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Abstract 1 

Plasticity in the oculomotor system ensures that saccadic eye movements reliably meet their visual 2 

goals—to bring regions of interest into foveal, high-acuity vision. Here, we present a 3 

comprehensive description of sensorimotor learning in saccades. We induced continuous 4 

adaptation of saccade amplitudes using a double-step paradigm, in which participants saccade to 5 

a peripheral target stimulus, which then undergoes a surreptitious, intra-saccadic shift (ISS) as the 6 

eyes are in flight. In our experiments, the ISS followed a systematic variation, increasing or 7 

decreasing from one saccade to the next as a sinusoidal function of the trial number. Over a large 8 

range of frequencies, we confirm that adaptation gain shows (1) a periodic response, reflecting the 9 

frequency of the ISS with a delay of a number of trials, and (2) a simultaneous drift towards lower 10 

saccade gains. We then show that state-space-based linear time-invariant systems (LTIS) 11 

represent suitable generative models for this evolution of saccade gain over time. This state-12 

equation algorithm computes the prediction of an internal (or hidden state-) variable by learning 13 

from recent feedback errors, and it can be compared to experimentally observed adaptation gain. 14 

The algorithm also includes a forgetting rate that quantifies per-trial leaks in the adaptation gain, as 15 

well as a systematic, non-error-based bias. Finally, we study how the parameters of the generative 16 

models depend on features of the ISS. Driven by a sinusoidal disturbance, the state-equation 17 

admits an exact analytical solution that expresses the parameters of the phenomenological 18 

description as functions of those of the generative model. Together with statistical model selection 19 

criteria, we use these correspondences to characterize and refine the structure of compatible state-20 

equation models. We discuss the relation of these findings to established results and suggest that 21 

they may guide further design of experimental research across domains of sensorimotor 22 

adaptation. 23 

Author Summary 24 

Constant adjustments of saccade metrics maintain oculomotor accuracy under changing 25 

environments. This error-driven learning can be induced experimentally by manipulating the 26 
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targeting error of eye movements. Here, we investigate oculomotor learning in healthy participants 27 

in response to a sinusoidally evolving error. We then fit a class of generative models to the 28 

observed dynamics of oculomotor adaptation under this new learning regime. Formal model 29 

comparison suggests a richer model parameterization for such a sinusoidal error variation than 30 

proposed so far in the context of classical, step-like disturbances. We identify and fit the 31 

parameters of a generative model as underlying those of a phenomenological description of 32 

adaptation dynamics and provide an explicit link of this generative model to more established state 33 

equations for motor learning. The joint use of the sinusoidal adaption regime and consecutive 34 

model fit may provide a powerful approach to assess interindividual differences in adaptation 35 

across healthy individuals and to evaluate changes in learning dynamics in altered brain states, 36 

such as sustained by injuries, diseases, or aging.   37 
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Introduction 38 

The accuracy of saccadic eye movement is maintained through mechanisms of saccade 39 

adaptation, which adjust the amplitude [1-3] or direction [4-6] of subsequent movements in 40 

response to targeting errors. As online visual feedback cannot be used to correct the ongoing 41 

movement, saccadic eye movements need to be preprogrammed and adaptation must largely rely 42 

on past experience and active predictions [7,8] rather than closed-loop sensory information. 43 

To induce saccade adaptation in the laboratory [1], participants are instructed to follow a step of a 44 

target stimulus with their eyes and this visual cue is then displaced further during the saccade eye 45 

movement. Typically, this second, intra-saccadic step (ISS) is constant across trials and directed 46 

along the initial target vector towards smaller or larger saccade amplitudes. Although the ISS is 47 

visually imperceptible [9], saccades adjust their amplitude to compensate for the induced error. In 48 

phenomenological analyses of such saccade adaptation data, the amount of adaptation is usually 49 

quantified by comparing saccade gain values before and after the adapting block and interpolating 50 

an exponential fit in between [1-3,10].  51 

We recently presented a version of this paradigm in which the ISS (the disturbance responsible for 52 

inducing adaptation) follows a sinusoidal variation as a function of trial number ([11,12]; see also 53 

[4,13,14]). We reported that gain changes were well described by a parametric functional form 54 

consisting of two additive components. One component was a periodic response reflecting the 55 

frequency of the ISS that was adequately fitted with a lagged but otherwise undistorted sinusoid. 56 

The second component constituted a drift of the baseline toward lower saccade gain (larger 57 

hypometria) that was appropriately accounted for using an exponential dependence. 58 

Here, we investigate whether a generative algorithm that models saccade gain modifications on a 59 

trial-by-trial basis by learning from errors made on previous trials can account for this response. To 60 

this end, we implemented and fit a series of state-space models in which a modified delta-rule 61 

algorithm updates a hidden or latent variable (for which the experimentally observed adaptation 62 

gain is a proxy) by weighting the last experienced visual error, in addition to other error-based and 63 

non-error based learning components [8,15-23].  64 
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We adopt the approach that these algorithms are linear time-invariant systems (LTIS), in that their 65 

coefficients are time and trial-independent. LTIS models, also known as linear dynamical systems 66 

(LDS) have been successfully used in a number of motor adaptation studies [8,19-22,24-27]. 67 

Applied to saccade adaptation, they may predict the dynamics of the saccade amplitude itself as 68 

well as various forms of movement gain typically used in describing adaptation [2,3,10,11]. Our first 69 

goal was to establish empirically whether LTIS models could fit the data recorded with a sinusoidal 70 

adaptation paradigm, as efficiently as when using a constant (fixed) ISS. Once we have 71 

established this point, we will explore the relation between the predicted phenomenological 72 

parameters [11,12] and the learning parameters of the underlying generative model, as well as 73 

their potential dependence on the perturbation dynamics.  74 

We first analyze the ability of a family of generative models to describe experimental recordings of 75 

saccade adaptation by fitting the relevant learning parameters. We then perform statistical model-76 

selection analysis to determine those that best fitted the same data in the various experimental 77 

conditions. We fitted models to two data sets, a previously published one [11] and a variation of 78 

that paradigm that extended the range of frequencies of the sinusoidal variation of the ISS. Both 79 

data sets contrasted two established saccadic adaptation protocols [11,12]: Two-way adaptation 80 

(i.e., bidirectional adaptation along the saccade vector of saccades executed along the horizontal 81 

meridian) and Global adaptation (i.e., adaptation along the saccade vector of saccades executed in 82 

random directions). We then explore consequences for current models of motor learning and 83 

suggest possible modifications that may be required to generate a suitable description of 84 

sensorimotor learning during sinusoidal saccadic adaptation. In conducting this selection, we 85 

confirm that a single learning parameter model (a state-equation with just an error-based learning 86 

term; cf.  [19]) does not suffice to fit the data. We then demonstrate that including an extra term 87 

that weights the next-to-last trial’s error provides a better fit for the Two-way type of adaptation. 88 

This learning rate has the intriguing feature that it has negative values for all frequencies, 89 

suggesting an active unlearning of the next-to-last trial’s feedback error, close, but not equal in 90 

magnitude to the learning rate of the last trial’s error. We discuss possible functional roles of these 91 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 4, 2019. ; https://doi.org/10.1101/492512doi: bioRxiv preprint 

https://doi.org/10.1101/492512
http://creativecommons.org/licenses/by/4.0/


 

  Page 6 of 48 

processes for oculomotor adaptation in natural situations, where saccadic accuracy is expected to 92 

exhibit slow dynamic changes across time.  93 

Methods 94 

Procedure 95 

We re-analyzed the data we recently collected using a fast-paced saccade adaptation paradigm 96 

with a sinusoidal disturbance. We had previously described these data by fitting a 97 

phenomenological model that we identified using statistical model selection. For details on the 98 

experimental procedures pertaining to this original data set (henceforth, ORIG) and to the selection 99 

of the functional form of this phenomenological model, please refer to our former communication 100 

[11].  101 

We applied the same experimental procedure in collecting further data with an enhanced range of 102 

frequencies. In this case, thirteen participants ran two sessions with similar Two-way and Global 103 

adaptation protocols as used in previous reports [11,12]. In short, Two-way adaptation refers to 104 

bidirectional adaptation along the saccade vector of saccades executed along the horizontal 105 

meridian. In turn, Global adaptation refers to adaptation along the saccade vector of saccades 106 

executed in random directions.  107 

In collecting this dataset (henceforth, FREQ), each session had 2370 trials divided in 11 blocks. 108 

Odd numbered blocks had 75 no-adaptation trials (zero ISS). The five even-numbered blocks 109 

consisted of 384 trials each with a sinusoidal disturbance similar to that used before but with 110 

frequencies of 1, 3, 6, 12 and 24 cycles per block (i.e., 384, 128, 64, 32, and 16 saccades per 111 

cycle, respectively). The order of adaptation blocks was randomly interleaved for each observer 112 

and type of adaptation. The program was paused after each adaptation block, giving participants 113 

some resting time, and we calibrated eye position routinely at the beginning of each non-adapting 114 

(odd-numbered) block. In each trial, the pre-saccadic target step was fixed at 8 degrees of visual 115 

angle (dva). The subsequent second step (ISS) then ranged between –25% and +25% of the first 116 

step, changing size according to a sine function of trial number. 117 
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The Ethics Committee of the German Society for Psychology (DGPs) approved our protocols. We 118 

obtained written informed consent from all participants prior to their inclusion in the study. The 119 

present study conformed to the Declaration of Helsinki (2008). 120 

Data analysis and phenomenological model 121 

Modeling of the saccadic response. In a double-step adaptation paradigm [1], after a fixation 122 

interval the fixation target �����  undergoes a first step to become the target of a saccade, 123 

displayed at the pre-saccadic location ��1���. Because the eyes might have been stationed at a 124 

location ��1��� close to but different than �����, we define the pre-saccadic target amplitude 125 

	
������ � ��1���  ��1���, with origin at ��1��� rather than ����� and keep this convention 126 

throughout the study.  127 

The second step of the McLaughlin paradigm (i.e., the target displacement inducing a feedback 128 

error) then shifts the target during the saccade to a position ��2��� (so that ������ � ��2��� 129 

��1���). Therefore, the post-saccadic target amplitude (at or immediately after saccade landing) is 130 

given by the identity: 	�������� � 	
������ � ������. For convenience, we will define a target 131 

gain, ����, as the ratio of the post-saccadic target amplitude to the pre-saccadic one, as well as a 132 

disturbance gain, ����, as the ratio of the second to the first target steps, i.e., the ratio of the ��� to 133 

the saccade proxy:  134 

���� � ��������	

�
�����	
� 1 � ���	

�
�����	
� 1 � ����.       (1) 135 

In the general case, there would be a constant and a variable component in the second target step, 136 

