. However, several studies have produced evidence for a direct exploration bonus4, 16, 17. Recent studies have
proposed that people engage in both random and directed exploration2, 7, 18, 19. It has also been argued that directed exploration
might play a prominent role in more structured decision problems20, 21. However, evidence for such algorithms is still missing
in real-world purchasing decisions6.

Generalization
Multiple studies have emphasized the importance of generalization in exploratory choice. People are known to leverage latent
structures such as hierarchical rules22 or similarities between a bandit’s arms23.

Gershman et. al24 investigated how generalization affects the exploration of novel options using a task in which the rewards
for multiple options were drawn from a common distribution. Sometimes this common distribution was “poor” (options tended
to be non-rewarding), whereas sometimes the common distribution was “rich” (options tended to be rewarding). Participants
sampled novel options more frequently in rich environments than in poor environments, consistent with a form of adaptive
generalization across options.

Schulz et al.25 investigated how contextual information (an option’s features) can aid generalization and exploration in
tasks where the context is linked to an option’s quality by an underlying function. Participants used a combination of functional
generalization and directed exploration to learn the underlying mapping from context to reward (see also21, 26).

Results
We looked for signatures of uncertainty-guided exploration and generalization in a data set of purchasing decision taken
from the online food delivery service Deliveroo (see Materials and Methods for more details). Further analyses and method
details can be found in the Supplemental Information. In the first two sections of the Results, we provide some descriptive
characterizations of the data set. In particular, we show that customers learn from past experience and adapt their exploration
behavior over time. Moreover, their exploration behavior is systematically influenced by restaurant features and hence amenable
to quantification. We then turn to tests of our model-based hypotheses. We find that customers’ exploration behavior can be
clustered meaningfully, exhibits several signatures of intelligent exploration which have previously been studied in the lab, and
can be captured by a model that generalizes over restaurant features while simultaneously engaging in directed exploration.

Learning and exploration over time
We first assessed if customers learned from past experiences, as reflected in their order ratings over time (Fig. 1a). The order
rating is defined as customers’ evaluation on a scale between 1 (poor) and 5 (great). Customers picked better restaurants over
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time: there was a positive correlation between the number of a customer’s past orders and her ratings (r = 0.073; 99.9% CI:
0.070, 0.076).

Next, we assessed exploratory behavior by creating a variable indicating whether a given order was the first time a customer
had ordered from that particular restaurant—i.e., a signature of pure exploration24, 26. Figure 1b shows the averaged probability
of sampling a new restaurant over time (how many orders a customer had placed previously).

Customers sampled fewer new restaurants over time, leading to a negative overall correlation between the number of past
orders and the probability of sampling a new restaurant (r =−0.139; 99.9% CI: −0.142, −0.136). Exploration also comes at a
cost (Fig. 1c), such that explored restaurants showed a lower average rating (mean rating=4.257, 99.9% CI: 4.250, 4.265) than
known restaurants (mean rating=4.518, 99.9% CI: 4.514, 4.522).

Customers learned from the outcomes of past orders. Figure 1d shows their probability of reordering from a restaurant as a
function of their reward prediction error (RPE; the difference between the expected quality of a restaurant, as measured by the
restaurant’s average rating at the time of the order, and the actual pleasure customers perceived after they had consumed the
order, as indicated by their own rating of the order). RPEs are a key component of theories of reinforcement learning27, and we
therefore expected that customers would update their sampling behavior after receiving either a positive or a negative RPE.
Confirming this hypothesis, customers were more likely to reorder from a restaurant after an experience that was better than
expected (positive RPE: p(reorder)=0.518, 99.9%; CI: 0.515, 0.520) than after an experience that was worse than expected
(negative RPE: p(reorder)=0.394, 99.9%; CI: 0.391, 0.398). The average correlation between RPEs and the probability of
reordering was r = 0.110 (99.9% CI: 0.107, 0.114).
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Figure 1. Learning and exploration over time. a: Average order rating by number of past orders. b: Probability of
sampling a new restaurant in dependency of the number of past orders. Dashed black line indicates simulated exploration
behavior of agents randomly exploring available restaurants. c: Distribution of order ratings for newly sampled and known
restaurants. d: Average probability of reordering from a restaurant as a function of reward prediction error. Means are
displayed as black squares and error bars show the 95% confidence interval of the mean.

Determinants of exploration
In the next part of our analysis, we focused on what factors influenced customers’ decisions to explore a new restaurant. In
particular, we assessed if exploration behavior was systematic and therefore looked at the following four restaurant features that
were always visible to customers at the time of their order: the relative average price of a restaurant, its standardized estimated
delivery time, the mean rating of a restaurant at the time of the order, and the number of people who had rated the restaurant
before.
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Figure 2. Factors influencing exploration.
a: Effect of relative price. The relative price indicates how much cheaper or more expensive a restaurant was compared to a
median restaurant in the same city. b: Effect of standardized (z-transformed) estimated delivery time. c: Effect of average
rating. d: Effect of a restaurant’s number of past ratings (certainty). Means are displayed as black squares and error bars show
the 95% confidence interval of the mean.

