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Abstract

Although tradeoffs are expected to play an essential role in shaping the diversity in
a community, their effects remain relatively nebulous and notoriously difficult to assess.
This is especially true when multiple tradeoffs occur simultaneously. When dealing with
single tradeoffs some information can be predicted based on their curvature. Does the
same happen when dealing with multiple tradeoffs? What happens if the tradeoffs have
opposing curvatures? To address these issues, we develop a resource-based model that en-
compasses multiple tradeoffs mediated by the acquisition and processing of the resources.
The model considers a spatially structured population of microbial organisms that can
grow on an arbitrary number of resources, which come into the system at a constant rate
and diffuse through the environment. The individuals can adopt a variety of strategies
through mutation constrained by tradeoffs, which renders the model adaptive. We assess
population sizes and levels of functional specialization. We find that when multiple trade-
offs are considered the classical intuition developed for single tradeoffs does not hold. The
outcome can depend significantly not only on the curvature of the tradeoffs but also on
resource availability.
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1 Introduction

Most natural environments harbor a great diversity of microbial life (Hibbing et al. 2010;
Gibbons and Gilbert 2015). In those environments, microbes are typically surrounded by
different strains and species with whom they compete for nutrients and space. Inside the
colonies, the microbes usually express many different phenotypes in such a way that they
can thrive in outcompeting and displacing their neighbors (Ghoul and Mitri 2016). The
outcome of this competition and the fate of the distinct evolutionary strategies, under
the constraints of tradeoffs, are greatly driven by the ecological scenarios (Ghoul and
Mitri 2016; de Oliveira et al. 2018; Hoyle et al. 2008). Numerous works explore how the
shape of the tradeoffs together with the ecological scenario can affect the evolutionary
predictions (de Oliveira et al. 2018; Hoyle et al. 2008). Other works further suggest that
even the shape of the tradeoff relationship responds to environment changes (Jessup and
Bohannan 2008).

Tradeoffs are considered to have a central role in determining the patterns of species
diversity in ecological communities (Kneitel and Chase 2004), including the diversity in the
microbial world (Ferenci 2016). Tradeoffs constrain the range of phenotypic options that
are open to organisms, and result from a number of physical and biological mechanisms
(Garland 2014). On the one hand, tradeoffs curb the adaptive potential of organisms, but
on the other, act as a driving mechanism for diversification in the context of environmental
variation (Østman et al. 2014).

Despite their importance to life-history theory, quantifying tradeoffs requires longterm
observation and modeling, and are subject to several limitations (Pease and Bull 1988).
This problem is even more subtle when multidimensional tradeoffs exist (Edwards, Klaus-
meier, and Litchman 2011; Lancaster, Hazard, Clobert, and Sinervo 2008). The existence
and interplay of multiple tradeoffs and their consequences to the degree of functional spe-
cialization are addressed here. The tradeoffs are here modelled as surfaces and curves in
trait space, thus representing the constraints between the variables. Our approach is de-
veloped within a resource-based modelling framework, whereby we are concerned with the
metabolic machinery of the individuals. In particular, two well-acknowledged tradeoffs in
the literature are considered: tradeoffs between resource uptake rates and the rate-yield
tradeoff (Litchman et al. 2015). The latter one defines a constraint between the rate
at which a given resource is uptaken and the efficiency of the process of conversion of
the seized resources into ATP (energy). The curvature of the surface and curves in trait
space can be tuned, thus allowing us to cover a broad spectrum of possible shapes. As
aforesaid, this matter is of great relevance especially in the face of our knowledge from
classical ecological models that deal with two-traits relationships (Egas et al. 2004; Hoyle
et al. 2008). These classical ecological models state that specialization is expected un-
der convex curves, whereas the generalist strategy is favored under concave relationships.
So, many questions arise upon the occurrence of multivariate tradeoff patterns, especially
those involving different classes of tradeoffs (distinct biological quantities). For instance,
what is the evolutionary outcome when tradeoffs of opposing curvatures exist? And what
about multidimensional tradeoffs involving different quantities? Do we have any kind of
hierarchy regarding the tradeoffs? These are the types of questions we address in the
current contribution.

The fact that a resource-based modelling approach is adopted, allows us to go further
and investigate whether the tradeoff shape by its own is on the ground of the ultimate
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composition of ecological systems or ecological responses due to the existence of tradeoffs
also rely on environmental conditions. With these objectives in mind, we propose a
structured model in which population is distributed over a two-dimensional lattice, and
resources diffuse over lattice following the standard dynamics provided by a discretized
version of the diffusion equation. We investigate population sizes, specialization levels and
the spatial distribution of trait-values under different scenarios, and for many different
shapes and combinations of tradeoffs. Efforts are also undertaken to understand the role
of structuring in the emerging patterns of specialization. As we will see, quite intricate
patterns for the specialization levels emerge. The resulting patterns can not be explained
by considering ecological systems subject to multivariate tradeoffs as a superposition of the
predictions derived from classical ecological models of two-traits. We find that structuring
also plays a central role determining the evolutionary outcomes of the system.