������ � � � ����. In our sinusoidal adaptation paradigms, � � 0 and ���� � � sin ����
�

�� is a sine 137 

function of the trial number so that: 138 

���� � 1 � ���	

�
�����	
 �  1 � � �  ��� � 1 �  	��� · sin ����

�
��,     (2) 139 

where � and  ��� are the ratios of the constant and variable part of the ��� to the pre-saccadic 140 

target amplitude. In the sinusoidal paradigms, "  is the frequency of the sinusoid in cycles per 141 

block, # is the number of trials in an adaptation block, and � is the index of the current trial. At 142 
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fixed amplitude, the dynamics of the disturbance is fully determined by its angular frequency 143 

$ � ���

�
, that characterizes the rate of change of the sinusoid in each trial. �  is the maximum 144 

absolute magnitude of the variable part ����, i.e., the ‘amplitude’ of the sinusoid that defines the 145 

���. It was fixed at 2 dva throughout all sinusoidal adaptation datasets. Therefore, ������ changed 146 

in magnitude periodically and in a sinusoidal fashion between approximately –25% and +25% of 147 

the magnitude of the pre-saccadic target eccentricity (	
������), which was held approximately 148 

fixed at 8 dva in all datasets. Finally, 	��� is the ratio of P and 	
������, and had an approximately 149 

constant value of 0.25 across the sinusoidal datasets (the slight dependence on the trial number 150 

was a consequence of the slight dependence of the normalizing factor 	
������  on the trial 151 

number; in actuality, the magnitude held constant at 8 dva across the experiment was ��1��� 152 

�����, which differed slightly but not systematically from ��1���  ��1���). Given that we used 153 

integer number of cycles across all sinusoidal adaptation experiments, we expressed the 154 

frequency in cycles per block (cpb). We set the initial phase to zero, which means that the 155 

magnitude of the ISS starts at zero in the direction of positive ��� (outward second-steps of the 156 

saccade target) first. Equation 2 provides a complete description of the stimulus that we used. Yet, 157 

for the analyses pursued here and to make closer contact with our phenomenological 158 

characterization of oculomotor responses in sinusoidal adaptation [11], we will further define a 159 

stimulus gain, ���� , to be the disturbance gain normalized to (i.e., divided by) its maximum 160 

absolute value. Therefore, ���� would range within %1 in units of its maximum amplitude following 161 

a sinusoidal variation with trial number:  162 

���� � &�
�����	
���

& ���������	
�
�����	

 1� � ���	

���
� �

���
���� � sin ����

�
��.    (3) 163 

Saccade amplitude adaptation is usually described in terms of the changes in saccade gain 164 

(�'���), defined as the ratio of the saccade amplitude (�(���) to the pre-saccadic position error 165 

(	
������). During non-adapting trials and at the beginning of the adaptation blocks, �'��� is 166 

typically slightly smaller than 1, which means that the saccade undershoots the target. Since we 167 

are interested in keeping track of the excursions of the saccade gain with respect to a perfect 168 
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completion of the saccade that matches 	
������ exactly, we shall define an adaptation gain 169 

subtracting one from the usual saccade gain and normalized to the maximum absolute value of the 170 

���, 171 

)��� � �
�����	

���
��'���  1� � ���	��
�����	

���
.                (3a) 172 

The adaptation gain represents the residual of the saccade gain with respect to perfect landing. 173 

When a saccade lands exactly on the first target step (a perfectly accurate saccade), the saccade 174 

gain will be one while the adaptation gain will be zero. Therefore, the adaptation gain uses perfect 175 

landing as the origin of coordinates and quantifies departures from this ideal goal state. Clearly, in 176 

both descriptions the reference represents a state of no adaptation. The adaptation gain 177 

description may be viewed as following the evolution of the error rather than that of the full eye 178 

movement. As long as the true underlying learning model is strictly linear, both descriptions must 179 

be equivalent since they relate to each other by a shift. We used the adaptation gain, )���, in our 180 

previous reports [11,12] to provide phenomenological parametric description of sinusoidal 181 

adaptation data and it is also commonly used within motor control research. Throughout the 182 

manuscript we shall use �'��� or )��� as the relevant behavioral variables describing the data, 183 

which are computed directly from the experimental measurements of the eye and target positions 184 

in each trial.  185 

Assessment of the evidence in favor of a model. In implementing the phenomenological parameter 186 

estimation, we adopted a Gaussian likelihood for the data given the model. This likelihood can be 187 

maximized with respect to the parameters at a fixed but unknown width. Instead we adopted the 188 

following procedure [11,13]. Using Bayes theorem, priors for the parameters to be estimated, and 189 

assuming a constant prior probability for the data, we can obtain a joint probability amplitude for all 190 

parameters that can be marginalized to extract individual probability amplitudes for each 191 

parameter. In this process, the width of the Gaussian likelihood is a nuisance parameter that we 192 

integrate out using a non-informative prior [13,28,29]. Once such integration is conducted, the 193 

volume of the resulting probability density (given the data) provides an estimate of the odds that 194 

the model would provide a reasonable description of the data. Here we provide a full model 195 
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consisting of six parameters (sinusoidal entraining of the oculomotor response riding over a 196 

baseline drift) that we want to compare to a partial model (the drift of the baseline alone) and to a 197 

minimal model consisting of the mean of the adapting block with variance equal to the variance of 198 

the recorded data over that block. To establish which situation is more likely across different 199 

number of parameters, we take the log of the ratio of the odds across the models. The resulting 200 

magnitude is the evidence that the data are in favor of a particular model and is measured in 201 

decibels (db). When this magnitude is positive, the odds favor the model in the numerator, with 202 

evidence higher than 3 db indicating that this model is significantly favored to the one in the 203 

denominator. We use this metric to assess the quality of our parameter estimation. 204 

Statistics.  Throughout the manuscript we report results as mean ± SD for individual data and 205 

mean ± SEM when we discuss group data. In the phenomenological fittings, to determine average 206 

parameters from the parameter estimation other than the frequency, we computed the mean and 207 

variance for each parameter and participant as the first two moments of the corresponding 208 

posterior probability distribution and took the average of the means weighted by their standard 209 

deviations (square root of the estimated variance) to generate each point on the population plot. 210 

Alternative estimators (e.g., the modes of the posterior distributions, with and without weighting) 211 

gave qualitatively similar results.  212 

Modeling of the sensorimotor learning process: the modified delta-rule state equation.  213 

To investigate generative models, we adopt the following rationale. In each trial, the oculomotor 214 

system must generate a motor command to produce the impending saccade. This needs to be 215 

calibrated against the actual physical size of the required movement [15,20,22,24,30,31]. 216 

If the saccade fails to land on target, the motor command needs to be recalibrated based on 217 

preexisting calibrations, and we will hypothesize that those changes take place in an obligatory 218 

manner (cf. [19] ) through additive, error-based modifications attempting to ameliorate post-219 

saccadic mismatches between the eyes’ landing position and target location.  220 
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We model the underlying sensorimotor learning using linear time-invariant systems (LTIS) because 221 

the model parameters (or the learning coefficients) are time independent in each experimental 222 

block, although they can vary across experimental conditions or phases [32]. These models are 223 

closely related to linear dynamical systems (LDS; cf. [20-22]), except that here we only address 224 

noise-free models.  225 

Because saccades are extremely rapid movements that do not admit reprogramming in mid-flight, 226 

it is assumed that all gain changes take place in between saccades. In our models, therefore, the 227 

error-based correction terms weight errors that were experienced in previous saccades. As a 228 

consequence, in the estimation of the forthcoming event, the post-saccadic stimulus gain is not 229 

compared against the adaptation gain measured for that trial but against the previous estimate of 230 

the gain. To justify these assumptions, it is usually assumed that the motor system sends an 231 

efference copy of the motor command to the sensory areas, which enables prediction of the 232 

sensory consequences of the movement and therefore avails comparison to experienced post-233 

saccadic feedback [7,19,20,31,33-35].  234 

We will assume that the values of saccade and adaptation gains observed and extracted from the 235 

recorded data (i.e., �'��� � ���	

�
�����	
 and )��� � ���	��
�����	

���
) are adequate proxies of that motor 236 

calibration process. Yet the calibration itself is an internal feature of the brain and therefore the 237 

adaptation gain that enters the generative algorithm (the state-equation) that we intend to study is 238 

a hidden variable representing the internal state of the system. A model providing its temporal 239 

evolution can then be fitted to the data; yet the variable itself is not experimentally accessible. We 240 

denote the internal variable associated to the saccade gain by *���. To describe the evolution of 241 

this state variable we introduce the state-equation:  242 

*�� � 1� � ( · *��� � + · ,����  *���- � . �  /

· ,���  1�  *��  1�-,                                                   �4� 

supplemented with an initial condition that sets the initial value *�1� � ' · ��1�. Here, the target 243 

gain ���� is available from recordings in each trial and we shall assess how well the prediction of 244 
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the saccade gain (*�� � 1�, provided by Equation 4) fits the recorded data �'���. The first term on 245 

the RHS of the equation is a persistence term. The persistence rate ( determines how much of the 246 

estimate of the state variable at trial � is transferred to the estimate at the next trial [8,25,36]. 247 

Therefore, its magnitude is expected to be typically slightly smaller than 1 and it is set to be 1 in the 248 

models that do not include its effect. The second term weights the discrepancy between the gain of 249 

the target at trial � and the predicted gain of the movement under the underlying assumption that 250 

the size of the state variable is an adequate proxy for the (sensory) consequences of the 251 

movement. The weighting coefficient + is called learning rate. . embodies any systematic effect 252 

(drift or bias) that takes place in each trial but is not directly determined by the sensory feedback 253 

2[37]; we shall call it a drift parameter. The last term is a second error-based correction term that 254 

weights the discrepancy between the gain of the target and the estimate of the movement at a trial 255 

other than the last error with and additional (distal) learning rate /. For concreteness we shall 256 

assume that this correction is based on the sensory feedback arising from the next-to-last trial. 257 

However, we shall return to this specific assumption further in the Discussion. Note that with the 258 

inclusion of this hypothetical double error sampling the full model of Equation 4 (and Equation 5 259 

below) becomes an algorithm that coherently uses two delayed feedbacks to estimate the state of 260 

a single internal variable that models the sensory consequences of the intended motion. 261 

Formatting of the data for fittings of the learning model. To be able to consistently compare results 262 

from this manuscript with the phenomenological analyses of the data presented in our earlier 263 

report, we will write the generative model in terms of a state variable associated to the adaptation 264 

gain of Equation 3a (cf. [11], and therefore naturally defined as 2��� � �

�
�*���  1�. Applying 265 

these changes, we obtain: 266 

2�� � 1� � ( · 2��� � + · ,����  2���- � 3 � / · ,���  1�  2��  1�-.                                                  �5� 