Customers preferred restaurants that were comparatively cheaper (Fig. 2a): the correlation between relative price and the
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probability of exploration was negative (r = −0.059; 99.9% CI: −0.0641, −0.0548). There was a non-linear relationship
between a restaurant’s estimated delivery time and its probability of being explored (Fig. 2b): exploration was most likely
for standardized delivery times between 1 and 2.5 (0.288, 99.9% CI: 0.285, 0.292), and less likely for delivery times below 1
(0.288, 99.9% CI: 0.285, 0.292 or above 2.5 (0.252, 99.9% CI: 0.229, 0.274). This indicates that customers might have taken
into account how long it would take to plausibly prepare and deliver a good meal when deciding which restaurants to explore.
The average rating of a restaurant also affected customers’ exploratory behavior (Fig. 2c): higher ratings were associated with
a higher chance of exploration (r = 0.038; 99.9% CI: 0.0337, 0.0430). The number of ratings per restaurant also influenced
exploration (Fig. 2d), with a negative correlation of r =−0.188 (99.9% CI: −0.192, −0.183). This correlation is relatively
large because restaurants that have been tried more frequently are less likely to be explored for the first time. We therefore
repeated this analysis for all restaurants that had been rated more than 500 times, yielding a correlation of r =−0.034 (99.9%
CI: −0.042, −0.026).

Table 1. Results of the mixed-effects logistic regression.
Estimate Std. Error z value Pr(>|z|)

Intercept -0.663 0.008 -82.01 <.001
Relative price -0.014 0.006 -2.27 .02

Time-Linear -0.0246 0.008 -3.22 .001
Time-Quadratic 0.015 0.004 3.89 <.001
Average rating 0.086 0.006 13.85 <.001

Number of ratings -0.475 0.007 -70.27 <.001

We standardized and entered all of the variables into a mixed-effects logistic regression modeling the exploration variable
as the dependent variable and adding a random intercept for each customer (see SI for full model comparison). We again found
that a smaller number of total ratings (β =−0.475), a higher average rating (β = 0.086), and a lower price (β =−0.014) as
well as a quadratic effect of time (βLinear =−0.025, βQuadratic = 0.015) were all predictive of customers’ exploration behavior.
In summary, exploration in the domain of online ordering is systematic, interpretable and amenable to quantification. We next
turned to an examination of our model-based hypotheses concerning uncertainty-directed exploration and generalization.

Signatures of uncertainty-directed exploration
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Figure 3. Signatures of uncertainty-directed exploration.
a: Entropy of the next 4 choices in dependency of reward prediction error (RPE). b: Differences (signed Cohen’s d) in entropy
for negative vs. positive RPEs over learning history. Turquoise line marks least-square regression line. c: Probability of
choosing a novel restaurant in dependency of its difference to an average restaurant within the same cuisine type for restaurants
with high and low relative variance. d: Probability of choosing a novel restaurant in dependency of its relative price for
restaurants with high and low relative variance.

We probed the data for signatures of uncertainty-directed exploration algorithms that attach an uncertainty bonus to each
option. One such signature is that directed and random exploration make diverging predictions about behavioral changes after
either a positive or a negative outcome. Whereas random (softmax) exploration predicts no difference in sampling behavior
after either a better or a worse-than-expected outcome, directed exploration predicts a stronger increase in sampling behavior
after a worse-than-expected outcome (see SI). This is due to the properties of algorithms that assess an option’s utility by a
weighted sum of its expected reward and its standard deviation. After a bad experience, the mean and standard deviation both
go down, whereas after a good experience the mean goes up but the standard deviation goes down. Thus, there should be more
changes in customers’ sampling behavior after a bad than after a good outcome.

We verified this prediction by calculating the Shannon entropy of customers’ next 4 purchases after having experienced
either a better-than or a worse-than-expected order. The calculated entropy was higher for negative RPEs (Fig 3a; 1.112, 99.9%
CI: 1.109, 1.115) than for positive RPEs (1.082, 99.9% CI: 1.081, 1.084), in line with theoretical predictions of a directed
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exploration algorithm. This difference was present throughout time, such that the effect size when comparing the entropies for
negative and positive RPEs for different numbers of past orders (of a given customer) always revealed a negative effect (Fig 3b).
However, this effect decreased over time with a negative correlation between the effect and customers’ past orders of r =−0.68
(99.9% CI: −0.90, −0.33). This means that customers learned over time, leading to lower entropies in their sampling behavior
after unexpected outcomes as they gained more experience.