The paper is organized as follows. In section 2, we describe the model used to address
the aforedescribed problem and the technical aspects that underlie it. This is followed by
a description of the results in section 3, and the presentation of our concluding remarks
in section 4. Some of our simulation results are presented as Supplemental Informations.
In the same section, a summary of all parameters defined in the modelling is introduced.

2 Materials and Methods

Let us start by providing a brief overview of the model. The present work is developed
within the framework of a resource-based modelling. We deal with a spatially structured
population that acquires resources from the environment. Those resources are provided
to the system at a constant rate and then diffuse over the environment, ultimately being
captured by the individuals. The individuals reproduce and mutate and thus selection will
optimize their resource uptake and resource processing rates. However, these rates are
subject to tradeoffs which prevent their simultaneous optimization. Two types of resource
related constraints are considered. First, the tradeoff between resource uptake rates,
meaning that the organism cannot optimize simultaneously the uptake of all resources.
This tradeoff stems from several factors, including limitation of energy for active transport
of substances and the limited area of the cell, or in a different perspective the time the
organism has available to acquire food. Second, the tradeoff between the uptake rate of
each resource and the yield of the conversion of that resource into energy. This second
tradeoff can be ultimately traced to fundamental limitations imposed by thermodynamics
(Novak et al. 2006; MacLean 2008). Both types of tradeoffs are well established and
documented in the literature (Pfeiffer et al. 2001; Litchman et al. 2015). Usually these
tradeoffs are studied separately, but in real biological systems they act simultaneously.

The present contribution aims to comprehend how this entanglement of multiple trade-
off relationships affects the patterns of the functional specialization. With this in mind,
one assumes that a total number of N different types of resources are available to the indi-
viduals. The population is spatially structured, and thereby the individuals are arranged
over a two-dimensional lattice of linear size L. At most a single individual can lie in each
site of the lattice, and so each site can be either occupied or vacant. The N resources
flow into the lattice through nloc distinct sites. To ensure the results for different N are
comparable we fix the total flux of resources entering the system (lattice) as ∆R. This
way, for each resource type, we have an inflow of ∆R/N units of resource. After entering
the lattice, the resources diffuse over it, following a discretized version of the diffusion
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equation

Rk
r,t+1 = Rk

r,t +
D∆t

(∆x)2

(∑
r′

Rk
r′,t − 4Rk

r,t

)
, (1)

where D is a diffusion constant, ∆t is the time step, ∆x is the lattice spacing, Rk
r,t

denotes the amount of resource k at position r at time t and the sum in r′ goes over
the 4 adjacent neighbors. This discretized version of the diffusion equation requires the

condition ∆t ≤ (∆x)2

4D to be respected in order to avoid stability issues. As usual with
diffusion, the flow of a given resource will be largest in the direction of the largest gradient.

An individual i is characterized by its uptake rates {Ak
i }, with k = 1, . . . , N , and

their respective returns {ηki }, which is the yield of the process that converts biochemical
energy from nutrients, here taken as a direct measure of growth rate. The biochemical
energy obtained from nutrients, such as glucose, is typically used to produce adenosine
triphosphate (ATP), which fuels the biochemical processes inside the cell.

Individuals can only grab resources at their locations. At each time step ∆t, each
individual i at the position r of the lattice will seize an amount of the resource k, which
equals

Jk
i = Ak

i

Rk
r,t

Rk
r,t +Ak

i

. (2)

The amount of resource is calculated for each resource type. The above equation is based
on Monod and Michaelis-Menten formulations (Rockwood 2015). Once the resources are
captured by the individual, they will subsequently be converted into energy. Note that not
all resource types are equally processed by the individual, as each one involves a different
metabolic machinery, with their own constraints. So, it sounds natural to associate with
each resource k a return ηk, which will tell us the amount of energy extracted from that
resource amount. Borrowing ideas from the microbial world, the amount of energy due
to resource k will be

∆Ek
i = Jk

i

[
ηki Emax + (1− ηki )Emin)

]
(3)

with the total change of internal energy taken as the sum over all resource types

∆Ei =
N∑
k=1

∆Ek
i . (4)

Emax is attained when one has maximum efficiency, ηk = 1, whereas Emin corresponds to
a lower bound, when ηk = 0. For simplicity, we adopt as reference values Emax = 36 and
Emin = 2, inspired by the metabolic machinery of single-celled organisms, such as bacteria
and yeast, where the inneficient mode of metabolism (fermentation) yields typically 2 ATP
molecules per glucose molecule, whereas the efficient mode of metabolism, dubbed cellular
respiration, yields up to 36 ATP molecules for each glucose molecule (Campbell and Farrell
2006).