As suggested by Equations 4 and 5, a sensorimotor learning model can be written in terms of 267 

hidden variables that would be naturally associated with the saccade gain or the adaptation gain 268 

defined in Equations 3 and 3a respectively. When transitioning from the saccade gain to the 269 

adaptation gain description in this linear model, the only parameter of Equation 4 susceptible to 270 
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changes is ., which we indicated in Equation 5 using the lower-case 3 instead. Throughout the 271 

manuscript we adopt the adaptation gain (defined above), as the state variable to characterize the 272 

internal model and Equation 5 as its relevant state-equation. In this description, the stimulus gain 273 

reduces to a pure sinusoidal disturbance with zero mean (i.e., with no static component), which 274 

minimizes confounds between the effects of the retention rate ( and the drift parameter 3.  275 

Because movement gains are computed from experimental observations, models of motor control 276 

often include a second equation that maps the estimates of the hypothesized internal variable to 277 

real-world observations (see, e.g., [20,21]). In our simplified analyses and again invoking the pre-278 

programmed nature and accuracy of saccades, we set this second (observation) stage to be an 279 

identity.  280 

Estimation of the learning parameters, model classification and model selection. 281 

We conducted our analyses using the full form of Equation 5. We were interested in determining 282 

which model suffices to account for the data with the least number of parameters. The magnitude 283 

being learned is 2, the internal representation of the adaptation gain of the imminent saccade. This 284 

gain has value zero upon the ideal outcome of perfect movement accuracy and in that respect, it 285 

can be interpreted as the gain of an internal prediction error. Using Equation 5, we generated the 286 

predicted values of 2��� in each condition and for each participant, and then fitted a number of 287 

models that differed from each other in which parameters were estimated. When a parameter 288 

among +, 3, or / was not present, the corresponding term was removed from Equation 5. Note 289 

however, that when the parameter ( was not included as a fitting parameter, its value was set to 290 

unity (i.e., ( � 1). In the case of the initial value ', we obtained an estimate by taking the average 291 

of the first five valued of the gain. We proceeded in this way because the initial value of the state of 292 

the system is unknown and, while the first recorded value of the gain could be considered a proxy 293 

for such initial state, execution and motor errors could yield a value of the gain significantly 294 

different than the actual initial state of the system; we averaged over 5 trials to alleviate this 295 

problem. In models where the initial value of the gain was left free to become a fitting parameter, 296 

this average over the first five saccades was used as an initial value for the fitting routine for that 297 
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particular parameter. Improvements can be achieved by letting the initial condition become an 298 

extra parameter. We discuss below the interpretation of using the initial condition as a fitting 299 

parameter of the model.  300 

In view of these features of the generative model, a natural classification of the models tested 301 

arises as follows: given the parameters +, (, 3,  /�, 6 , /� , ', we will 1) include + in every model 302 

because we are modeling intrinsic learning where we assume that learning from the last 303 

experienced feedback is always present as well as obligatory [19,20,22,31]; 2) models will be 304 

generated by adding successively the parameters (, 3, and /, of which one or more could be 305 

present but in this study we restrict ourselves to learning possibly from only one extra feedback in 306 

the past; 3) ' is an optional parameter that is included in an attempt to alleviate extreme effects of 307 

the initial condition(s) as explained above. By applying points 1) through 3), sixteen different 308 

models can be generated. For reasons to become clear below we would group them in four 309 

families according to whether or not they contain the bias term (3) and the additional error term 310 

(with learning rate /): + only (although with ( � 1 when omitted), +(, +', +(' feature zero bias 311 

and a single error term; +3, +(3, +3', +(3' are models with a single error term that allow bias; 312 

+/ , +(/ , +/' , +(/'  have no bias term but sample two errors, and +3/ , +(3/ , +3/ G, 313 

+(3/'  feature both a bias term and learn based on double error sampling. Therefore, the 314 

simplest model had a single fitting parameter (the learning rate +, cf. [19]) and was obtained by 315 

setting ( � 1, removing the terms that involved 3 and /, and setting the initial value ' to be the 316 

mean of the first five values of the gain in the block. The full model had all five as fitting 317 

parameters.  318 

All parameters of the generative models were estimated by fitting the model to the experimental 319 

data using MATLAB function nlinfit; 95% parameters confidence intervals were computed using 320 

MATLAB function nlparci and predicted response for the hidden variable 2 with its corresponding 321 

95% confidence intervals were obtained from MATLAB function nlpredci.  322 

All 16 models were fitted to each individual participants’ data, parameters were extracted for each 323 

model, and models were compared using the Akaike information criterion (AIC; [38-41]) by 324 
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computing Akaike weights across models for each participant. Finally, these weights were 325 

averaged across participants for each model in each condition.  326 

Using the generative model to predict the parameters of the phenomenological description of the 327 

adaptation gain 328 

The adaptation gain of the oculomotor response to a sinusoidal disturbance is best described by a 329 

phenomenological function consisting of a decaying exponential added to a lagged but otherwise 330 

undistorted sinusoid [11]. The sinusoidal component of the response onsets at the beginning of the 331 

adaptation block but all fittings include the pre-adaptation block as well. The frequency of the 332 

stimulus disturbance is matched closely by the gain. To fully describe the response, five extra 333 

phenomenological parameters are required: amplitude (7) and lag (8) of the periodic part of the 334 

error gain complete the description of the periodic part. The exponential decaying component that 335 

describes the baseline on which the periodic response rides requires other three: an asymptotic 336 

value (9�) where the baseline stabilizes at large trial number, a timescale (:) in which the baseline 337 

reaches 1/� of the full decay, and the amplitude of the decay (9): 338 

)��� � 7 · sin�$�  8� � 9���� � 9�,                    with                    $ � 2?@
# .                                                  �8� 

We use here the same denominations used in our previous report [11], except for changing the 339 

name of the timescale to : to prevent confusion with the amplitude of the periodic component 7. To 340 

estimate parameters of the phenomenological functional form that best fits the data we used the 341 

same general procedure and parameter estimation algorithm implemented in our earlier 342 

contributions [11,13]. Solving the state-equation via iteration in the simpler case where the system 343 

learns only from the last experienced feedback (cf. S1 Appendix), or borrowing techniques from 344 

the theory of LTIS reveals a correspondence between these phenomenological parameters and 345 

the coefficients of the generative model of Equation 5. (A complete derivation of the 346 

phenomenological parameters as functions of the generative ones is not presented here due to 347 

space limitations; details about the analytical procedures adopted can be found in [42]). Depending 348 

on the parameters that each generative model includes, the functional form and value of the 349 
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phenomenological coefficients may change. Here we are interested in assessing which theoretical 350 

prediction of the relation among phenomenological and generative model parameters matches the 351 

data best as a way to validate the underlying sensorimotor learning algorithm. 352 

Lag and amplitude of the periodic response  353 

The lag of the periodic response of the error gain derived from the (full version of the) generative 354 

model of Equation 5 including the next-to-last feedback-error term is given by: 355 

cos�8� �  cos $  �(  +  / cos $�
DEcos $  �(  +  / cos $�F� � E�1  /� sin $F�

sin�8� �  �1  /� sin $
DEcos $  �(  +  / cos $�F� � E�1  /� sin $F�

.                                                                          �9� 

In models without next-to-last feedback term / should be set to zero; in models that do not have ( 356 

as a fitting parameter, its value should be set to 1 in Equation 9. 357 

The periodic component of the response to a sinusoidal disturbance in models where the next-to-358 

last feedback is included can be written as: 359 

H��� � +
I sin�$�  8� � /

I sin�$��  1�  8�,                                                                                                   �10� 

where I � DEcos $  �(  +  / cos $�F� � E�1  /� sin $F�. 360 

Equation 10 shows that if / � 0 we recover the solution expected by iteration when there is 361 

learning from the last error only. Then the amplitude of the periodic component �7) in Equation 8 362 

can be read out directly to be 7 � �

�
. When / J 0 we need to re-write Equation 10 so that it 363 

matches the periodic part of Equation 8. After some algebra Equation 10 can be recast as: 364 

H��� � K
I · sin,$�  �8 � L�-                                                                                                                                   �11� 

where  365 

K � D�+ � / cos $�� � �/ sin $�� ,     cos L � + � / cos $
K ,     sin L � / sin $

K  .                                      �12� 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 4, 2019. ; https://doi.org/10.1101/492512doi: bioRxiv preprint 

https://doi.org/10.1101/492512
http://creativecommons.org/licenses/by/4.0/


 

  Page 17 of 48 

Equations 9 to 12 clarify the effect of the presence of the next-to-last error learning rate / . 366 

Equation 9 shows how the bare lag 8 changes when / is present. Yet, it would be incorrect to 367 

compare the fitted values of the phenomenological lag to Equation 9. The reason is that the 368 

second contribution in Equation 10 modifies not only the amplitude of the periodic component to 369 

the new value 7 � �

�
, but it also adds the shift L to the lag. Therefore, if there were also learning 370 

from the next-to-last error, the observed (behavioral) lag should be compared to 8 � L. 371 

Baseline drift parameters 372 

Following a sinusoidal disturbance, the baseline of the error gain will approach an asymptote at 373 

large trial number that can be written as a function of parameters of Equation 5 as (see also S1 374 

Appendix): 375 

9� � 3
1  ,(  �+ � /�-                                                                                                                                              �13� 

The timescale : for the decay of the baseline, has units of 1/trials and it is defined by: 376 

��� � 1
2 N�(  +� % E�(  +��  4/F��O                                                                                                                  �14� 

Equation 14 provides the weights of the impulse response that generates the integral solution by 377 

convolving the stimulus (i.e., ����; cf. S1 Appendix, [42]). The inverse of the timescale parameter 378 

λ  gives the number of trials over which the stimulus is integrated. Beyond this window of 379 

integration, the weighting of the stimulus would have reduced enough to ignore further 380 

contributions. When / � 0, the integration weight becomes ��� � �(  +�, which is positive and 381 

smaller than 1, provided that the learning rate + Q 1 and (~1. When / J 0, Equation 14 provides 382 

timescales for two modes that compose the integral solution of the state-equation. These result 383 

from the addition or subtraction of the second term in braces. If the parameter / is negative, the 384 

second term inside the braces becomes slightly larger than the first. The timescale resulting from 385 

the addition is positive and can be expressed as a decaying exponential. The subtraction solution 386 

is negative and of small magnitude and, therefore, it will decay much faster when raised to the trial 387 

number. It introduces small additive fluctuations to the exponential decay of the addition solution 388 
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without changing its overall behavior. Critically, diverse sizes of the learning parameters may result 389 

in smaller or larger timescales in models with / J 0 compared to models where / � 0 (cf. Results 390 

section and S1 Appendix). 391 

To recap, Equation 8 has four phenomenological parameters that we shall explore in further detail: 392 