We assessed customers’ exploration behavior in dependency of the differences in ratings for a given restaurant as compared
to the average of all restaurants within the same cuisine type (value difference). We also calculated each restaurant’s relative
variance, i.e. how much more variance in its ratings a restaurant possessed as compared to the average variance per restaurant
within the same cuisine type. The probability of exploring a new restaurant increased as a function of the restaurant’s value
difference (Fig. 3c; r = 0.05, 99.9% CI: 0.045, 0.056). Additionally, a restaurant’s relative variance also correlated with its
probability of being explored (Fig. 3c; r = 0.05; 99.9% CI: 0.045, 0.056). Comparing restaurants with a high vs. low relative
variance in their ratings (based on a median split) revealed a shift of the choice function towards the left. In other words,
restaurants with higher relative uncertainty (0.344; 99.9% CI: 0.341, 0.349) are preferred to restaurants with lower relative
uncertainty (0.319; 99.9% CI: 0.317, 0.321), as predicted by uncertainty-directed exploration strategies2, 18. This difference
can also be observed when repeating the same analysis using a restaurant’s price (Fig. 3d): as restaurants get more expensive,
they are less likely to be explored (r =−0.017; 99.9%CI: −0.023, −0.013). This function is again shifted for restaurants with
higher relative uncertainty: given a similar price range, relatively more uncertain restaurants are more likely to be explored than
less uncertain restaurants.

Table 2. Results of mixed-effects logistic regression.
Estimate Std. Error z value Pr(>|z|)

Intercept -0.342 0.007 45.81 <.001
Value difference 0.114 0.0135 8.47 <.001

Relative price -0.087 0.007 -11.67 <.001
Variance difference 0.084 0.003 24.13 <.001

To further validate these findings, we fit a mixed-effects logistic regression, using the exploration variable as the dependent
variable. For the independent variables, we used the mean difference in ratings between the restaurant and the average restaurant
within the same cuisine type, a restaurant’s relative price, and its relative uncertainty (see Tab. 2). The average value difference
(β = 0.114), the relative price β =−0.0876) and the relative uncertainty (β = 0.084) all affected a restaurants’ probability to
be explored. Thus, even when taking into account a restaurant’s price and its ratings, customers still preferred more uncertain
options. This provides strong evidence for a directed exploration strategy.

Signatures of generalization

Figure 4. Signatures of direct exploration.
a: Clusters of exploration between different cuisine types within customers’ consecutive explorations. Green rectangles mark
clusters of exploration. b: Moves between clusters after better-than-expected (positive RPE) and worse-than-expected (negative
RPE) outcomes as compared to a mean baseline. Centers of radar plots indicate a change of -5%, outermost lines indicate a
change of +5%.
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We assessed if customers employed generalization to guide their purchasing decisions. We first looked at patterns of
consecutive explorations (how one exploratory choice predicted the next one). Specifically, we looked at 20 frequent cuisine
types and assessed how much exploring a restaurant from one type predicted exploring a restaurant from another type using a
simple regression, and repeating this analysis for all combinations of types. This analysis revealed clusters of cuisine types
within customers’ exploratory behavior (see Fig. 4a).
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Figure 5. Signatures of generalization.
a: Probability of switches between cuisine types and rated similarities between the same types. b: Average rating per city and
proportion of exploratory choices. Turquoise line marks least-square regression line. c: Predictability of a restaurant’s quality
and average rating of explored restaurants. Turquoise line marks least-square regression line. d: Results of model comparison
for new customers’ behavior. Considered models were the Bayesian Mean Tracker (BMT), a Gaussian Process with a
mean-greedy sampling strategy (GP-M), and a Gaussian Process with a Upper Confidence Bound sampling strategy (GP-UCB).

For example, exploring a restaurant from the cuisine type “Burgers” was predictive of exploring a restaurant from the
cuisine type “American”, most of the Asian cuisine types clustered together, and so forth. As there were seven main clusters in
total (see Materials and Methods and SI for details), this also allowed us to assess moves between different clusters after either
a worse or a better-than-expected outcome. This led to four insights. First, customers were more likely to explore within the
same cluster after a good outcome (+2.27%) and less likely after a bad outcome (-5.19%), while bad outcomes had a larger
effect than good outcomes, again hinting at strategies of directed exploration. Secondly, customers’ switches between clusters
were meaningful. For example, after a bad experience with the cluster “Asian”, customers frequently switched to the cluster
“Curry” (+1.51%), which contained Indian and Thai cuisine. Thirdly, there were spill-over effects; for example, a positive
experience with “Mediterranean” food also made exploring the cluster “Chicken” more likely (+0.5%). Finally, customers most
often switched to exploring “Unhealthy” cuisine types after bad outcomes (+2.72%).

We also assessed if customers’ switches between different cuisine types could be related to a subjective understanding of
similarity between types (Fig. 5a). We therefore asked 200 participants on Amazon’s Mechanical Turk to rate the similarity
between 30 pairs of cuisine types sampled from the 20 above types on a scale from 0 (not at all similar) to 10 (totally similar).
We then tested how much exploratory switches between cuisine types mapped onto the mean similarity ratings between
cuisine types. There was a positive correlation between similarity ratings and the frequency of switches between cuisine types
of r = 0.78. Thus, exploratory choices not only clustered into interpretable clusters, but were also predicted by subjective
similarities between cuisine type.

