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Abstract 

Background 

Aneuploidy, a hallmark of cancer, is the result of chromosomal instability (CIN) during 

mitosis. While some aneuploid cancers display stable karyotypes, other tumours display cell-

to-cell karyotype variability indicative of CIN. CIN cancers are typically associated with poor 

clinical outcome, as they are endowed with the potential to adjust their genomes to changing 

conditions including therapy. To further explore this, we assessed the degree of aneuploidy 

and CIN in basal cell carcinoma (BCC) and investigated whether the karyotypic makeup of 

tumours was associated with distinct transcriptional responses.  

Patients and Methods 

Samples from 11 BCC patients were processed for single-cell whole genome sequencing 

(scWGS) to measure aneuploidy and karyotype heterogeneity. In parallel, samples were 

processed for transcriptome analysis. 

Results 

scWGS revealed different grades of aneuploidy between BCCs, ranging from euploidy to 

tumours with up to 7 aneusomic chromosomes. Importantly, a subset of BCCs displayed 

intratumour karyotype heterogeneity, indicating that CIN can play a role in BCC. Samples 

were clustered into three groups based on the level of aneuploidy and intratumour karyotype 

heterogeneity. Karyotype-driven group classification was also reflected by the tumour 

transcriptomes and revealed distinct gene expression signatures related to metabolism for 

aneuploid BCCs and a DNA damage signature for CIN BCCs.  

Conclusions 

While BCCs are typically classified based on histopathological features, we find that BCCs 

can be stratified based on karyotypic landscape. Importantly, this classification is linked to 

distinct molecular features and could thus be the starting point of a molecular classification 

system for BCC including a readout for CIN. Importantly, the approach that we have 

developed is broadly applicable and could therefore also improve the diagnosis and 

treatment of other cancer types. 
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Key message 

Genomic heterogeneity driven by chromosomal instability (CIN) is thought to drive therapy-

resistance in cancer. We studied karyotype heterogeneity and its effect on the transcriptome 

in the skin cancer basal cell carcinoma (BCC). We identified transcriptional signatures 

distinguishing aneuploid from CIN BCCs that may be useful for stratification of tumours and 

prediction of treatment response. 
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Introduction 

Cancer cells frequently display chromosomal instability (CIN), the process that drives 

abnormal chromosome distribution during mitosis. CIN results in cells with an abnormal DNA 

content, i.e. aneuploidy. In untransformed cells, aneuploidy leads to a stress response 

resulting in decreased proliferation, senescence or cell death [1]. In contrast, cancer cells 

take advantage of CIN to drive tumorigenesis through generation of new karyotypes, 

providing cancer cells with great potential to acquire additional tumorigenic traits involved in 

e.g. immune evasion and resistance to chemotherapy [2–5].  

Although the terms ‘aneuploidy’ and ‘CIN’ are often used interchangeably, they are in 

fact different phenomena as cells can be stably aneuploid without a CIN phenotype [10]. 

While stably aneuploid cells generally grow slower [11, 12], CIN cells often display increased 

cell death, presumably as a result of the emergence of unfavourable karyotypes  [10, 13, 14]. 

It is therefore conceivable that aneuploidy and CIN provoke different responses at the RNA 

level in primary tumours. Understanding the contribution of stable aneuploidy to cancer 

development versus that of CIN will therefore help to improve treatment strategies.  

The recent advent of single-cell whole genome sequencing (scWGS) technology 

facilitates addressing this question, as it allows to infer CIN from intratumour karyotype 

heterogeneity in primary tumour samples and thus discriminate stable aneuploid cancers 

from those exhibiting a CIN phenotype [6–9]. While several studies have investigated 

aneuploidy and CIN in cancer and their effects on driver mutations [4, 15], little is known on 

whether aneuploidy and CIN trigger distinct transcriptional responses in cancer. 