9� , : , 7 , and 8 . The former two parameters are already familiar from phenomenological 393 

descriptions of data in paradigms using fixed-sized second-step for the target. The latter are new, 394 

arising in paradigms with sinusoidal disturbances. 395 

The amplitude of the decay of the baseline also bears dependence on the learning rates as well as 396 

on the initial condition. Because of the strong influence of the initial condition on this parameter, we 397 

refrain from a comparison of the behavioral fittings to the predictions from the generative model for 398 

this case. 399 

Part of the material discussed in this contribution have been presented in the form of posters or 400 

slide presentations [43,44]. 401 

Results 402 

Analysis of the data at the phenomenological level  403 

To obtain a general idea of patterns present in the data, we first collapsed the data for each 404 

stimulus frequency and adaptation type across participants (group data). We fit these data using a 405 

piecewise continuous function given by the addition of a monotonic (exponential) decay of the 406 

baseline –spanning both pre-adaptation and adapting trials- and a periodic entraining of the 407 

oculomotor response to the sinusoidal stimulus that begins at the onset of the adaptation block. 408 

This choice was supported by the fact that we had confirmed using statistical model selection 409 

criteria (i.e., AIC and BIC, [38-41,45]) that this functional dependence was the best descriptor of 410 

the oculomotor response among the set of models tested in Cassanello et al. [11]. For illustration 411 

purposes only, Fig 1 shows the group data in each dataset, along with the fits resulting from the 412 

parameter estimation based on the phenomenological model of Equation 8. The same 413 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 4, 2019. ; https://doi.org/10.1101/492512doi: bioRxiv preprint 

https://doi.org/10.1101/492512
http://creativecommons.org/licenses/by/4.0/


 

  Page 19 of 48 

parameterization was used to fit each participant’s run. Figs 2 and 3 summarize the estimation of 414 

the phenomenological parameters entering Equation 8. Fig 2 shows the values of mean ± SEM of 415 

the parameters estimated from every individual dataset for each frequency and adaptation type.  416 

Fig 1. Fits of the phenomenological model to the experimental data. The plots show adaptation gain (colored lines) 417 
averaged over individuals in the (a) Two-way adaptation and (b) Global adaptation condition of the ORIG data set 418 
(reported in [11]), as well as the (c) Two-way adaptation and (d) Global adaptation condition of the FREQ data set, using 419 
the same paradigm over an extended range of frequencies. The fit (black line) is based on Equation 8. The same 420 
equation was fitted to data from each participant in each condition and experiment, to estimate phenomenological 421 
parameters on an individual bases. For illustration purposes only, the figure depicts fittings done over the averages along 422 
with 95% confidence intervals (gray shaded areas). The black dotted lines indicate the time evolution of the baseline if 423 
the amplitude of the periodic response were zero, corresponding to a drift only model. The solid black lines indicate the 424 
approximate middle-point locations of the periodic component.   425 

Fig 2. Phenomenological parameters as a function of ISS frequency, estimated from both datasets (ORIG, diamonds, 426 
and FREQ, circles). (a,b) Amplitude (a) and Lag (b) parameters of the periodic (sinusoidal) component of the 427 
response. (c,d) Asymptote (c) and timescale (d) parameters of the monotonic drift of the baseline toward greater 428 
hypometria. Each point is a condition defined by type of adaptation and ISS frequency. Blue and red colors correspond to 429 
horizontal Two-way and Global adaptation, respectively. Error bars are SEM across participants. These four parameters 430 
are further compared to the values predicted by the solution to the generative models tested. 431 

Fig 3. Assessment of the quality of the fits of the parametric phenomenological model to the group data. (a,c) 432 
Each bar is split into the log of the odds ratio of the full model to a drift only model that lacks the sinusoidal component 433 
(darker tone of the bars) added to the log of the odds ratio of the drift only model to the noise only model described 434 
above (lighter tone of the bars). For all but one condition (Global adaptation, 24 cpd), the full model provides the best 435 
account of the data. (b,d) Estimates of the frequency of the periodic component of the oculomotor response, for dataset 436 
ORIG (b) and dataset FREQ (d). Error bars are SEM. 437 

Some features are readily apparent from these plots. First, the frequency of the ISS is reliably 438 

estimated (cf. Fig 3b,d). Second, the amplitude and the lag of the periodic components of the 439 

adaptation gain decay with increasing frequency of the stimulus (Fig 2a,b). The amplitudes of the 440 

periodic component are systematically larger in Two-way adaptation, while the lags observed in 441 

global adaptation are systematically larger than in the Two-way case. The systematic decay of the 442 

values of the lag with increasing frequency does not seem to extend to the smallest frequency (1 443 

cpb in the new dataset). This may be related to the fact that at such low frequency the stimulus 444 

resembles more the behavior of a ramp that then turns rather than a truly periodic disturbance.  445 

The parameters that affect the observed drift in the baseline (i.e., asymptote and timescale, Fig 446 

2c,d) remain rather independent of the experimental condition. This feature is more apparent in the 447 

ORIG dataset, but it still seems to hold in the FREQ dataset. An exception arises at the lower 448 
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frequency (1 cpb) tested in the FREQ dataset. However, the case of frequency one is rather 449 

special and should possibly be considered as transitional between periodic and non-periodic 450 

stimuli.  451 

Fig 3 provides an idea of the quality of the fits by showing the evidence of the data in favor of the 452 

models tested (cf. [11,13,28]). Upper and lower rows correspond to Two-way and Global 453 

adaptation type respectively. For dataset ORIG, Fig 3a shows the logs of the odds ratio of the 454 

parametric model of Equation 8 against a noise only model consisting of the block mean with 455 

variance similar to that of the data. Each bar is split into the log of the odds ratio of the full model to 456 

a drift only model that lacks the sinusoidal component (darker tone of the bars) added to the log of 457 

the odds ratio of the drift only model to the noise only model described above (lighter tone of the 458 

bars). This separation is possible because the models are nested so that the simpler models can 459 

be obtained from the full model by eliminating parameters. The evidence then compares the 460 

density of models likely to fit the data. Fig 3b shows the estimation of the frequency of the 461 

oculomotor response against the actual frequency of the stimulus for the three frequency values 462 

tested in dataset ORIG (3, 4, and 6 cpb). Fig 3c and 3d shows the evidence and the agreement of 463 

the response with the five frequencies used in dataset FREQ (1, 3, 6, 12, and 24 cpb). 464 

State-equation fittings and model selection 465 

To assess the generative model, we fit Equation 5 to all data available. For illustration puposes 466 

only, we first show that the model provides a reasonable overall fit to the group data. Fig 4 shows 467 

fits of the oculomotor response predicted by the full form of the generative model given by 468 

Equation 5 with all five parameters described in the Methods section: +, (, 3, / as well as the 469 

initial condition '. As before the qualitative agreement of the fits and the data is evident in both 470 

datasets. As we did with the phenomenological fits, we included the pre-adaptation blocks in each 471 

condition in each dataset.  472 

Fig 4. Fits of the oculomotor response predicted by the state-equation (Equation 5) with all five parameters. The 473 
plots show adaptation gain (colored lines), averaged over individuals in the (a) Two-way adaptation and (b) Global 474 
adaptation condition of the ORIG data set (reported in [11]), as well as the (c) Two-way adaptation and (d) Global 475 
adaptation condition of the FREQ data set, using the same paradigm over an extended range of frequencies. The stimuli 476 
input in the model fits is ���� (cf. Equations 1-3), which is zero in the preadaptation block. The same equation was fitted 477 
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to data from each participant in each condition and experiment, to estimate parameters of the generative model on an 478 
individual bases. For illustration purposes only, the figure depicts fittings done over the averages along with 95% 479 
confidence intervals (gray shaded areas). 480 

For all subsequent analyses, we fitted models to individual data. In particular, we compared 16 481 

different models that differed from each other depending on which parameters were fitted (see 482 

Methods for details). We used Akaike’s information criterion (AIC) to explore statistical selection 483 

among these models. Akaike weights (cf. section II of [40]) are shown in Fig 5 segregated by 484 

model and condition, for datasets ORIG and FREQ, respectively. In each condition (identified by 485 

adaptation type and stimulus frequency), we computed a matrix of weights in the following way. 486 

Because the best fitted model may differ between individuals, we first computed the AIC weights 487 

among the 16 models for each participant and condition. Then we averaged the resulting individual 488 

weights across participants. Results from this procedure are shown in Fig 5.  489 

Fig 5. Akaike weights [40] for the 16 versions of the generative model, segregated by condition (frequency and 490 
type of adaptation). The label along the middle y-axis indicates the model for the weight displayed in the horizontal 491 
bars. Results from dataset ORIG (a) and FREQ (b). Weights for each of the three frequencies for each type of adaptation 492 
(blue tones for Two-way expanding to the right, red tones for Global to the left) are stacked for each model and color-493 
coded as in Fig 1. The models are grouped according to the criterion described in the subsection Rationale for 494 
generative model building and parameter exploration in the Discussion section (see text for further details). Gray areas 495 
in the background indicate the average weight of the corresponding model group.  496 

Inspection of Fig 5 suggests clear overall preference for models in groups II (which include 3 but 497 

not /) and IV (featuring both 3 and /). We discuss below why this is expected on theoretical 498 

grounds given the features of the data. Models from group IV that learn based on two error 499 

samples, are preferred in Two-way adaptation, specifically the full model (+(3/') and the model 500 

in which ( was set to unity (+3/'). Models in group II that feature a single learning rate (error-501 

correcting based only on the last experienced feedback), specifically +(3 and +(3' , have an 502 

edge in Global adaptation. In what follows, we will focus on a comparison of these four models.  503 

Fig 6 shows the values of the generative parameters (Mean ± SEM, N = 10 for dataset ORIG, 504 

N = 13 for dataset FREQ) of the best models that learn only from the last experienced feedback 505 

error (+(3, +(3'). Upper and lower rows correspond to datasets ORIG and FREQ respectively. 506 

Learning rate +, persistence rate ( and drift parameter 3 are shown in columns a, b and c of Fig 6 507 
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respectively. Fig 7 reports the parameters of the best models that update their hidden variable 508 

based on double error sampling. Those models are +3/'  and +(3/' . Fig 7 a-d show 509 

respectively the learning rates +  and /  that weight the contributions of last and next-to-last 510 

feedback, the persistence rate ( and the drift parameter 3. Note that all models include the drift 511 

parameter 3 as a fitting parameter. We shall explain below why this should be expected. 512 