We further tested how much customers’ exploration was guided by generalization. Gershman et al.24 showed that
participants explore novel options more frequently in environments where all options are generally good. We found evidence
for this phenomenon in our data (Fig. 5b): there was a positive correlation between a city’s average restaurant rating and the
proportion of exploratory choices in that city (r = 0.32; 99.9% CI: 0.21, 0.49, see SI for partial correlations).

Next, we examined whether customers’ explorations were more successful in cities where ratings were more predictable as
assessed by how well individual ratings were predictable by the features’ price, delivery time, mean rating, and number of
ratings using randomly sampled learning and tests sets of the same size for each city. Customers were more successful (i.e.,
gave higher ratings to sampled restaurants) in their exploratory choices in cities where ratings were generally more predictable
(r = 0.73; Fig. 5d, 99.9% CI: 0.53, 0.84). Thus, customers took contextual features into account to guide their exploration,
similar to findings in contextual bandit tasks25, 26.

In the attempt to test algorithms of both directed exploration and generalization simultaneously, we compared three models
of learning and decision making based on how well they captured the sequential choices of 3,772 new customers who had just
started ordering food and who had rated all of their orders. The first model was a Bayesian Mean Tracker (BMT) that does
not generalize across restaurants, only learning about a restaurant’s quality by sampling it. The second model used Gaussian
Process regression to learn about a restaurant’s quality based on the four observable features (price, mean rating, delivery time,
and number of past ratings). Gaussian Process regression is a powerful model of generalization and has been applied to model
how participants learn latent functions to guide their exploration20, 21, 25. This model was either paired with a mean-greedy
sampling strategy (GP-M) or with a directed exploration strategy that sampled based on an option’s upper confidence bound
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(GP-UCB). We treated customers’ choices as the arms of a bandit and their order ratings as their utility, and then evaluated
each model’s performance based on its one-step-ahead prediction error, standardizing performance by comparing to a random
baseline. Since it was not possible to observe all restaurants a customer might have considered at the time of an order, we
compared the different models based on how much higher in utility they predicted a customer’s final choice compared to an
option with average features. The BMT model barely performed above chance (r2 = 0.013; 99.9% CI: 0.005, 0.022). Although
the GP-M model performed better than the BMT model (r2 = 0.231; 99.9% CI: 0.220, 0.241), the GP-UCB model achieved by
far the best performance (r2 = 0.477; 99.9% CI: 0.465, 0.477). Thus, a sufficiently predictive model of customers’ choices
required both a mechanism of generalization (learning how features map onto rewards), and a directed exploration strategy
(combining an restaurant’s mean and uncertainty to estimate its decision value).

Discussion
We investigated customers’ exploration behavior in a large data set of online food delivery purchases. Customers learned from
past experiences, and their exploratory behavior was affected by a restaurant’s price, average rating, number of ratings and
estimated delivery time. Our results further provide strong evidence for several theoretical predictions: people engaged in
uncertainty-directed exploration, and their exploration was guided by similarity-based generalization. Computational modeling
showed that these patterns could be captured quantitatively.

Taken together, our results advance our understanding of human choice behavior in complex real-world environments. The
results may also have broader implications for understanding consumer behavior. For example, we have found that customers
frequently change to unhealthy food options after bad experiences. However, a potential strategy to increase the exploration of
healthy food might be to increase healthy restaurants’ relative uncertainty by grouping healthy options with other frequently
explored options such as Asian restaurants, which showed a comparatively lower relative uncertainty per restaurant.

While we have focused on using cognitive models to predict human choice behavior, the same issues come up for the design
of recommendation engines in machine learning. These engines use sophisticated statistical techniques to make predictions
about behavior, but do not typically try to pry open the human mind28. This is a missed opportunity; as models of human
and machine learning have become increasingly intertwined, insights from cognitive science may help build more intelligent
machines for predicting and aiding consumer choice.
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Methods
The Deliveroo data set
The data consisted of a representative random subset of customers ordering food from the online food delivery service
“Deliveroo”. The data set contained 195,333 fully anonymized customers. These customers placed 1,613,968 orders over two
month (February and March 2018) in 197 cities. There were 30,552 restaurants in total leading to an average of 155 restaurants
per city. We arrived at this data set by filtering out customers with less than 5 orders (too little data points to analyze learning
and exploration) and more than 100 orders (likely multiple people sharing an account).

Clustering analysis
We removed the cuisine type “European” for this analysis as it was found to contain little information about customer choice
behavior. This is unsurprising, given that manual cuisine type tags vary in quality and information content. Next, we analyzed
for each cuisine type how much exploring this type on a time point t was predictive of exploring another cuisine type on a time
point t +1, using a linear regression model. Repeating this analysis for every combination of cuisine types lead to the graph
shown in Figure 4a. We then analyzed the resulting matrix of r2-values by using hierarchical clustering.
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Similarity judgments
To elicit similarity ratings between different cuisine types, we asked 200 participants on Amazon’s Mechanical Turk to rate
the similarities between two randomly sampled types out of the 20 types used for the clustering analysis reported above.
Participants were paid $1 and had to rate 50 pairs of cuisine types in total. The study took less than 10 minutes on average.