In this study, we investigated this issue using primary basal cell carcinoma (BCC) 

samples. BCCs are epidermal tumours for which data on genome-wide cytogenetics is 

scarce [16, 17]. Most BCCs can be cured by complete surgical resection. However in a 

subset of patients surgical excision is restricted by tumour location, or have BCCs 

progressed towards an advanced stage and/or metastasized [18, 19]. These patients are 

treated with chemo- or radiotherapy, bringing along the inherent risk of developing therapy 
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resistance. To better understand the contribution of CIN and aneuploidy to BCC, we 

subjected a cohort of BCCs to single-cell whole genome sequencing (scWGS) to infer CIN 

and performed RNA-sequencing to measure matching transcriptomes. This revealed 

transcriptional signatures that discriminate aneuploid BCCs from euploid BCCs, and stably 

aneuploid BCCs from aneuploid BCCs exhibiting CIN, suggesting that CIN provokes a 

distinct transcriptional response. As CIN tumours are believed to be more aggressive and 

have a tendency to become drug-resistant [5, 20], a CIN-induced transcriptome could 

become a powerful readout for diagnosis to stratify tumours for treatment in the future.  

 

Materials and methods 

Basal cell carcinoma sample isolation and processing 

BCC samples were obtained from surplus material from Mohs surgery performed at the 

Department of Dermatology at the UMCG, Groningen, the Netherlands. Freshly obtained 

samples were split for RNA-seq and scWGS. Next, samples were homogenized, processed 

to single cell suspensions and frozen for further analysis as described in more detail in the 

supplementary methods. 

 

Single-cell whole genome sequencing and AneuFinder analysis 

Samples for scWGS were processed and analysed as described before [6, 7]. Briefly, single  

cell suspensions were stained for DNA content, sorted into 96-well plates by flow cytometry 

followed by library preparation, multiplexing and sequencing. Following sequencing, data 

were demultiplexed, aligned, and analysed using AneuFinder [7]. More details can be found 

in the supplementary methods.   

 

RNA-sequencing library preparation and analysis 

For transcriptome analysis, RNA was isolated from BCC samples followed by quality control 

on a Bioanalyzer (Agilent). RNA sequencing libraries were prepared with poly(a) selection 
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using the NEXTflex kit (Bioo Scientific). Individual libraries were barcoded and pooled 

followed by sequencing. Demultiplexed libraries were aligned to the human reference 

(GRCh38) and analysed as described in detail in the supplemental methods. 

 

Sequencing data availability 

Unaligned sequencing data have been to submitted to the European Nucleotide Archive 

(ENA) and are available only upon request due to EU patient privacy legislation (accession 

number PRJEB28285). 

 

Results 

Single-cell whole genome sequencing reveals karyotype heterogeneity in BCC 

Tumour samples were collected from 11 patients diagnosed with BCC alongside with healthy 

control tissue where possible (median age: 74.5 years, Fig. 1A). Histopathological 

assessment revealed that the cohort included the most common subtypes: 

nodular/infiltrative, infiltrative, micronodular, or nodular (Fig. 1B). To circumvent the 

limitations of traditional karyotyping methods [21], we subjected samples to scWGS (24 cells 

per sample) to quantify aneuploidy and intratumour copy number heterogeneity (Fig. 1C) [6, 

22]. 72.7 ± 15.6% (mean ± SD) of the libraries passed quality control, additional scWGS 

quality metrics can be found in Table S1. 

 With the exception of BCC5, all BCCs displayed structural and/or numerical 

abnormalities in multiple or most cells (Fig. 1D), indicating reasonable tumour cell purity. 