Fig 6. Average over individual parameters of generative models ���,���	, the best among those that learn 513 
from the last feedback only (cf. Equation 5 with 
 � �). Blue and red colors correspond to horizontal Two-way and 514 
Global adaptation, respectively. (a) Learning rate �, (b) Persistence rate �, and (c) bias or drift-parameter � are plotted 515 
as a function of condition. Both favored models feature � and � as fitting parameters. Note the variability in their fitted 516 
values across conditions, in particular for dataset FREQ. Error bars are ±SEM. 517 

Fig 7. Average over individual parameters of generative models ��
	,���
	, the best among those learning 518 
from last and next-to-last feedbacks (double-error-sampling model; cf. full Equation 5). Blue and red colors 519 
correspond to horizontal Two-way and Global adaptation, respectively. (a) Learning rate �, (b) Learning rate 
, (c) 520 
Persistence rate �, and (d) bias or drift-parameter � are plotted as a function of condition. Both favored models feature 521 

 and � as fitting parameters. Note that in both models, the bias parameter �, and the persistence rate � in model 522 
���
	, display much lower variability in their fitted values across conditions when compared to that of Fig 6. (e,f) 523 
Addition and difference of both learning rates,  � � �
 and � � � �
 (see text for discussion). 524 

Again, several features are readily apparent from these plots. The learning rates (+  and / ) 525 

obtained from ORIG [11], show a rather clear segregation between Two-way adaptation and 526 

Global adaptation: +  and /  are larger for Two-way (blue colors) than for the Global case (red 527 

colors) suggesting that the extra variability brought upon by the random directions of the 528 

subsequent saccades characteristic of Global adaptation has a detrimental effect on all learning 529 

rates. They do not show a strong dependence on the frequency but the range of values used in 530 

that experiment was rather narrow, ranging from 3 to 6 cpb. This segregation in the learning rates 531 

between Two-way and Global adaptation is also clearly present in the best models fitted to dataset 532 

FREQ.  533 

A feature observed in all cases is that in models that learn only from the last experienced error, the 534 

(single) learning rate (+) shows a mild increase with the frequency. This changes substantially if 535 

learning from the next-to-last feedback is included. In all of these models, the following features are 536 

observed. First, the magnitude of +, the learning rate of the last-feedback error-correction term 537 

increases by about an order of magnitude with respect to the models that do not have next-to-last 538 

error-correction. Second, the magnitude of the next-to-last error learning rate (/) is similar to that 539 
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of the last error (+) but with opposite sign. This seems to suggest that the next-to-last error is 540 

weighted negatively (or actively attempted to be forgotten) in the algorithm. Third, the discrepancy 541 

in magnitude between +  and /  is consistently larger for Two-way than for Global adaptation 542 

(compare the separation between corresponding blue and red lines in Fig 7, a and b). Fourth, the 543 

learning rate + reverses its dependence with the frequency of the stimulus with respect to the 544 

models without /, and now decreases monotonically as the frequency of the stimulus increases. At 545 

the same time, the magnitude of / also decreases with the frequency. As a consequence, the 546 

discrepancy in magnitude between + and /  is such that the addition of both learning rates 547 

approximately matches the range of the values of + fitted in the models that learn only from the 548 

last feedback (compare the values plotted in column a of Fig 6 to those of column e in Fig 7). This 549 

suggests that when the additional error learning is not part of the model, the only learning rate 550 

fitted may represent an average across sub processes. 551 

The values of the parameters fitted with the best four models are shown in S1 Table (Mean ± 552 

SEM, N = 10 for ORIG, N = 13 for FREQ). To assess dependence of the generative parameters on 553 

the experimental conditions we run 2 X 3 (ORIG) and 2 X 5 (FREQ) repeated-measures ANOVA 554 

on the fitted values using as regressors type of adaptation (Two-way and Global) and ISS 555 

frequency. Results are shown in S2 Table for the parameters given in S1 Table. We regard as 556 

more representative the results from dataset FREQ due to the more extended range of frequencies 557 

tested. Consistent with the qualitative observations mentioned above, while type of adaptation is 558 

highly significant for the learning rates in every model, frequency show significance for +and / 559 

only in the models that feature double error sampling (+3/', for both datasets, +(3/' only for 560 

FREQ) but not in those learning just from the last feedback (+(3, +(3'). As for the persistence 561 

rate, frequency is never significant suggesting that it can be kept fixed as in model +3/'. Type of 562 

adaptation is significant in +(3 and +(3' but such significance disappears in +(3/'.  563 

Analytical solution of the generative model: predicting the phenomenological parameters   564 

The iteration of state-equations that learn from the last feedback already qualitatively predicts both 565 

components of the phenomenological response. In general, the complete response can be 566 
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interpreted as a convolution of the stimulus with a response function. This response function 567 

integrates the stimulus by weighting the disturbance over a temporal window, the size of which 568 

depends on the magnitude of the learning and persistence rates that combine to assemble the 569 

weights (cf. S1 Appendix). Contributions from constant components of the disturbance that arise 570 

either from constant features in the stimulus (as in the traditional fixed-ISS paradigm [1]) or from 571 

intrinsic biases that may not be strictly error-based in nature (e.g., in our case represented by the 572 

drift parameter; cf. [37]) accumulate across trials, changing saccade gain in a monotonic fashion 573 

akin to a drift of the baseline towards an asymptote. Iteration of the systematically varying part of 574 

the disturbance results in its convolution with similar weights but the trial-by-trial variation usually 575 

prevents finding a closed form for the series re-summation. However, a sinusoidal disturbance 576 

avails a closed analytical integral solution, it is periodic with the same frequency, lagging the 577 

stimulus by a number of trials. Two new phenomenological parameters of this periodic response—578 

its amplitude and lag—bare characteristic dependences on the learning parameters. 579 

Above, we fitted the extended version of Equation 8 to the data and obtained and reported 580 

estimates for its phenomenological parameters (i.e., frequency @, amplitude 7, lag 8, asymptote 581 

9� , timescale :  and decay amplitude 9 ; cf., Fig 2 above). Similarly, we fitted the generative 582 

parameters for all generative models using the corresponding versions of Equation 5. Figs 6 and 583 

7 display those estimates for the four models that provided the best fits (excluding /: +(3 and 584 

+(3' and including /: +(3/' and +3/' respectively).  585 

When the learning algorithm includes several error-based terms, Equation 5 can be integrated 586 

using techniques standard within the theory of LTIS [42]. This integration provides analytical 587 

predictions of the phenomenological parameters as functions of the learning parameters fitted with 588 

the generative models (Equations 9 through 14). We attempt matching these predictions to the 589 

values fitted using the phenomenological parameter estimation implemented before (see Fig 2). It 590 

should be pointed out, however, that the phenomenological parameter values have also been 591 

obtained from fits to the data and therefore should only be regarded as indicative reference values 592 

to guide intuition, not as ground truth. Validation of the actual underlying structure of the learning 593 
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model relies ultimately on statistical model selection. Yet, a direct comparison between the fitted 594 

phenomenological parameters and analytical predictions evaluated on the fitted generative 595 

parameters is informative because a given value of a phenomenological parameter has to be 596 

compared to diverse combinations of the generative parameters depending on the specific 597 

structure of the learning model. 598 

We start with Equation 13 that provides a relationship between the expected asymptote of the 599 

adaptation gain at large trial number and the generative model parameters.  600 

9� � 3
1  ,(  �+ � /�- 

A first significant observation about this expression is that in order to observe a drift in the baseline 601 

of the adaptation gain (i.e., in order to have an asymptote 9� J 0), a finite value of the drift 602 

parameter 3 is strictly necessary. If 3 vanishes, the adaptation gain would maintain a baseline 603 

pinned at zero regardless of the values of +, ( or /. In addition, in a situation where (~1, 9� S �

���
 604 

or 
�

�
 in models where / � 0. Note that these are all signed magnitudes, not absolute values. In 605 

other words, a small learning rate +  or a small number resulting from the addition + � /  will 606 

modulate the size of the asymptote and will determine its sign (i.e., will modify the degree of 607 

hypometria or hypermetria). Still a finite value for 3 is strictly needed to have non-zero asymptote. 608 

Recall that when 3 is not a fitting parameter, its value is set to zero. Due to the pervasive baseline 609 

drift across all of our data, all models favored under statistical model selection contain 3 as a 610 

fitting parameter. This is why model groups II and IV (cf. Fig. 5) are preferred, as pointed out 611 

above and in the Discussion. Note, in addition, that the smaller the learning rate (+ or + � /), the 612 

larger the size of the asymptote 9�.  613 

Experimentally, we observed drifts towards higher hypometria in all averages and in most of the 614 

individual data. Note that formatting the data in terms of adaptation gain instead of saccade gain 615 

allows us to remove confounds coming from constant contributions from the stimulus and therefore 616 

the parameter 3 should be regarded as intrinsic to the system. In other words, 3 characterizes or 617 

quantifies learning that would occur in absence of stimulus disturbance (i.e., with zero ISS), as if 618 
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the system has an intrinsic propensity to modify its gain by virtue of environmental or experimental 619 

conditions not necessarily linked to an error.  620 

Fig 8a displays the matching of the analytical predictions of the asymptotes computed by inserting 621 

the fitted values of 3 , ( , +  and /  into Equation 13 for each participant’s data, to the 622 

phenomenological estimation of 9� obtained from Equation 8 and the parameter estimation of the 623 

phenomenological fits of the data for both datasets and both adaptation types. 624 

Fig 8. Comparison of phenomenologically fitted parameters to their theoretical predictions based on the 625 
generative model. y-axes show the values obtained with the phenomenological parameter estimation (Equation 8); x-626 
axes show predictions obtained by inserting the best estimated values of the generative parameters into the the 627 
analytical expressions of Equation 9-14 (cf. ‘Using the generative model to predict the parameters of the 628 
phenomenological description of the adaptation gain’ in the Methods section). Each row corresponds to one of the four 629 
best generative models. Each point is a single participant in a given condition and experiment. Data from the condition 630 
with a frequency of 1 cpb has been omitted because the predictions were poor for all models (in particular for the lag 631 
valiable, see the text for a discussion of this point). (a) Asymptotes of the gain at large trial numbers (��  in Equation 8 632 
vs predictions by Equation 13). (b) Timescale of the decay of the baseline (� in Equation 8 vs predictions by Equation 633 
14). Note the wide spread of the predicted values for models ���, and ���	 that also results in several ouliers beyond 634 
the limits of the subplot. In contrast, models ��
	 tend to underestimate the phenomenological timescales. Model 635 
���
	 provides the best prediction of the phenomenologically fitted values with only two points just beyond the limits of 636 
the plot. (c) Amplitude of the periodic component of the gain (� in Equation 8 vs predictions by Equations 10-12). Note 637 
that models ��� and ���	 tend to underestimate the observed amplitudes of the peridic component of the gain. (d) 638 
Lag of the periodic component of the gain (� in Equation 8 vs predictions by Equations 9-12). The plots reveal a slight 639 
tendency for models ��� and ���	 to overestimate the length of the lag with respect to the predictions of the models 640 
including double error sampling (��
	 and ���
	). 641 