9/16

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 14, 2018. ; https://doi.org/10.1101/492058doi: bioRxiv preprint 

https://doi.org/10.1101/492058
http://creativecommons.org/licenses/by/4.0/


Supporting information
Data set
We used the following variables to analyze customer’s exploration behavior: anonymized customer ID, anonymized restaurant
ID, anonymized order ID, the name of the city an order was placed in, the cuisine type of the order (180 types in total), the
standardized price of the restaurant indicating how much more expensive the restaurant was than a median restaurant within the
same city (from 0.25 to 2), the standardized estimated delivery time of the order (z-scores from -2 to 3), how many orders a
customer had placed previously, whether or not it was the first time a customer had ordered from the chosen restaurant, the
mean rating of the restaurant at the time of the order from 4 to 51, the number of previous ratings for the restaurant at the time
of the order, and the eventual rating the customer provided (from 1 to 5). We also calculated every order’s RPE by subtracting
the mean restaurant rating from the eventual order rating.
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Figure S1. Distributions of customer-specific (blue) and restaurant-specific (orange) variables.
a: Customers’ order ratings from 1 (low quality) to 5 (high quality). b: Number of past orders per customer. c: Proportion of
choosing an old vs. a new restaurant. d: Prediction error, defined as the difference between the actual order rating and the mean
restaurant rating. e: Mean restaurant ratings at the time of an order. Ratings have been truncated at a value of 4 to avoid
instability induced by infrequent low average ratings. f: Number of past ratings per restaurant at the time of an order. g:
Relative price per restaurant at the time of an order. h: Standardized delivery time at the time of an order.

The distributions of all variables are shown in Figure S1.

Statistical tests
As our data set was large, almost any comparison would be significant at the α = 0.05-level. We therefore report the means and
99.9% confidence intervals for each group when reporting differences. We believe that this descriptive comparison makes the
size of the differences more interpretable.

Mixed-effects regression
We report the step-wise results for both mixed-effects regression analyses. We compare models based on their Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC).

Factors influencing exploration
For the first mixed-effects regression, we regressed a restaurant’s price (Price), mean rating (Rating), number of past ratings
(#Ratings), and estimated delivery time (Time) onto whether or not a customer explored that restaurant. Additionally, we
entered a random intercept for each customer.

The variables price, rating and the number of ratings all had a linear effect onto a restaurant’s probability of being explored,
whereas the average delivery time had a nonlinear effect (the expression Time2 in Tab. S1 indicates that we entered both a
linear and a quadratic effect of time into the final model). The final model contained all variables and had a fit of BIC=251772.

1In total, 94% of the restaurants had higher ratings than 4 and behavior for restaurants with an average rating lower than 4 was unstable. None of the main
results change when analyzing the full data set, but estimates for this part of the space were unreliable.
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Table S1. Results of mixed-effects logistic regression analyzing determinants of exploration.

Model AIC BIC χ2 Pr(>χ2)
Intercept only 258107 258127 – –
Price 258064 258095 45 <.001
Price+Rating 257294 257334 772 <.001
Price+Rating+#Ratings 251784 251835 5511 <.001
Price+Rating+#Ratings+Time2 251772 251843 16 <.001

Signatures of directed exploration
For the second mixed-effects logistic regression, we regressed a restaurant’s value difference (Value), relative uncertainty
(Uncertainty) and price (Price) onto the exploration variable. The value difference is defined as the difference in ratings for a
given restaurant compared to the average of all restaurants within the same cuisine type. The relative variance is defined as the
difference between a restaurant’s variance in ratings and the average variance per restaurant within the same cuisine type. The
price is the relative price indicating how much more expensive a restaurant was compared to the city’s median restaurant price.

Table S2. Results of mixed-effects logistic regression analyzing signatures of directed exploration.

Model AIC BIC χ2 Pr(>χ2)
Intercept only 258107 258127 – –
Value 257184 257214 924 <.001
Value+Price 257152 257193 34 <.001
Value+Price+Uncertainty 257066 257117 88 <.001

The final model contained all three variables and produced a fit of BIC=257117. Thus, relative uncertainty was a significant
contributor to customers’ exploration behavior beyond value difference and relative price, a strong signature of directed
exploration.

Model comparison
New customers data set
For the model comparison, we created a data set containing only customers who had just started ordering food on the Deliveroo
website (i.e., new customers). Moreover, we filtered out all customers who did not rate all of their orders. This resulted in a
data set of 3,772 customers in total. We used this data set to compare different models of learning combined with different
decision strategies, treating customers’ chosen restaurants as the arm of a bandit and their ratings as the resulting reward.