2.1 Biological life cycle

The following phase concerns the biological cycle, in which the individuals first seize a
fraction of the resources which are available in their local site (Eq. (2)), which in turn will
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result in an increase in its energy reservoir (biomass). Reproduction will take place every
time the individual’s energy level reaches a threshold value Esplit. During cell division,
the parental cell divides into two cells with half of its energy level each. One of the cells
remains in the focal position, whereas the second daughter cell will occupy an unoccupied
site in the neighborhood of the focal cell. If there is no empty site in its neighborhood, the
daughter cell will replace a random neighbor. The daughter cells are not metabolically
identical to the parental cell, but present slightly different values from the parental cell
due to a small mutation introduced in reproduction. In this sense, our model is adaptive,
as the individuals with better phenotypic responses to the local environment are more
likely to thrive, as they can better exploit the available resources and use their metabolic
machinery to directly increase the reproductive rate, hence locally spreading.

The final stage regards the process of cell death, in which individuals die at a constant
rate ν.

2.2 The tradeoff relationships

In the current work, we are concerned with tradeoff relationships affecting metabolic
properties of the individuals. Within the perspective of resource handling, two types of
tradeoffs are acknowledged, those establishing constraints between resource uptake rates,
Aj × Ak, and for each resource type a tradeoff between the resource uptake rate and
its corresponding return, Aj × ηj . This set of pairwise relations altogether results in a
multidimensional coupling as the change in one of those variables leads to changes of all
other quantities. A simpler and more elegant formulation is to define a surface in trait
space, thus representing the allowed region of phenotypic values stemming from physical
and biological constraints. Through the mutation process during reproduction, different
phenotypic responses are verified and those that are locally and instantaneously more
advantageous can become established.

α = 0.5

α = 0.0

α = -0.5

0 0.5 1
A1/Amax0

0.5

1
A2/Amax

Figure 1: A model of two-resources. Tradeoff between A1 and A2 for α = −0.5 (green curve),
α = 0 (orange curve), α = 0.5 (blue curve).

An individual can be represented by a vector in the trait space, ~P = ( ~A, ~η), with
~A = (A1, A2, . . . , AN ) and ~η = (η1, η2, . . . , ηN ), hence giving origin to a 2N -dimensional
space. We will assume that only a subspace of this is accessible due to the tradeoff
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relationships and that the accessible subspace lies on a surface that defines those tradeoffs.
We intend then to explore the way the curvature of that surface shapes the specialization
of the individuals at equilibrium.

To parametrize the tradeoff surface, we will make use of an adaptation of a family
of polynomial functions, known as Bézier functions (Farin et al. 2002; Chen and Wang
2003). In N dimensions, a point in the surface is parametrized by

~A (~s ) =

N∑
i=1

s2
i ~ei + (αuptake + 1/2)

∑
j 6=i

sisj (~ei + ~ej)

 (5)

=

N∑
i=1

s2
i ~ei + 2 (αuptake + 1/2)

∑
j>i

sisj (~ei + ~ej)

 , (6)

where ~ek is a unit vector in the k-direction, with k corresponding to a resource index,
and the condition

∑N
i=1 si = 1 should be respected. Therefore, to fully parametrize the

system n− 1 variables are necessary. The full set of unit vectors {~ek} defines a complete
orthonormal basis in the subspace A. The parameter αuptake determines the shape of
the surface. In terms of its components, (A1, A2, . . . , AN ), the above equation can be
rewritten as

Ak (~s ) = ~ek · ~A (~s ) =
N∑
i=1

s2
i δik + (αuptake + 1/2)

∑
j 6=i

sisj (δik + δjk)

 (7)

= (2αuptake + 1) sk − 2αuptake s
2
k , (8)

which facilitates its numerical implementation. In the above equation, δij stands for the
Kronecker delta which is 1 if i = j and 0 otherwise.

Figure 2: A model of three-resources. Tradeoff between A1, A2 and A3 for α = −0.5 (left
panel), α = 0 (middle panel), α = 0.5 (right panel).

In order to determine the efficiency ηk associated with resource of type k, we assume
a similar dependence to those between the uptake rates, {Ak}, but now between Ak and
ηk. As this relationship is between two variables only, we can solve it explicitly, without
needing to rely on s parameters. Therefore, the efficiency ηk is determined by the equation

ηk =
2αyieldA

k/Amax − 1 +
√

(1 + 2αyield)2 − 8αyieldAk/Amax

2αyield
. (9)
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Figure 3: Lattice occupation as a fraction of the maximum lattice capacity for several values
of resource input rate ∆R. The left panel depicts the dependence with αuptake for constant
αyield = 0 and the right panel shows the dependence with αyield for constant αuptake = 0 . The
parameters are N = 3, ν = 0.01, Amax = 10, L = 100, D = 0.2, ∆t = 1 and ∆x = 1. Each
point consists of an average over 100000 time units, sampled every 50 time units, taken from
50 independent configurations.

Since Ak can take values between zero and Amax, we have to normalize it. As expected,
in the limit αyield → 0, which corresponds to a linear dependence, the above equation
reduces to ηk = 1−Ak/Amax.