Non-aneuploid cells in aneuploid BCCs are likely non-cancer cells that surround the cancer 

nodules (also see histology in Fig. 1A). Besides whole chromosome abnormalities, a subset 

of BCCs also harboured structural aberrations typically involving the gain or loss of whole 

chromosome arms, e.g. involving loss of Chr. 9p (Fig. 1D). Interestingly, in addition to 

aneuploidy, two BCCs (BCC3 and BCC9) exhibited significant karyotype heterogeneity, a 

strong indication for ongoing CIN [22, 23].  
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 To stratify the BCCs based on aneuploidy and karyotype heterogeneity for 

subsequent transcriptional analysis, we calculated the aneuploidy and heterogeneity scores 

using AneuFinder [22] for the tumour karyotypes as a whole, as well as for individual 

chromosomes (Fig. 1E). For these calculations, euploid libraries were excluded, 

circumventing an impact of non-cancer cell libraries on heterogeneity scores. Together, 

these analyses revealed that the BCCs could roughly be grouped into three distinct 

karyotypic subtypes: BCCs 1, 4, 5, 6, 7, and 8 showed little to no aneuploidy, with 0 to 2 

aneusomic chromosomes (group 1; near-euploid). BCCs 2, 10 and 11 displayed a much 

larger number of aneusomic chromosomes, but no intratumour heterogeneity (group 2; stably 

aneuploid). Finally, BCC3 and BCC9 displayed both multiple aneusomic chromosomes as 

well as intratumour heterogeneity, and were therefore classified as CIN (group 3; CIN). 

Together, these data reveal that basal cell carcinoma exhibit widely varying karyotypes with 

a subset displaying intratumor heterogeneity.  

 

Transcriptome analysis reveals general deregulation of SHH, cell cycle, and cilia 

genes in BCC   

To determine the impact of aneuploidy and/or CIN on the tumour transcriptomes, we next 

subjected a subset of BCCs from each cluster alongside with healthy control skin samples to 

RNA sequencing (Fig. 1C, Fig. 2A). Interestingly, principal component analysis (PCA) 

revealed a clear separation between karyotypic subgroups (compare Fig. 1E to Fig. 2A) 

indicating that CIN and aneuploidy have a strong impact on the tumour transcriptomes. We 

first determined which genes were significantly deregulated in BCC in general as compared 

to control skin. 5,197 genes were differentially expressed (DE) between healthy skin and 

BCC (Wald test, FDR<0.05; Fig. 2B – left panel) and enriched for functions in skin/epidermis 

development, cell cycle regulation, and cilium biology (Fig. 2B – right panel). This fits well 

with current literature, which frequently reports keratinization (epidermal development) and 

deregulation of the Hedgehog signalling pathway in BCC (Table S2; Fig. 2C) [16, 18, 19, 24–

26]. 
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K-means clustering reveals distinct aneuploidy- and CIN-induced transcriptome 

features  

A large part of aneuploidy- and CIN-imposed transcriptome changes is the direct 

result of gained or lost alleles [27, 28]. As direct transcriptional changes might cloak 

secondary aneuploidy/CIN-imposed changes (e.g. an aneuploidy-stress response), we 

applied a copy number-based correction (CNC) to the gene expression dataset, normalizing 

the transcriptome readout to the copy number state (Fig. S1A), as explained in the 

supplemental methods (exemplary data in Fig. S1B; Fig. S2-S3 show complete dataset 

before/after CNC).  

We next assessed transcriptome changes specific to near-euploid, stably aneuploid 

and CIN BCCs. Hereto, we performed k-means clustering [29] of the copy-number-corrected 

transcriptomes for all samples and transcripts, supervised according to the BCC karyotypic 

groups (healthy skin, near-euploid, stably aneuploid, and CIN). The optimal number of 

clusters, k, as determined by the within group sum of squares for different values for k [29], 

was 10 (Fig. S1C). Expression patterns per cluster were plotted between the karyotypic 

groups (Fig. 3A, Table S5) and clusters were analysed for biological pathway enrichment 