Gaussian Process
We use Gaussian Process (GP) regression as a Bayesian model of generalization. A GP is defined as a collection of points,
any subset of which is multivariate Gaussian. Let f : X → Rn denote a function over input space X that maps to real-valued
scalar outputs. This function can be modeled as a random draw from a GP:

f ∼ G P(m,k), (1)

where m is a mean function specifying the expected output of the function given input x, and k is a kernel function specifying
the covariance between outputs:

m(x) = E[ f (x)] (2)

k(x,x′) = E
[
( f (x)−m(x))( f (x′)−m(x′))

]
(3)

We fix the prior mean to the mean value of ratings within a given city and use the kernel function to model generalization over
the restaurant-specific features.

Conditional on observed data Dt = {x j,y j}t
j=1, where y j ∼N ( f (x j),σ

2
j ) is drawn from the underlying function with

added noise σ2
j = 1, we can calculate the posterior predictive distribution for a new input x∗ as a Gaussian:

E[ f (x∗)|Dt ] = mt(x∗) = k>∗ (K+σ
2I)−1yt (4)

V[ f (x∗)|Dt ] = vt(x∗) = k(x∗,x∗)−k>? (K+σ
2I)−1k∗, (5)
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where y= [y1, . . . ,yt ]
>, K is the t×t covariance matrix evaluated at each pair of observed inputs, and k∗= [k(x1,x∗), . . . ,k(xt ,x∗)]

is the covariance between each observed input and the new input x∗.
To model customers’ generalization over restaurants’ features, we assume that customers can use the presented features at

the time of an order to predict a restaurant’s quality, i.e. how much they will like it. These features are the price, the mean
rating, the number of past ratings, and the delivery time.

Radial Basis Function kernel
We use a Radial Basis Function (RBF) kernel as a component of the G P algorithm of generalization. The RBF kernel specifies
the correlation between inputs x and x′ as

k(x,x′) = exp
(
−||x−x′||2

λ

)
, (6)

where λ is a length-scale parameter controlling function smoothness. This kernel defines a universal function learning engine
based on the principles of Bayesian regression and can model any stationary function.

Bayesian Mean Tracker
The Bayesian Mean Tracker model is implemented as a Bayesian updating model, which assumes no temporal dynamics. In
contrast to the GP regression model (which also assumes constant means over time), the Mean Tracker learns the rewards of
each restaurant independently, by computing an independent posterior distribution for the mean µ j for each restaurant j. We
implemented a version that assumes rewards are normally distributed (as in the GP model), with a known variance but unknown
mean, where the prior distribution of the mean is a normal distribution. This implies that the posterior distribution for each
mean is also a normal distribution:

p(µ j,t |Dt−1) = N (m j,t ,v j,t) (7)

For a given option j, the posterior mean m j,t and variance v j,t are only updated when it has been selected at trial t:

m j,t = m j,t−1 +δ j,tG j,t
[
yt −m j,t−1

]
(8)

v j,t = [1−δ j,tG j,t ]v j,t−1 (9)

where δ j,t = 1 if option j is chosen on trial t, and 0 otherwise. Additionally, yt is the observed reward at trial t, and G j,t is
defined as:

G j,t =
v j,t−1

v j,t−1 +θ 2
ε

(10)

where θ 2
ε is the error variance, which we fixed to 0.2. Intuitively, the estimated mean of the chosen option m j,t is updated based

on the difference between the observed value yt and the prior expected mean m j,t−1, multiplied by G j,t . At the same time, the
estimated variance v j,t is reduced by a factor of 1−G j,t , which is in the range [0,1]. The error variance (θ 2

ε ) acts as an inverse
sensitivity, where smaller values result in more substantial updates to the mean m j,t , and larger reductions of uncertainty v j,t .
We set the prior mean to the mean value of all restaurants within a city and the prior variance to v j,0 = 5.

This model does not generalize at all and can therefore only learn about a restaurant’s quality by sampling it. Thus, it
predicts that every novel restaurant will just be as good as the average of all restaurants in a city.

Sampling strategies

Given the normally distributed posteriors of the expected rewards, which have mean µ(x) and uncertainty (formalized here
as standard deviation) σ(x), for each restaurant x (for the Mean Tracker, we let µ(x) = m j,t and σ(x) =√v j,t , where j is the
index of the restaurant characterized by x), we assess different sampling strategies that make probabilistic predictions about
how much customers will like a given restaurant. In particular, we combine the Bayesian Mean Tracker with a mean-greedy
sampling strategy and the Gaussian Process regression with both a mean-greedy and an upper confidence bound sampling
strategy (details below).
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Upper Confidence Bound sampling
Given the posterior predictive mean µ(x) and its attached standard deviation σ(x) =

√
σ2(x), we calculate the upper confidence

bound using a weighted sum

UCB(x) = µ(x)+βσ(x), (11)

where the exploration factor β determines how much reduction of uncertainty is valued (relative to exploiting known high-value
options). We fix β = 1 for our model comparison, indicating a tendency towards directed exploration.

Mean Greedy Exploitation
A special case of the Upper Confidence Bound sampling strategy (with β = 0) is a greedy exploitation component that only
evaluates points based on their expected rewards

M(x) = µ(x), (12)

This sampling strategy only samples options with high expected rewards, i.e. greedily exploits the environment.