As previously discussed, connected with the reproduction a small mutation is intro-
duced. This step is implemented by randomly picking a single parameter sk and modifying
it by an amount δsk, which is a random gaussian distributed variable with mean zero and
standard deviation σ = 0.01. The remaining parameters are then readjusted so that the
condition

∑
k sk = 1 continues being respected. The following step is to recalculate the

resource uptake rates from the set of {sk}-values, and their corresponding efficiencies ηk

are promptly evaluated from Eq. (9).
The parameters αuptake and αyield play a key role as they define the shape of the

tradeoff relationships. Negative values of α generate convex surfaces, whereas positive
values lead to concave surfaces. When α = 0, the variables are linked by linear relations.
Figures 1 and 2 show intances of the surfaces produced through the Bézier functions. We
can see that the α parameters provide an effective parametrization for the curvature of the
surface, with the possibility to change from a negative to a positive curvature by tuning
one parameter only, even in the multidimentional case. In the plots, the resource uptake
rates are rescaled by their maximum value, Ak/Amax.

3 Results

In this section we present the simulation results, aiming to determine the levels of func-
tional specialization under quite distinct scenarios. In our simulations, unless stated
otherwise, the linear system size is L = 100, in such a way that there are L×L sites. The
number of resource input locations for each resource type is nloc = 100 and the diffusion
constant D is set at D = 0.2. The measurements are taken after the system has reached
an equilibrium regime.
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First, it is important to determine how the population size is influenced by the vari-
ables of the model. In the left panel of Fig. 3, the dependence of the population size,
here expressed as the fraction of occupied sites of the lattice, on the curvature parameter
αuptake is explored. Meanwhile, αyield is set at αyield = 0, meaning a linear relationship
between resource uptake rate Ak and efficiency ηk for each resource type. Different values
of resource input ∆R are simulated. As expected, the population size is an increasing
function of ∆R. In fact, the lattice becomes almost fully populated when ∆R is large
and αuptake takes very negative values. Under these circumstances, space limitation is
expected to play an important role. In a nutshell, one may also conclude that the oc-
cupation fraction decreases slightly with the curvature parameter αuptake. If looked at
isolatedly, one would say that negative values of αuptake favor the rise of specialized in-
dividuals in the resource uptake of one or a few resource types. Under this perspective,
those results seem to demonstrate that larger populations can be accommodated when
functional specialization emerges as it allows a partitioned usage of the resources. On
the other hand, we observe that by holding αuptake constant and varying αyield (right
panel of Fig. 3), the variation of the lattice occupation with αyield is less evident, but
still, at least for large ∆R, the occupation fraction also decreases slightly when αyield

rises. Figs. S1-3 (Supplemental Information) present a more complete picture of how the
population size changes with α-parameters. The figures disclose the lattice occupation
for many combinations of values of αuptake and αyield. Regardless the number of resources
N , the scenarios are qualitatively similar. The dependence of the lattice occupation on
αyield is clearly determined by the resource influx ∆R. While for large ∆R, the lattice
occupation declines as αyield increases, a conflicting scenario emerges for small ∆R, as
now the lattice occupation grows with αyield.

In order to check how the above results are related to the emerging specialization
levels, the left panel of Fig. 4 shows the level of specialization in resource uptake against
the curvature parameter αuptake. Once again, one has N = 3 resources and αyield = 0.
From the plot, we find out that the level of specialization is nearly a monotonic decreasing
function of αuptake, allowing us to relate increased population sizes with higher levels of
specialization in the uptake of resources. Note also that the variation of αuptake also
influences specialization levels in yield. In our metric, the specialization level is defined in
the range (0,Muptake), where Muptake = N×(N−1)/2, the number of pairwise relations of
the class Aj×Ak. Hence, we examine if the ratio Aj/Ak conforms either to Aj/Ak > rspec
or Aj/Ak < 1/rspec, which upholds specialization for the considered pair of uptake rates.
Therefore, each pairwise relation Aj × Ak contributes to the total specialization in the
resource uptake with an amount in the range (0, 1). The maximum specialization Muptake

occurs whenever each of the Muptake relationships results in the specialization in either
resource for all individuals. Of course, due to conflicting relations between those variables,
this maximum level may never be attained. A similar analysis is carried out for the levels
of specialization in high yield, but as there are N pairwise relationships of the class Ak×ηk,
the maximum possible value of specialization in high yield is N . The measurement only
accounts for the condition ηk/(Ak/Amax) > rspec, implying it is directional, in the sense
only those individuals that specialize in finding a high efficiency in a given resource or
given set of resources contribute to the specialization in high yield.