A second parameter characteristic of the baseline drift is given by the timescale. Fig 8b shows 642 

predicted values for the timescales that result when values of 3, (, + and / fitted with the state-643 

equation are inserted in Equation 14. The first two rows of Fig 8b show a clear overestimation of 644 

the baseline timescale in models that do not feature double error sampling (i.e., +(3 and +(3') 645 

as several individual data points fall outside the boundaries of the plot. Yet, models that include 646 

corrections based on the next-to-last error term, seem to underestimate the timescale (in particular 647 

model +3/'). When introducing Equation 14, we pointed out that if the second error learning rate 648 

/ is negative, the dominant mode in the solution still features a monotonic decay that can fit the 649 

phenomenologically observed exponential baseline drift of the gain. This is indeed the case in the 650 

majority of fits to the individual participants’ runs: Across models in group IV, / was non-negative 651 

in only 13% of the individual runs; 6% for Two-way adaptation and 21% for Global adaptation data. 652 

For model +3/', / was non-negative in 7% of all runs; with only 1% (1 run out of 95) for Two-way 653 
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adaptation and 14% for Global adaptation. Furthermore, when estimating the timescales of models 654 

that include double error-correction, Equation 14 consistently gives smaller values than for models 655 

without the second error term (cf. compare subplots of Fig 8b for the corresponding models, and 656 

Fig S1 in S1 Appendix). This ordering relation between the timescales of models with and without 657 

/  was unknown before conducting the fits. Thus, data collected using a sinusoidal adaptation 658 

paradigm suggests that including a second error-correction term yields a significant decrease in 659 

the timescale with respect to models featuring a single error-correction term. Therefore, the 660 

integration window (i.e., the inverse of the timescale) of models with double error-correction grow 661 

significantly larger compared to those that lack the second error sampling.  662 

Asymptote and timescale are parameters traditionally investigated and reported in adaptation to 663 

fixed-step disturbances. Sinusoidal adaptation paradigms provide two additional parameters 664 

associated to the periodic component of the adaptation gain observed in these protocols. Fig 8c 665 

and d compare predictions for the amplitude and the lag of the periodic component of the gain 666 

obtained by using Equation 9 through 12 above. Data from both datasets suggest that models that 667 

do not feature double error sampling underestimate the magnitude of the amplitude of the periodic 668 

component of the oculomotor response (cf. predictions from these models in Fig 8c). This feature 669 

in fact is common to all models that learn from a single feedback and include 3 (besides models 670 

+(3 and +(3'; not shown) but the inclusion of / helps mitigating misestimation of this amplitude. 671 

The last comparison is provided by the lag of the periodic component. Fig 8d compares predictions 672 

based on the state-equation learner (Equations 9 and 11 furnish predictions for the components of 673 

the lag 8  and L  after inserting the parameter values fitted with Equation 5) and the 674 

phenomenology (parameter 8 in Equation 8). From Fig 8c and d it is apparent that the models 675 

that include both 3 and /  as fitting parameters provide better predictions, also displaying less 676 

variability across participants, in particular for the Two-way adaptation type. Among models with 677 

/ � 0, again models +(3 and +(3' fit best. Fig 8d shows, however, that these models appear to 678 

overestimate the lag (cf. compare corresponding subplots in the figure), while models that have a 679 

second learning rate / match better the empirically observed lag. In addition, all models fail the 680 

estimation of the lag for a disturbance of frequency one as they all significantly overestimate the 681 
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lag observed. Even though the predictions of the other phenomenological parameters are 682 

reasonable (the amplitude of the periodic component, timescale and asymptote), predictions for the 683 

1cpb condition for both Two-way and Global adaptation have been omitted altogether in Fig 8. This 684 

mismatch between the direct phenomenological estimation of the lag from the data and the 685 

analytical predictions arising from the integration of the state-equation for the case of the 1cpb 686 

condition, may be rooted in the fact that the functional dependence of the phenomenological 687 

parameters on the generative ones is determined by the specific sinusoidal dynamics of the driving 688 

stimulus, while the case of a 1-cpb frequency is the least periodic condition among all tested.  689 

Discussion  690 

We used a modified version of the traditional two-step saccade adaptation paradigm ([1]; see 691 

[2,46] for reviews) in which the size of the second step varied as a sinusoidal function of trial 692 

number with an amplitude of 25% of a fixed pre-saccadic target amplitude. We recorded observers’ 693 

eye movements at a total of six different frequencies and applied the sinusoidal disturbance always 694 

along the saccade vector which was aligned either in a horizontal bi-directional fashion (Two-way 695 

adaptation) or in random directions drawn from a uniform circular distribution (Global adaptation). 696 

The oculomotor response, quantified by the adaptation gain, followed the disturbance variation with 697 

comparable frequency, an amplitude ranging between 10 and 30% of that of the stimulus (i.e., 2.5 698 

to 7.5% of the saccade amplitude), and lagging the stimulus by a few trials. In addition, it 699 

developed a systematic drift of the baseline towards larger hypometria that reached asymptotes of 700 

around 40% of the disturbance amplitude (i.e., 10% of the saccade amplitude) and was largely 701 

comparable across conditions. The phenomenological description in Equation 8—composed of a 702 

periodic response and an exponential decay—captured this behavior well and we estimated all six 703 

parameters pertaining to that description.  704 

The present study explored whether the phenomenology described by Equation 8 can be modeled 705 

with a state-equation, i.e., a generative rather than descriptive model of the underlying 706 

sensorimotor learning. We clearly show that the recorded saccade adaptation data is indeed 707 
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predictable in a robust and stable way using a linear time invariant state-equation similar but not 708 

identical to those proposed before in the literature. Moreover, in previous accounts, simulations 709 

based on generative models as well as ad-hoc fittings (mostly exponential or monotonic) of the 710 

temporal evolution of the gain were provided without specifying a pathway of how to evolve from 711 

one description to the other. We suggest that connection here and provide results of the derivation 712 

involved in transitioning between these descriptions.  713 

Rationale for generative model building and parameter exploration 714 

In mathematical terms, the functional form in Equation 8 is the integral solution of a family of 715 

LTISs of which Equation 5 is a particular example. It is referred to as a state-equation or state-716 

space model because the internal variable 2 characterizes the gain or state of adaptation of the 717 

system. This algorithm is generative because it estimates the value of 2 at trial � � 1 by modifying 718 

its estimate at the previous trial including possible effects of systematic biases and correcting the 719 

former value by weighting sensory feedback resulting from movement execution [21,26,47,48] (see 720 

also [25,32]; for further details on our specific use see the Methods section). Here we limit our 721 

discussion to noise-free generative models in that Equation 5 does not include any noise term. 722 

Yet, Fig 1 together with Fig 4 suggest that integral solutions as well as numerical outcomes of 723 

noise-free generative models survive ensuing variability, at least for the paradigm, type of stimulus 724 

and within the ranges of the conditions tested. 725 

We analyzed 16 models that differed in the specific parameters that were fitted and then used 726 

Akaike’s information criteria to attempt model selection. Since we were primarily modeling intrinsic 727 

error-based sensorimotor learning, the learning rate + —that weights the impact of the last 728 

feedback error on the state of adaptation—was present in every model. Second, we included the 729 

initial condition ' as a fitting parameter in half of the models. This parameter is not part of the trial-730 

by-trial learning algorithm and its effect should decay as the trial number increases (cf., Equation 731 

7). However, the initial condition affects the amplitude of decay of the baseline drift (cf. 9  in 732 

Equation 8). Because the argument of Equation 5 is an internal variable not directly 733 

experimentally accessible, a proxy for its initial value can only be approximated (for example, by 734 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 4, 2019. ; https://doi.org/10.1101/492512doi: bioRxiv preprint 

https://doi.org/10.1101/492512
http://creativecommons.org/licenses/by/4.0/


 

  Page 30 of 48 

averaging the first five gain values in the block) or included as a fitting parameter. Third, we 735 

included a persistence rate ( that weighted how much of the estimate from the previous movement 736 

remained in the subsequent one. The fourth parameter, 3, captured systematic effects, that are 737 

not error-based in nature, and gave origin to drifts in the baseline that were pervasive across all 738 

conditions. Finally, we considered the plausibility and study the effects of a second learning rate / 739 

that tracks errors other than the most recent (here, the next-to-last feedback error).  740 

To further discuss the effect of the generative parameters, we split the 16 models into four 741 

groups:  742 

I. Models that neither included terms depending on the second learning rate / nor the drift 743 

term 3 ( +, +', +(, +('); 744 

II. Models without terms depending on / but including 3 (+3, +3', +(3, +(3'); 745 

III. Models including terms depending on / but excluding 3 (+/, +/', +(/, +(/'); 746 

IV. Models with both / and 3 terms included (+3/, +(3/, +3/', +(3/').  747 

We recall that in models where ( is not a fitting parameter, ( � 1. The groups are listed on the left 748 

side of Fig 5. Models within group I consistently fitted worst. Moreover, models that do not include 749 

3 (groups I and III) cannot capture an evolution of the gain into a stationary asymptotic value 750 

because the state equation does not admit a solution featuring that behavior (that is, if the stimulus 751 

has no constant term). These models, however, may be useful in experimental paradigms where a 752 

stable state of adaptation is not clearly reached either because the length of the adaptation block 753 

used may be too short or because the driving disturbance is unbounded (for example a linear 754 

ramp). On the other hand, models that include sampling from two errors (cf. groups III and IV) will 755 

likely be better suited to extract correlations built into the stimulus as it is the case of a sinusoidal 756 

ISS. 757 

The fits of the phenomenological model (Fig 1; Equation 8) suggest that asymptotic behavior of 758 

the baseline and reflection of the stimulus self-correlation (entraining) were clear structural 759 

properties of the oculomotor response. The analytical solutions of models in both groups II and IV 760 
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are consistent with this phenomenology. Fig 5 summarizes the AIC weights emerging from the fits 761 

to the individual participants’ data. The weights shown in the horizontal bars are averages over 762 

individual participants’ weights for each condition and color coded by the frequency of the stimulus. 763 

Data from Two-way adaptation is depicted with blue tones in bars increasing towards the right. 764 

Global adaptation is shown with bars spanning to the left in red tones. The average weight for each 765 

model family is shown by the gray background behind the corresponding group.  While models in 766 

group II already generate responses in qualitatively good agreement with the evolution of the 767 

adaptation gain, it remains to be decided whether corrections based on the memory of more than a 768 

single error provide for a better fit. AIC weights show that group IV clearly outperforms all others in 769 