Model comparison
We fit all models to a customers’ data until time point t and then make predictions about choices on time point t +1. We apply
a softmax choice rule to transform each model’s prediction into a probability distribution over options:

p(x) =
exp(q(x))

∑
N
j=1 exp(q(x j))

, (13)

where q(x) is the predicted value of each option x for a given model (e.g., q(x) = UCB(x) for the UCB model).

One-step ahead prediction errors
We fit all models—per customer—to the data a customer has seen until time point t and then make forecasts about choices
at time point t +1. For example, the Gaussian Process model is fitted to all past restaurants a customer has sampled, using
the restaurant’s features (i.e. prize, mean rating, number of ratings and delivery time) as the independent variables and the
customer’s ratings as the dependent variable. Afterwards, it can be used to make predictions about other restaurants’ expected
ratings (and uncertainties), that can be mapped onto probabilities. The difference between the Gaussian Process model and
the Bayesian Mean Tracker is that the Bayesian Mean Tracker does not use any generalization over features, but only updates
its predictions (which are equated to the overall mean at the beginning) by sampling a restaurant. The difference between
the mean-greedy GP-M model and the GP-UCB model containing a directed exploration component is that the GP-M model
equates a restaurant’s utility with the predicted mean rating, whereas the GP-UCB model equates a restaurant’s utility with its
upper confidence bound.

Crucially, it is never possible to assess all restaurants a customer looked at and could have ordered from at a particular time
point. We therefore compare the utility of the chosen restaurant to an average restaurant in the same city. For example, for the
Gaussian Process model, we compared how much more likely a customer’s choice was compared to a restaurant with average
feature values. For the BMT model, we compare the assessed utility to the overall average of restaurants in a city.

Predictive accuracy
The error of predictions (computed as predictive log loss) is summed up over all one-step ahead predictions, and is reported as
predictive accuracy, using a pseudo-R2 measure that compares the total log loss for each model to that of a random model:

R2 = 1− logL (Mk)

logL (Mrand)
, (14)

where logL (Mrand) is the log loss of a random model (i.e., picking options with equal probability) and logL (Mk) is
the log loss of model k’s one-step-ahead prediction error. A R2 = 0 corresponds to a prediction accuracy equivalent to
chance, while R2 = 1 corresponds to a theoretically perfect predictive accuracy, since logL (Mk)/ logL (Mrand)→ 0 when
logL (Mk)� logL (Mrand).

Sampling entropy and directed exploration
We calculated customers’ mean entropies over the next 4 samples after either a positive or a negative reward prediction error.
Shannon’s entropy is defined as

H =−∑
i

pi log pi, (15)
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where i indicates a restaurant within customer’s 4 next choices. One of our predictions was that entropy would be higher after
negative RPEs than after positive RPEs. We derived this prediction from the fact that a UCB sampling strategy updates both its
mean and uncertainty after observing an outcome. After a bad experience, the mean and standard deviation both go down,
whereas after a good experience the mean goes up but the standard deviation goes down. We confirmed this prediction in our
data. Here, we check if this prediction holds in simulated data that was produced by either the GP-UCB or the GP-M model.

Synthetic data
For a first check of our prediction, we generated synthetic data using samples from a univariate Gaussian Process. Specifically,
we created a one-dimensional meshed grid of options with x ∈ [0,0.2,0.4, · · · ,10]. We then sampled a target function from a
Gaussian Process with λ = 1 and optimized this function by using either a softmaximized mean-greedy (GP-M) or a upper
confidence bound exploration strategy (GP-UCB) over 20 trials. Moreover, we tracked the models reward prediction error,
defined as the difference between its predicted mean for a sampled option and the actual outcome of that option. We repeated
this simulation 100 times for both models and afterwards calculated the sampling entropy for the models’ next 4 choices after
having observed an outcome. Feeding the reward prediction error into a mixed effects regression with the sampling entropy
as the dependent variable and a random intercept for simulation number, we found a significant effect of RPEs onto entropy
for the GP-UCB model (β =−0.43, SE = 0.01, t(1454.5) =−32.70, p < .001), but not for the GP-M model (β =−0.001,
SE = 0.006, t(1454.5) = −0.122, p = .9). Thus, UCB sampling leads to higher entropy after negative outcomes than after
positive outcomes, whereas this difference is not pronounced in data generated by a soft-maximizing sampling strategy.

Customer data
In a second analysis, we looked at the sampling entropy difference between the GP-M and GP-UCB models in simulated
customer choice data. We focused on the data for the new customers generated for our model comparison. For each customer,
we generated a choice set by extracting all sampled restaurants and their features (price, rating, number of ratings, and delivery
time). Furthermore, we estimated a utility distribution (the distribution of ratings for each restaurant by customer), by using a
hierarchical model with a normal distribution, N (4.5,1), as the prior of the mean and a Cauchy distribution, Cauchy(0,1),
as the prior over the variance of the restaurant’s utility. The resulting data set can be seen as 3,772 consecutive bandit tasks,
where each task contains as many options as unique restaurants a customer had sampled and—for each restaurant—a reward
distribution estimated by a hierarchical model based on that customer’s ratings. We then let both a GP-UCB and a GP-M
model perform within this task, letting them sample as many restaurants as each of the customers had sampled. Afterwards, we
calculated the entropy of the next 4 sampling steps as a function of the RPE (Fig. S2).