Let us now address the reversed situation, where αuptake = 0 and αyield is varied.
Curiously, one notices that augment of αyield causes enhanced specialization in high yield.
Contrary to common sense, if lonely examined and employing the reasoning of classical
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Figure 4: Specialization level for several values of resource input rate ∆R. The left panels
depict the specialization level in uptake and the right panels the specialization in yield. In the
top panels, αuptake varies while αyield is fixed at zero and in the bottom panels αyield varies while
αuptake is fixed at zero. The parameters are N = 3, ν = 0.01, Amax = 10, L = 100, D = 0.2,
∆t = 1 and ∆x = 1. Each point consists of an average over 100000 time units, sampled every
50 time units, taken from 50 independent configurations.
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Figure 5: Specialization level for resource input rate ∆R = 1 (top panels) and ∆R = 200
(bottom panels). The left panels depict the specialization level in uptake and the right panels
the specialization in yield. The parameters are N = 2, ν = 0.01, Amax = 10, L = 100, D = 0.2,
∆t = 1 and ∆x = 1. Each point consists of an average over 100000 time units, sampled every
50 time units, taken from 5 independent configurations.

ecological models of single tradeoffs, it would be expected a loss of specialization with
increased αyield. Note that the growth of specialization levels in high yield is accompanied
by the decline of specialization levels in resource uptake when ∆R has low or moderate
values, while it is accompanied by the increase of specialization levels in resource uptake
when ∆R has large values. Altogether, the results seem to propose that population
sizes are more responsive to specialization in resource uptake. The simulation results in
Fig. 4 also substantiate previous findings that claim that the scarcity of resources creates
pressure for the population to specialize in the use of different sets of resources (Østman,
Lin, and Adami 2014).

For the sake of simplicity, from now on the levels of specialization will be normalized
by their maximum possible value, so that one can more directly compare the role of the
tradeoffs under scenarios of distinct number of resources. Figure 5 presents heat maps for
the specialization levels in both resource uptake and high yield for number of resources
N = 2, and over a broad domain of the curvature parameters, αuptake and αyield. In the
upper panels one considers a resource supply rate ∆R = 1, whereas in the lower panels
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Figure 6: Specialization level for resource input rate ∆R = 1 (top panels) and ∆R = 200
(bottom panels). The left panels depict the specialization level in resource uptake and the
right panels the specialization in high yield. The parameters are N = 3, ν = 0.01, Amax = 10,
L = 100, D = 0.2, ∆t = 1 and ∆x = 1. Each point consists of an average over 100000 time
units, sampled every 50 time units, taken from 5 independent configurations.

∆R = 200. In the domain of positive values of αyield, the augment of αuptake at fixed αyield

results in lower levels of specialization in both resource uptake and high yield, which is
in accordance with the outcomes shown in Fig. 4. If only discussed from the perspective
of the relationship A1 × A2, this behavior sounds intuitive, as concave curvatures tend
to promote the generalist behavior. However, a more complicated picture comes up in
the negative domain of αyield. In that range, the increase of αuptake boosts specialization
in resource uptake. Except when αuptake is nearly −0.5, one observes a tiny interval
in which specialization levels in resource uptake first drops, hence reaching a domain in
which specialization in resource uptake is essentially missing before growing with a further
increase of αuptake. Thus, there is a loss of generality of the outcomes posed in Figure
4. In this aspect, the issue looks much simpler whether the dependence of specialization
levels in high yield on αuptake is checked out (right panel). In all the domain, the rise
of αuptake substantially diminishes the levels of specialization in high yield, as seen when
the resources are abundant (large ∆R), where over an extensive region of the diagram no
specialization in high yield evolves at all.
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Let us now scrutinize the response of the specialization to changes of the curvature
parameter αyield. As all variables are somehow coupled through the definition of a surface

in the ~A-subspace, and in its turn the set of uptake rates {Ak} are attached to the
efficiencies {ηk} through the N relations of the kind Ak×ηk, αyield is likewise expected to
affect the dynamics as a whole. By making αuptake constant, we observe that the rise of the
curvature parameter αyield, which turns the tradeoff curves more concave, ensures reduced
levels of specialization in the uptake of resources when resources are scarce (please, see left
upper panel of Fig. 5)). Nevertheless, a more intricate situation materializes when ∆R
is large, and now we may distinguish two different scenarios: over nearly all the domain
of negative values of αuptake, specialization levels in resource uptake become a monotonic
increasing function of αyield, while roughly over all the domain of positive αuptake-values
the reversed condition is obtained, with specialization levels in resource uptake falling as
αyield grows.

In its turn, the dependence of specialization levels in high yield on the curvature
parameter αyield is less intricate. In general, we observe that the levels of specialization
in high yield grow continuously with αyield, which is a quite impressive issue. Contrary to
what would be expected under a scenario of single tradeoffs, specialization in high yield
is here found when the relation between uptake rate and efficiency, Ak × ηk, presents
concave curvatures. Although the same pattern is found in the domain of positive values
of αuptake, the levels of specialization in high yield are considerably smaller than when
αuptake takes negative values.