Two-way adaptation in both datasets, suggesting that the best generative model to describe this 770 

type of adaptation includes all four parameters +, (, 3 and /. In Global adaptation, models from 771 

group II either match or slightly outperform those of group IV. Model comparison showed that a 772 

state-equation including a single parameter or any combination of only two of the four parameters 773 

+, (, 3 and / could not adequately account for our data (cf. Fig 5). In addition, an inspection of 774 

actual values of the parameters fitted across the population suggests that the parameters ( and 3 775 

may be set to constant values, that is, to almost one for the former and to a very small and 776 

negative number for the latter (cf. Fig 7, columns c and d), at least within the range of frequencies 777 

tested in these experiments. Overall, the drift parameter 3 and the second learning rate / proved 778 

useful and necessary to account for systematic effects in our data, suggesting (1) that some 779 

changes in the adaptation state are not error-based and (2) that—at least under specific 780 

circumstances—the brain keeps track of at least one extra occurrence of the error besides the last 781 

experienced one. Three-parameter models that did not involve /  (specifically +(3) were most 782 

successful in Global adaptation and in the high frequencies of Two-way adaptation. This could be 783 

simply a reflection of increased levels of measurement noise in these conditions giving an upper 784 

hand to models with fewer parameters. More interestingly, it could point to an architecture that 785 

samples two errors only under certain conditions, for instance, when errors are 786 

repeatedly experienced for the same saccadic vector, or, when the variation of the feedback error 787 
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has a high signal-to-noise ratio. We speculate that overtraining along a given direction, understood 788 

as the repetitive experience of consistent error along similar saccade vectors in Two-way 789 

adaptation (note that in our paradigm Two-way adaptation stimulates only two retinal locations) 790 

may give rise to vector specificity and, consequently, to the adaptation fields typically observed 791 

with fixed-step paradigms. Indeed, Rolfs and collaborators [18] suggested that Global adaptation, 792 

featuring apparent full transfer across random directions, appears to onset ahead of the 793 

development of vector-specific adaptation fields. This appears consistent with the present finding 794 

that models that rely on a single error-correction show timescales corresponding to faster evolution 795 

of the baseline drift (although with longer lags in the sinusoidal component) as compared to those 796 

of Two-way adaptation (featuring shorter lags in the sinusoidal component consistent with tracking 797 

the stimulus more closely due to the repetitive training in a specific direction). 798 

Drift in the baseline and the meaning of m 799 

The persistent drift of the baseline towards higher hypometria is a distinctive feature in our data 800 

that cannot be accounted for on the basis of motor adaptation [49]. We included an extra 801 

parameter 3 to account for this drift in mean adaptation gain towards an asymptote differing from 802 

the mean of the stimulus (cf. Equation 13). This parameter is conceptually novel, distinct and 803 

independent of the persistence rate (, and determines the presence of a non-zero asymptote via 804 

Equation 13.  Because in our paradigm the goal of the task was to land on the target as close as 805 

possible, and because the sinusoidal ISS introduced a continuously changing prediction error, the 806 

best expected outcome would be to track the disturbance within the levels of error typical of trials 807 

without disturbance. With respect to that goal, the presence of a baseline drift introduces an 808 

additional discrepancy that does not, however, hinder successful adaptation to the disturbance.  809 

Saccadic eye movements slightly undershoot their target on average [50] and this systematic offset 810 

corresponds to the internally predicted visual outcome of a saccadic eye movement [51,52]. We 811 

surmise that our paradigm may have yielded a re-calibration of this desired offset [53] over the 812 

course of an experimental run. This recalibration towards a larger undershoot may result from the 813 

high probability of a quick return saccade after every eye movement in our fast-pace paradigm, 814 
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reducing the utility of maintaining a saccade gain close to one. We note that this systematic 815 

decrease in saccade gain may in general—albeit to different degrees—pervade the study of 816 

saccadic adaptation (but see [7,54]). In fixed-step paradigms (as opposed to the sinusoidal 817 

paradigm employed here), however, it would have been obscured as the error-based correction for 818 

the surreptitious target displacement undergoes similar dynamics as the drift reported here.  819 

On the other hand, from the point of view of the internal model of the movement that the brain may 820 

implement [33-35], this bias parameter 3 may hint to a discrepancy between the experimental 821 

coordinate system where measurements are acquired and the coordinate system in which the 822 

internal model is represented.  823 

On a neurophysiological level, the small systematic bias that gives rise to the drift of the baseline 824 

may originate from the dynamics of the responses in the neuronal substrates involved with 825 

saccade adaptation ([55-60], Reza Shadmehr, personal communication, July 12, 2018). It is also 826 

possible that the fast-pacing used in our paradigm exacerbates effects that generate a small and 827 

negative bias parameter, 3, which appeared to onset already at the pre-adaptation block. That 828 

would further suggests that the magnitude of 3 may depend on the inter-saccade interval as well 829 

as on the precise timing of the ISS onset, which should be addressed in future studies. 830 

Consequences of learning from double error sampling (D parameter): Two learners? 831 

The models that best explained the data featured a double error sampling, learning not only from 832 

the feedback experienced after the last saccade but also from the movement that occurred in a trial 833 

before that. Hence, the best models used a feedback reaching further back in time through the +- 834 

and /-terms of Equation 5. Yet, does the oculomotor system actually implement this double error 835 

sampling that may coherently participate in a single internal model prediction? We suggest that the 836 

brain may attempt to approximate the performance achieved by the double-error-sampling 837 

algorithm by using two single-feedback learners operating on appropriate combinations of the 838 

stimulus sampled at two different times. 839 

To understand that, we return to Equation 5. For simplicity, we will assume that 3 � 0.  840 
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2�� � 1� � �(  +�2���  /2��  1� � +s��� � /���  1�,              (5a) 841 

and write a transformation among state variables sampled at two different trials as,  842 

T���� � 1
2 U2��� � 2��  1�V  and T���� � 1

2 U2���  2��  1�V, 

that can be substituted in the RHS of Equation 5a using the inverse relations: 843 

2��� � T���� � T����,   and  2��  1� � T����  T����. 

We can re-write Equation 5a in terms of these alternative state variables T� and T�: 844 

T��� � 1� � T��� � 1� � �(  Y�T���� � �(  Z�T���� � Y����� � Z�����,            (5b) 845 

where we adopted the definitions of Y � + � /,  Z � +  / , ����� � �

�
,���� � ���  1�-  and 846 

����� � �

�
,����  ���  1�- . Equation 5b avails the interpretation of the generative model as 847 

selectively learning into two component channels that learn from a single feedback error taken 848 

from different sources. The source for the learner T� is the mean of the two samplings of the 849 

stimulus, i.e., ����� � �

�
,���� � ���  1�-. The source for the second learner is the rate of change 850 

of the stimulus across the sampling events given by ����� � �

�
,����  ���  1�- which, when the 851 

samplings occur on successive trials, it could be interpreted as the discrete time derivative of the 852 

stimulus taking the elementary timestep as the (average) inter-trial interval.  853 

Note that the representation in terms of these alternative internal variables would significantly alter 854 

the underlying structure of the noise-free learning model. But if we insist on keeping a close 855 

connection to the parameters extracted using the double-error-sampling algorithm, we would 856 

expect that the learning rate for learner T� would be the addition of the rates for the two errors, 857 

Y � + � /, while for learner T� it would be Z � +  / (cf. Fig 7, columns e and f). In all our fittings 858 

using the double error sampling, + and / were very close in magnitude but carried opposite sign. 859 

Furthermore, Y was small and similar in magnitude to the learning rate + obtained for models that 860 

learned only from the last error. Because / was negative, the learning rate Z for the second learner 861 

became also positive but much larger than Y, in fact about an order of magnitude larger (Fig 7, 862 
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columns e and f) effectively enhancing the overall gain of the process without driving the system 863 

unstable [61-63]. As a consequence, �(  Y�, which can be thought of as an effective (� will be 864 

much closer to unity than (� � �(  Z�. Therefore, T� will learn and forget much slower than T�.  865 

Using this double error sampling, the oculomotor system could track the rate of change of the 866 

stimulus from one saccade to the next, besides just its last change in size and it would 867 

approximate the learning efficiency of the double-error-sampling algorithm. The new internal 868 

learning variables (T� and T�) would learn from smoothed-out versions of the disturbance resulting 869 

from the average sum and difference of the two sampled inputs. Whether this constitutes an 870 

advantage over learning exclusively from the last feedback depends on the nature of stimulus. If 871 

the disturbance is constant or fully random there would be very little advantage in performing the 872 

double error sampling. In the former case, the inter-sampling variation is zero leaving nothing to 873 

learn. In the latter, the inter-sampling variation would be another random magnitude and there 874 

would be little advantage in learning from the variation in the feedback. However, if the mean of the 875 

disturbance varies in a systematic way—as it does during sinusoidal adaptation, and presumably in 876 

natural scenarios—learning from its rate of variation would be advantageous and could well justify 877 

a large learning rate. In the representation of the double-error-sampling model, unlearning actively 878 

the next-to-last sampled feedback error (i.e., with a large and negative /  subtracted from an 879 

enhanced +) would materialize this advantage with little extra investment. However, a negative 880 

learning rate feels counter-intuitive as learning is believed to follow the direction of the correction 881 

suggested by the feedback. Segregation of the learning underlying motor (or saccade) adaptation 882 

into two learners displaying similar characteristics to those suggested here have indeed been 883 

proposed in other contexts [8,25,64,65]. The argument presented above suggests a mechanistic 884 

way to construct a two-learner system, in which the components T� and T�  can be considered 885 

statistics in counterphase. To approximate the double-error-sampling learner, the system may hold 886 

in memory both samples, compute mean sum and differences between the samples and 887 

implement two learners based on those statistics rather than from bare values of errors or stimulus 888 

occurrences. To achieve that, the oculomotor system would need to keep memory and weight 889 

prediction errors from a former time scale besides the last feedback [65].  890 
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An important point to notice is that, even if there is double error sampling, it does not need to be 891 

strictly the next-to-last error. It would be enough that the brain keeps a correlation of errors over 892 

two different trials (cf. [66]) although it would be reasonable that they are spaced only by a short 893 

delay [61]. This is a reasonable generalization since the inter-trial interval is rather arbitrarily set by 894 

the pacing of the task that may or may not match a possible internal sampling frequency by the 895 

brain. The frequency of the stimulus then determines to what degree differences in the stimulus 896 

can be sampled, which may explain the dependence of the amplitude and lag of the periodic 897 

component of the response with the frequency as well as the fact that the evidence for the full 898 

model seems to peak at intermediate frequencies. In other words, it may be easier to learn at 899 

certain frequencies (for a fixed amplitude) or at certain effective rates of change of the stimulus.  900 