(Fig. 3B; Tables S6-S8). Cluster 7 contained genes whose expression increased in all BCCs, 

while transcripts in cluster 9 showed decreased expression. Indeed, cluster 7 was enriched 

for pathways involved in cancer and Hedgehog signalling (Fig. 3C), confirming our first 

analysis comparing all BCCs to healthy epidermis (compare Fig. 2C to Fig. 3C). Conversely, 

genes in cluster 9 were enriched for genes involved in the sphingolipid metabolism, skin 

barrier function and epidermal differentiation, suggesting that increasing aneuploidy 

contributes to epidermal barrier malfunctioning (Fig. 3D). Genes in cluster 4 displayed 

decreased expression in all aneuploid BCCs (stably aneuploid and CIN), suggesting that 

these transcripts are downregulated as a result of aneuploidy. Here, genes for metabolic 

pathways such as PPAR signalling and amino acid metabolism were enriched (Fig. 3B, 3E, 

Tables S6-8), which is consistent with other observations that aneuploidy confers a change 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 11, 2018. ; https://doi.org/10.1101/492199doi: bioRxiv preprint 

https://doi.org/10.1101/492199


in metabolic state [27, 28, 30, 31]. Finally, cluster 1 contained the transcripts increased 

specifically in CIN BCCs, and included genes involved in DNA repair, DNA replication, 

homologous recombination, chromosome segregation, and the Fanconi anaemia pathway 

(Fig. 3B, 3F Tables S6-8), revealing a DNA damage signature for CIN tumours. Together, 

these data indicate that while aneuploidy provokes deregulation of the cellular metabolism, 

the addition of a CIN phenotype leads to upregulation of pathways involved in DNA damage 

in BCC.  

 

Aneuploidy and CIN impose distinct transcriptional features upon BCC cells 

We next performed a second, more stringent analysis in which we determined which 

genes significantly changed expression with either increasing aneuploidy (using the 

aneuploidy score (Fig. 1E) as a parameter) or increasing CIN (using the heterogeneity score 

(Fig. 1E) as a parameter). For this we employed a generalized linear model (GLM - see 

supplementary materials & methods) on the copy-number-corrected dataset, which revealed 

that only 21 genes significantly correlated with the degree of aneuploidy (Fig. S4A, B, Table 

S9), revealing that aneuploidy by itself has a small impact on copy-number-corrected tumour 

transcriptomes. When assessing which expression changes correlate with increasing 

heterogeneity, we found that expression of 286 genes changed (negative binomial likelihood 

ratio test, FDR<0.05) thus revealing a BCC CIN-signature gene set (Fig. 4A, C, Table S10). 

Biological pathways enriched in this ‘heterogeneity signature’, included cell adhesion and 

Rap1 signalling, which fits with increased cellular mobility and tumour aggressiveness 

associated with CIN tumours (Fig. 4D, Table S11) [3].  

Altogether, we conclude that BCCs can be subdivided into three distinct karyotypic 

classes that are associated with distinct transcriptome features, with the CIN phenotype 

having the strongest impact on the tumour transcriptome.  

 

Discussion 
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In this study we examined aneuploidy and intratumour karyotype heterogeneity in a panel of 

BCCs, a feature that, to our knowledge, has not been studied before for this cancer. We 

found that BCCs can be grouped into three karyotypic types: near-euploid, stably aneuploid, 

and CIN. Of note, the aneuploidy scores were similar between stably aneuploid and CIN 

tumours, suggesting that differences between stably aneuploid and CIN tumours are the sole 

consequence of the CIN phenotype.  

To investigate whether aneuploidy and CIN trigger distinct transcriptional responses, 

we took two approaches. First, we performed global k-means clustering to determine 

whether expression changes in near-euploid, stably aneuploid and CIN BCCs correlated with 

particular biological functions. Indeed, this revealed that alterations in the Hedgehog pathway 

were common across all BCCs, that aneuploid BCCs exhibit a metabolic signature, and that 

CIN BCCs display an increase in genes involved in DNA repair. While the alterations in 

metabolic profile fit well with previous publications on aneuploid (cancer) cells [27, 28, 30, 

31], the CIN-associated DNA signature is to our knowledge the first in vivo evidence 

confirming observations in cultured cells showing that CIN leads to DNA damage and a 

mutator phenotype [32–35]. However, whether the increased activity of DNA repair pathways 

is indeed the result of increased DNA damage in vivo needs further investigation.  