The above analysis is extended to the cases of N = 3 and N = 5 resource types.
Roughly speaking, we can conclude that the general picture is very similar to that dis-
played for two resources (N = 2). However, we notice that when more resource types are
incorporated into the dynamics the regime in which the specialization levels in resource
uptake decrease with αyield shrinks up to its disappearance, as already seen for N = 5.
Therefore, when the number of resources N is not so small, the dependence of the spe-
cialization levels in resource uptake on αyield is monotonic in the entire range of αuptake.
Moreover, when ∆R is low, we also notice that specialization levels in resource uptake
become less and less sensitive to variations on both curvature parameters. Another point
to highlight is that specialization levels in high yield are considerably larger as more re-
source types are considered, as disclosed for N = 5, in which the levels of specialization
are nearly the maximum over a broad domain of the diagram.

3.1 Microscopic analysis

For a more detailed comprehension of the phenomena captured in the previous plots, here
we provide a microscopic analysis of the problem by exploring the spatial distribution of
trait values. Fig. 8 displays snapshots of the spatial distribution of trait values and for
different combinations of parameter values. In set of panels (a) the condition αuptake =
−0.3 and αyield = 0.3 is addressed. For each resource type, there exists a group of
individuals that achieve moderate to large uptake rate, but a substantial amount has
uptake rate close to zero. By comparing the three snapshots we find out that nearly
every individual achieves uptake rate very close to zero for at least one resource type.
This accounts for the specialization levels unveiled in Fig. 6, which is around 0.3 for this
particular combination of the curvature parameters. On the other hand, the same set of
panels reveals that a considerable fraction of the individuals end up with high efficiencies,
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Figure 7: Specialization level for resource input rate ∆R = 1 (top panels) and ∆R = 200
(bottom panels). The left panels depict the specialization level in uptake and the right panels
the specialization in yield. The parameters are N = 5, ν = 0.01, Amax = 10, L = 100, D = 0.2,
∆t = 1 and ∆x = 1. Each point consists of an average over 100000 time units, sampled every
50 time units, taken from 5 independent configurations.

thus explaining the elevated specialization levels in high yield obtained, which is around
0.8, as demonstrated in Fig. 6. Keep in mind that in this case, specialization in high yield
means that the ratio ηk/(Ak/Amax) for a given resource is greater than a specified value
rspec.

In the set of panels (b), one has αuptake = 0.3 and αyield = 0.3. Note that now the
distribution of uptake rates is much more uniform than found in panels (a). According to
Fig. 6, in this scenario the specialization in both resource uptake and in high yield is very
modest. The above scenario evinces that moderate to high uptake rates and efficiencies are
not promoted at the expense of the other quantities. In panels (c), where αuptake = −0.3
and αyield = −0.3, once again the distribution of resource uptake rates looks flat, but
contrary to the scenario in panels (b), the uptake rates are very low. The efficiencies are
not so high as before, but still reach intermediate values.

Lastly, in set of Panels (d), in which αuptake = 0.3 and αyield = −0.3, one has a
composition of individuals achieving low efficiencies and moderate uptake rates. As shown
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Figure 8: Snapshot of the spatial distribution of trait values. The number of resources is
N = 3, and for each set the trait values of A1, A2 and A3; and η1, η2 and η3 are shown. The
uptake and yield parameters are (a) αuptake = −0.3, αyield = 0.3; (b) αuptake = 0.3, αyield = 0.3;
(c) αuptake = −0.3, αyield = −0.3; (d) αuptake = 0.3, αyield = −0.3. For each set Each pixel
represents a cell. The locations with resource input are highlighted with a red frame and the
grey regions correspond to nonoccupied locations. The parameters are ∆R = 200, N = 3,
ν = 0.01, Amax = 10, L = 100, D = 0.2, ∆t = 1 and ∆x = 1. The snapshot was obtained after
50000 time units.
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in Fig. 6, this combination of the curvature parameters leads to the loss of specialization
in high yield and reduced levels of specialization in the uptake of resources.

In all the scenarios discussed above, the population is usually composed of relatively
uniform superposing clusters of cells competing with each other for resources and space.
These clusters allow relatively high diversity to be maintained in a global scale even
though locally the diversity is low. When the resource influx is small the size of the
clusters recedes and they become mostly disconnected. This can be observed in Fig. S4,
provided in the Supplemental Information.

3.2 Random placement

The results presented until now do not allow us to disentagle the role played by the
tradeoffs and the effect of structuring in promoting specialization. With this intent, we
investigate a variant of the spatial model, here designated as random placement. The dif-
ference between the original and modified version is on the stage of reproduction. Instead
of occupying a neighbouring site, one of the daughter cells is placed at a random empty
location of the lattice, while the other one, as before, replaces the parental cell. If the
lattice is fully populated, a daughter cell replaces a cell chosen at random in the lattice. In
the original model, as kin cells tend to accumulate around a given location, kin selection
is an effective selective pressure. The random placement model mitigates the contribution
of kin selection to the evolutionary dynamics, but still preserves the underlying dynamics
of resource distribution.