To assess the effect of RPE on sampling entropy, we regressed—for both sampling strategies individually—the RPE onto the
entropy of the next 4 sampling steps in a mixed effects regression while also adding a random intercept for simulated customers.
This showed that RPE had a significant effect onto sampling entropy for the UCB sampling strategy (β = 0.031, p = .007) but
not for the softmax mean-greedy sampling strategy (β = 0.015, p = .07). We therefore conclude that our theoretical prediction
holds in both synthetic and data-driven simulations of exploratory behavior over time.

Clustering analysis
As described in the Materials and Methods, we clustered the 20 most frequent cuisine types appearing within our data set. One
appropriate clustering solution of this analysis contained 7 main clusters. The scree plot of the clustering analysis (Fig. S3)
confirmed our 7 clusters solution.

Effect of environment analysis
To estimate whether or not customers explored more frequently in cities with higher mean ratings, we calculated the average
rating over all restaurants as well as the average exploration rate for every city. The correlation between these two variables was
r = 0.32, t(98) = 3.19, p = .002. Even when simultaneously correcting for a city’s average restaurant price, order volume,
average number of ratings per restaurant, and average number of ratings per customer, the resulting partial correlation was still
significant (r = 0.25, t(98) = 2.54, p = .02).

Predictability analysis
For the predictability analysis, we assessed—for every city—how predictable customers’ ratings were based on the 4 features
used throughout all of our analyses. Doing so, we only used the data set consisting of orders that customers had rated afterwards.
We then sampled a learning and a test set for each city consisting of 100 orders each, fitted a linear regression model to the
learning set, and used this model to predict customers’ order ratings in the test set. Repeating this analysis 100 times for
every city revealed how predictable the quality of restaurants within one city was, measured by how well the regression model
performed in the test set. We then correlated this predictability measure with the quality of exploratory choices (the mean rating
of explored restaurants within a city). This correlation was significantly positive (r = 0.73, t(114) = 10.8, p < .001). Again
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Figure S2. Entropy and prediction error for UCB and (softmaximized) mean-greedy sampling in a generated
restaurant data set.
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Figure S3. Scree plot of clustering analysis showing the amount of within variance by number of clusters. Dashed
line indicate 7 clusters solution.

simultaneously correcting for a city’s average restaurant price, order volume, average number of ratings per restaurant, and
average number of ratings per customer, the partial correlation remained significant (r = 0.48, t(114) = 5.7, p < .001).
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Figure S4. Screen shot of similarity rating study.

Estimating causal directions
Three of our main theoretical predictions were: (1) customers explore more in cities with higher average ratings; (2) customers
explore more successfully in cities where ratings were more predictable; and (3) relative uncertainty has a positive effect on
customers’ tendency to explore a restaurant. Even though these predictions were derived from past empirical studies, it is
nonetheless hard to make strong claims about causal directions in a natural and complex data set. Here, we additionally use
another statistical method to estimate causal directions based on observational data proposed by Peters et al.29. Specifically,
this method uses additive noise modeling to assess the residuals when performing a nonlinear regression from one variable to
another and vice versa, and then applies kernel independence tests to decide about the causal direction, judging the direction as
more likely in which the resulting residuals are more independent. We refer the interested reader to the original paper, but note
here that this method gets up to 85% of classifications correct in a very challenging “causal directions benchmark” correct.

We applied this model to the city-specific variables of the mean exploration rate and the average restaurant rating. When
regressing the exploration rate onto a city’s average restaurant rating using general additive models, this method assessed the
probability of independence of the residuals as p = 0.46, whereas that probability was p = 0.58 the other way around. This
method therefore weakly classified the average rating to be more likely the cause of the mean exploration rate than vice versa.
We then used this approach to assess the directions of the connection between a city’s predictability and customer’s exploratory
success. Whereas the probability of independence of the residuals was p = 0.08 when regressing exploratory success onto
predictability, that probability was p = 0.85 the other way around. There was thus strong evidence that predictability caused
exploratory success according to the causal direction estimation method.

Finally, we analyzed the effect between a restaurant’s relative uncertainty and the tendency to be explored. To do this, we
estimated every customer’s mean relative restaurant uncertainty and mean proportion of exploratory choices. This analysis
assessed if customers who explored more did so because of high relative uncertainty in their environment or if customers
exploring more often caused higher uncertainties. The resulting p-values for independence were both relatively small as this
was a very large data set for both regressions (10−10 and 10−7). However, the p-value for independence when regressing
exploration onto relative uncertainty was 103-times lower than vice versa, showing strong evidence that relative uncertainty led
to increased exploration, according to the causal estimation model. Taken together, these results yielded additional evidence
that the postulated directions of our predicted and confirmed effects are correct.
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