 Our findings are not only relevant for the fundamental understanding of aneuploidy 

and CIN in cancer, but also bear clinical relevance. For instance, several Sonic Hedgehog 

inhibitors are at various stages of clinical trials [18, 19] for the treatment of inoperable BCCs 

(for instance locally advanced or metastatic BCC) [18]. As CIN BCCs would be particularly at 

risk of developing resistance against such drugs, our molecular classification for BCCs (using 

single cell genomics, transcriptome analysis, or possibly evidence of DNA damage) could aid 

in predicting therapy resistance when treating patients suffering from advanced or metastatic 

BCC. 
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Figure legends 

Figure 1: Single-cell whole genome sequencing reveals varying degrees of karyotype 

heterogeneity in BCC. 

A. Summary information on the BCC patient sample set, as well as representative images of 

H&E staining. Green blocks in the table indicate whether a sample was processed for single-

cell whole genome sequencing (scWGS) and RNA-sequencing. B. Representative images of 

the BCC classification, based on H&E staining. C. Schematic overview of the sample 

processing pipeline, from homogenization to library preparation for scWGS and 

transcriptome analysis (RNA-seq). D. Genome-wide copy number heatmaps of 11 BCC 

samples, with individual cells in rows and genome position in columns. Chromosome 

boundaries are indicated in black lines, with colours corresponding to the most likely 

assigned copy number state per 2 Mb bin as determined by AneuFinder. Percentage of 

aneuploidy indicates the fraction of libraries that display aneuploidy for at least 1 

chromosome arm. E. Genome-wide aneuploidy and heterogeneity scores for the aneuploid 

libraries. Samples processed further for RNA-sequencing are highlighted in bold. 

 

Figure 2: Aneuploidy and CIN-specific transcriptome signatures in basal cell 

carcinoma. 

A. Principal component analysis (PCA) of the RNA-seq libraries, showing the percentage of 

contribution of PC1 and PC2 to variance, and colour-coded by group identifier. B. The 

number of significant DE genes up- and downregulated between all BCCs and healthy skin 

(left panel), and GO & KEGG-pathway enrichment analysis (right panels). Where indicated, 

columns show GO-term or KEGG pathway description, the number of observed genes, fold 

enrichment (FE) over expected observations, and BH-adjusted p-value (FDR). C. Expression 

heatmap of commonly deregulated genes in basal cell carcinoma, related to SHH and WNT 

signalling. Normalized expression values are expressed as z-scores (by gene). Gene names 

highlighted in bold are significantly deregulated (FDR < 0.05). 
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Figures 3: Copy number-corrected expression analysis of global gene expression 

profiles reveals a CIN-specific DNA damage signature. 

A. Global gene expression profiles as determined by group-supervised k-means clustering. 

The number of genes in each cluster are shown in the top left of each graph. Individual black 

lines represent median normalized log2 gene expression across individual groups, with red 

lines indicating the median expression for all genes in the cluster. B. KEGG pathway 

enrichment results for all clusters, showing fold enrichment, significance (FDR) and the 

number of genes identified per term. C-F. Gene expression heatmaps of relevant pathways 

deregulated in BCCs. Expression values are z-scaled per gene based on normalized log2 

counts. Aneuploidy, heterogeneity, and group assignment is indicated per sample. 

 

Figure 4: Transcriptome analysis reveals a CIN-signature in BCC 

A. Gene expression heatmap of 286 genes correlating significantly with heterogeneity, 

revealing a CIN-signature. B. Ordered karyotype measures as determined by scWGS (also 

see Fig. 1E). C. Normalized log2 expression values of the top 10 CIN-signature genes. D. 

Enriched GO-terms for CIN-signature genes. 
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