The dissolution of any form of spatial pattern formation among individuals is clearly
demonstrated in Fig. S5 (Supplemental Information). The patterns of trait-values distri-
butions as exhibited in Fig. 8 are now substituted by homogeneous distributions over the
lattice. Under this scheme, specialization in resource uptake is not expected, as corrobo-
rated in Fig. 9. On the other hand, specialization in high yield will be possible whenever
the efficiencies are high and the uptake rates are low. This situation is observed in panels
(a) and (c), and quantitatively established in the right panel of Fig. 9. So, opposed to
the drastic effects of random placement on the specialization levels in resource uptake,
those effects are much less influential in shaping the specialization levels in high yield
and the outcomes are similar to those seen for the original model. The specialized spatial
domains observed in the original model are an essential mechanism of promoting diversity
of strategies regarding the uptake of resources.

4 Conclusions

Tradeoff relationships are a critical factor in controlling the degree of functional specializa-
tion in natural populations (Michod et al. 2006). From an evolutionary perspective, this
issue has been largely debated within the context of germ-soma differentiation (Michod
et al. 2006; Leslie et al. 2017), and also discussed within the context of the evolution of
multicellularity (Gavrilets 2010; Ispolatov et al. 2012; Amado and Campos 2017; Amado
et al. 2018). A central feature about the tradeoffs is their structure (Jessup and Bohannan
2008; Saeki et al. 2014). Within an ecological viewpoint, the role of the shape of tradeoffs
has been related to the emergence of specialists and/or generalists individuals (Egas et al.
2004; Guillaume and Otto 2012), to the levels of biodiversity within communities (Farah-
pour et al. 2018), and even to their responses to ecological competition (Maharjan et al.
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Figure 9: Specialization level for resource input rate ∆R = 200 in a random placement popu-
lation. The left panel depicts the specialization level in uptake and the right panel the special-
ization in yield. The parameters are N = 3, ν = 0.01, Amax = 10, L = 100, D = 0.2, ∆t = 1
and ∆x = 1. Each point consists of an average over 100000 time units, sampled every 50 time
units, taken from 5 independent configurations.

2013). The most diverse forms of tradeoff have been reported, particularly some of those
describing relationships between life-history traits are well established in the literature
(Jessup and Bohannan 2008; Saeki et al. 2014).

Nevertheless, the usual approach to describe the tradeoff as single curves relating any
two traits that are implicitly subject to biological and biophysical constraints is no longer
suitable in case those traits are mediated by other mechanisms or traits. Therefore,
a proper description of such cases requires a multivariate analysis to properly address
the complex structure of trait spaces (Edwards and Stachowicz 2010; Edwards et al.
2011). Here, we have assumed the existence of multivariate tradeoff patterns to address
the development of functional specialization. The traits comprising the trait space are
associated with metabolic properties of the individuals, more specifically, their resource
uptake rates and corresponding efficiencies. The current approach allows us to observe
how the structure of the multidimensional tradeoffs regulates the levels of specialization
in a scenario where those traits are intertwined and compare how the new predictions
differ from classical ecological studies of two traits. The levels of functional specialization
are studied in a scenario of a harsh environment, e.g. low resource influx rate, as well as
in a scenario where resources abound. Moreover, a thorough survey of how the shape of
the tradeoff relationships affects specialization is accomplished.

It is clearly demonstrated that the environment develops a pivotal role in establishing
the manner in which the tradeoffs determine the evolutionary outcomes. We observed how
the shape of the tradeoffs influences population sizes, and consequently, selective pressures
related to it is primarily guided by the environment, in accordance with the findings of
Jessup and Bohannan (Jessup and Bohannan 2008). For instance, larger population sizes
are found at large ∆R when αyield is negative but instead found in the positive domain of
αyield when ∆R is small. According to our observations, specialization levels are enhanced
in harsh conditions. Intricate scenarios are verified for N = 2 and N = 3 resources re-
garding the specialization in resource uptake. As more resources are assumed, such as for
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N = 5, the resulting pattern looks similar to the pattern exhibited by specialization levels
in high yield. Accordingly, we witness reduced levels of specialization as the curvature
parameter αuptake is raised, but contrary to that, they are reinforced when the curvature
parameter αyield increases. This a quite remarkable outcome, as they definitely show that
any inference of the evolutionary outcomes of situations in which tradeoffs are intertwined
from our knowledge of the classical ecological models of two-traits can be unsuccessful. If
we look for the scenario of large N , we see that by changing the concavity from convex
(negative values of the curvature parameter) to concave (positive values of the curvature
parameter) as αuptake is varied, the specialization levels in resource uptake dwindle. As
low specialization entails that the traits under consideration do not take over extreme
values, and owing to their constraints with the efficiencies of the metabolic machinery,
those quantities in their turn are also not supposed to take extreme values either. All
those considerations seemed to be in conformity with the rationale of the classical eco-
logical models of two-traits, and in such conditions, the model with more than two traits
would a superposition of the predictions of the classical ecological models of two-traits.
Nevertheless, this assumption completely breaks down when we analyze the specialization
levels in high yield. In fact, by increasing αyield, hence changing the concavity of the rela-
tions Ak × ηk from convex to concave, specialization is pushed. Clearly, in contradiction
with the previous argumentation. Therefore, the convolution of different tradeoffs can
effectively lead to quite complex scenarios, as observed here.

Finally, the role of structuring on promoting specialization is examined. We proposed
an alternative model in which the effect of kin selection can be completely attenuated by
allowing daughter cells to occupy randomly chosen sites of the lattice instead of keeping
constrained to the neighborhood of the parental cells. While the specialization levels in
high yield in terms of αuptake and αyield resemble those found for the structured model,
specialization in resource uptake, in essence, fades away. This results clearly prove that
in such scenarios the generalist strategy provides the best selective alternative, with the
resource uptake rates assuming small or moderate values.
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Supplemental Information

A Summary of the parameters

Lattice parameters and quantities
L linear size of the lattice
{i, j} lattice site indexed by i and j
∆x lattice spacing (distance between neighboring sites)
∆t time step

Resource parameters and quantities
N number of resources
nloc number of resource input sites
∆R total resource inflow rate in the lattice
Rk

r,t amount of resource k at site r and time t

D resource diffusion constant

Cell parameters and quantities
Ak uptake rate
Amax maximum achievable uptake rate
ηk efficiency of resource processing
Jk
i,j rate of resource acquisition

∆Ei,j amount of energy acquired by an individual in a time step
Esplit energy threshold for reproduction
ν individual death rate
αuptake curvature parameter of uptake tradeoff
αyield curvature parameter of uptake-yield tradeoff

Note: Throughout the text, superscripts are added to quantities to specifiy the re-
source, while subscripts are used to indicate either the lattice position and time (in the
case of resource related quantities) or the individual cell (in the case of cell related quati-
ties). Typically, an index k is used for the resource, an index r for the position, an index
t for the time and an index i for the individual cell. As an illustration, Ak

i is the uptake
rate of cell i for resource k and Rk

r,t is the amount of resource k present at the lattice site
r and time instant t.
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Figure S1: Lattice occupation for resource input rate ∆R = 1 (left panel) and ∆R = 200 (right
panel). The parameters are N = 2, ν = 0.01, Amax = 10, L = 100, D = 0.2, ∆t = 1 and
∆x = 1. Each point consists of an average over 100000 time units, sampled every 50 time
units, taken from 5 independent configurations.
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Figure S2: Lattice occupation for resource input rate ∆R = 1 (left panel) and ∆R = 200 (right
panel). The parameters are N = 3, ν = 0.01, Amax = 10, L = 100, D = 0.2, ∆t = 1 and
∆x = 1. Each point consists of an average over 100000 time units, sampled every 50 time
units, taken from 5 independent configurations.
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Figure S3: Lattice occupation for resource input rate ∆R = 1 (left panel) and ∆R = 200 (right
panel). The parameters are N = 5, ν = 0.01, Amax = 10, L = 100, D = 0.2, ∆t = 1 and
∆x = 1. Each point consists of an average over 100000 time units, sampled every 50 time
units, taken from 5 independent configurations.
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C Spatial snapshots
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Figure S4: Snapshots of the spatial distribution of trait-values. The uptake and yield parame-
ters are (a) αuptake = −0.3, αyield = 0.3; (b) αuptake = 0.3, αyield = 0.3; (c) αuptake = −0.3, αyield =
−0.3; (d) αuptake = 0.3, αyield = −0.3. Each pixel represents a cell. The locations with resource
input are highlighted with a red frame and the grey areas correspond to nonoccupied locations.
The parameters are ∆R = 1, N = 3, ν = 0.01, Amax = 10, L = 100, D = 0.2, ∆t = 1 and
∆x = 1. The snapshot was obtained after 50000 time units.
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D Random placement

0

5

10

0.0

0.5

1.0

(a)

A i
i

Resource 1 Resource 2 Resource 3

0

5

10

0.0

0.5

1.0

(b)

A i
i

Resource 1 Resource 2 Resource 3

0

5

10

0.0

0.5

1.0

(c)

A i
i

Resource 1 Resource 2 Resource 3

0

5

10

0.0

0.5

1.0

(d)
A i

i
Resource 1 Resource 2 Resource 3

Figure S5: Snapshots of the spatial distribution of trait-values for the random placement model.
The uptake and yield parameters are (a) αuptake = −0.3, αyield = 0.3; (b) αuptake = 0.3, αyield =
0.3; (c) αuptake = −0.3, αyield = −0.3; (d) αuptake = 0.3, αyield = −0.3. Each pixel represents a
cell. The locations with resource input are highlighted with a red frame and the grey regions
correspond to nonoccupied locations and the grey areas correspond to nonoccupied locations.
The parameters are ∆R = 200, N = 3, ν = 0.01, Amax = 10, L = 100, D = 0.2, ∆t = 1 and
∆x = 1. The snapshot was obtained after 50000 time units.
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