Dependency of learning rate on perturbation dynamics: Linear but not strictly Time Invariant 901 

Systems  902 

We further explored whether the values of the generative parameters exhibited dependence on the 903 

experimental condition, specifically with the type of adaptation and the frequency of the 904 

disturbance. The parameters of our models remained time-invariant across pre-adaptation and 905 

adaptation blocks. However, we did not rule out that these parameters may change with adaptation 906 

type and stimulus frequency. In fact, LTIS models with parameters not strictly time-invariant have 907 

been invoked to model (meta-learning in) savings in adaptation to visuomotor rotations [32]. Strict 908 

LTIS models with two learners had been able to successfully account for savings in long-term 909 

saccade adaptation [8,25,64,67]) but were not able to fit differences in the dynamics of the 910 

adaptation, extinction and re-adaptation phases observed using counter-adaptation and wash-out 911 

paradigms in adaptation to visuomotor rotations without letting the rates change across the phases 912 

[32].  913 

We limit our discussion to the best four generative models selected in the Results section. In 914 

models +(3 and +(3' (and in general in all models of groups I and II), the (only) learning rate + 915 

remained relatively independent of, or exhibited a tendency to grow with, the frequency of the 916 

stimulus (Fig 6a). Learning rates for Two-way adaptation roughly ranged between 0.01 and 0.035 917 
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fraction of the error across the frequencies tested. The same parameter in Global adaptation was 918 

smaller and remained within the range 0.005 to 0.015 (cf. Fig 6a and S1 Table). These 919 

observations were confirmed by ANOVAs run on the fitted values of the parameter + in models 920 

+(3 and +(3'  in that type of adaptation was always a significant factor while ISS frequency 921 

never was (S2 Table). These values of + compare reasonably well with the magnitude of learning 922 

rates previously reported in the literature (cf. [8,19]). The dependence of the learning rate on the 923 

frequency of the disturbance seems in qualitative agreement with results from reaching 924 

experiments in which subjects learned to track a target undergoing surreptitious displacement that 925 

followed a random walk [30,47]. Using a Kalman filter to estimate corrections to the learning rate 926 

due to various types of variability Burge and collaborators [30] argued that the learning rate 927 

increased as the drift of the walker increased. In the sinusoidal adaptation paradigm where the 928 

amplitude of the sine function that produces the ISS is of fixed amplitude, this situation occurs 929 

when the frequency increases because its size from one trial to the next changes faster. However, 930 

this suggestion seems at odds with the intuition that a more consistent stimulus should drive more 931 

efficient adaptation [68,69]. In particular, it has been reported that a smooth gradual variation 932 

results in more efficient adaptation [3,70]. If this were the case and reflected onto the model 933 

parameters, the learning rate should be higher for smaller frequencies. 934 

However, the dependence of the learning rate(s) on the frequency described above changed rather 935 

dramatically when double error sampling was included (cf. Fig 7, columns a and b). Interestingly, 936 

in models that feature double error sampling, the learning rate of the most-recent error-term (+) 937 

reversed its tendency and decreased as the frequency increases, achieving its highest values in 938 

the conditions of lower frequency, this is, in situations where the stimulus displayed higher 939 

consistency. Concurrently, the learning rate for the next-to-last feedback (/) achieved its most 940 

negative values at lower frequencies and grew less negative as the stimulus frequency increased. 941 

In the alternative scenario of two additive learners with single error correcting terms that learned 942 

respectively from the half-sum and the half-difference of the two sampled errors suggested in the 943 

previous sub-section, the learning rates Y and Z also showed a distinct dependency on the ISS 944 

frequency. The slow-learner (with learning rate Y) would only have corrected up to 1% of the 945 
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average of the two errors sampled while the fast-learner (with rate Z ) would have produced 946 

corrections of up to 40% of the change experienced between the two sampled errors (cf. Fig 7e 947 

and f). Note that this massive change in the dependence of the learning rates on the frequency 948 

was a consequence of changing the hypothesized structure of the model and not of correcting the 949 

magnitude of the rates for effects of variability. Once again, ANOVAs confirmed that not only the 950 

type of adaptation but also the stimulus frequency had significant impact on the learning rates (+ 951 

and /, as well as Y and Z) in models +3/' and +(3/' as well as all models of group IV (cf. S2 952 

Table).  953 

In contradistinction, the retention rate ( (Figs 6b and 7c) and the bias parameter 3 (Figs 6c and 954 

7d) remained relatively independent of the frequency under such changes, although their overall 955 

variability was clearly reduced in the models featuring double error sampling (contrast the value 956 

ranges of 3 and ( in Fig 6, against the corresponding ones in Fig 7, aside from model +3/' in 957 

which ( � 1; see also corresponding entries in S1 Table). ANOVAs run over these parameters 958 

further confirmed non-significance of the frequency except for model +3/' on 3 in dataset ORIG 959 

(S2 Table). Type of adaptation occasionally modulated ( in dataset FREQ in models with a single 960 

error term. Taken altogether these suggests that both (  and 3  may be largely frequency 961 

independent and can be modeled as constant values maybe differing in value for Two-way and 962 

Global types. 963 

In summary, introducing a second error term increased the magnitude of both learning rates (+ 964 

and /) by an order of magnitude with opposing signs. The learning rates of these models showed 965 

a clear dependence on the frequency of the disturbance: higher stimulus consistency (i.e., lower 966 

stimulus frequencies) correlated with higher adaptation efficiency. At the same time, the inclusion 967 

of the double error sampling reduced variability in the estimates of the persistence rate ( and the 968 

drift parameter 3, indicating that their estimates were not affected by the ISS frequency, and could 969 

thus be set to appropriate constant values.  970 

Relation to previous work on sensorimotor control and adaptation 971 
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Multiple distinct learning processes contribute to sensorimotor adaptation [8,25,64-66,71]. Recent 972 

research conducted primarily within adaptation to visuomotor rotations or in reaching movements, 973 

suggests that adaptation can be decomposed into two fundamental processes that may operate in 974 

parallel: one that would be responsible for implicit learning that progresses slowly and can be 975 

described mechanistically by a state-equation [49]. This slow learning process is relatively stable 976 

over breaks, takes place with automatic, reflex-like behavior and its properties tend to be sturdy 977 

and do not change fast with recent experience. A second, parallel process, in turn, learns explicitly, 978 

is faster although it may require longer reaction time and possibly voluntary behavior to be 979 

engaged. This faster process would exhibit longer term memory of prior learning [71-74].  980 

We believe that our paradigm taps only the first, implicit component. Yet, we suggest that our 981 

analyses provide evidence for two separable subcomponents, although both would be intrinsic in 982 

nature [75]. In fact, a key difference between our oculomotor learning and learning that occurs in 983 

adaptation to visuomotor rotations and during reaching in force fields is that our participants were 984 

primarily unaware of the inducing disturbance. In contrast, in the aforementioned paradigms, 985 

participants immediately notice a disturbance even when they may not be fully aware of the exact 986 

effect. In this sense, our paradigm could be considered qualitatively closer to that used by Cheng 987 

and Sabes [22] who studied calibration of visually guided reaching in participants fully unaware of 988 

the stimulus manipulation. Their paradigm used a random, time-varying sequence of feedback 989 

shifts. They found that a linear dynamical system (LDS) with a single error term and trial-by-trial 990 

state update for variability implemented with an estimation-maximization algorithm successfully 991 

described mean reach point and the temporal correlation between reaching errors and visual shifts. 992 

They further argued that the learning taking place under a random stimulus generalizes to a 993 

situation of constant shifts in a block paradigm and, therefore, that adaptation dynamics does not 994 

rely on the sequence (or correlation) of feedback shifts but can be generally described with the 995 

LDS model. In contrast to random or block constant ISS, our paradigm featured a disturbance that 996 

was fully self-correlated since it followed a sine variation with the trial number. Therefore, it may 997 

prove advantageous for the oculomotor system to extract correlations embedded in the 998 
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disturbance because they would help tracking the target. As pointed out, including double error 999 

sampling would serve this purpose.  1000 

We believe that the presence of a systematically varying disturbance enables a further 1001 

decomposition of the implicit component of adaptation, perhaps into a primary one, that attempts to 1002 

mitigate the end-point discrepancy regardless of self-correlations in the disturbance, and a second 1003 

one that attempts to extract (and use) such correlations. It remains an open question how these 1004 

putative subprocesses may map on distinct or overlapping anatomical structures, such as 1005 

cerebellar cortices, deep cerebellar nuclei and extracerebellar structures [55,57,59,60,64,76-80].  1006 

A recent study suggested that learning in dynamic environments may be adequately modeled with 1007 

an algorithm popular in industrial process control, the proportional-integral-derivative (PID) 1008 

controller [81]. The algorithm generates a control signal adding three error-related contributions: a 1009 

term proportional to the current error that resembles a usual delta-rule (the P-term), a term that 1010 

integrates over a history of errors experienced before the current one, and a derivative term 1011 

estimated from the difference between the last two errors. The model shares some features with 1012 

ours, in particular that the learning rate for the next-to-last error needs to be negative to 1013 

approximate the derivative term. The PID controller acts on the actual recorded errors (the 1014 

equivalent of the visual errors observed after each saccade is executed) and contains no internal 1015 

state estimation, whereas our model operates on an internal variable that contains the state 1016 

estimation of the prediction error that would result from the movement execution. Our state variable 1017 

in fact accumulates and retains a substantial portion of the history of previous error (the 1018 

persistence term in Equation 5, see also the example given in S1 Appendix), which is updated on 1019 

a trial-by-trial basis by the term proportional to the latest prediction error (the delta-rule term). The 1020 

inclusion of an extra error in our state-equation (specifically that of the previous to last one) 1021 

effectively brings into play a contribution similar to the derivative term of the PID model. In short, 1022 

our /-term enables a systematic correction to the integral term (our (-term) that otherwise would 1023 

be determined rigidly by the iteration of the equation. In that respect, keeping track of former errors 1024 

enables a structural correction that acts at a global level even when it is introduced on a trial-by-1025 

trial basis, lending both robustness and flexibility to the algorithm. Ritz and collaborators [81] 1026 
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further compared the performance of the PID model to a Kalman filter used to update a state 1027 

variable in presence of noise applied on the single error structure of the usual delta-rule and found 1028 

that the PID controller performs better. A further similarity with the aforementioned work lies in their 1029 

observation that models with a derivative term are usually not readily selected under statistical 1030 

model selection even when they may display significant improvement in the description of the 1031 

behavior (see [81] for a longer discussion on this point).  1032 

Conclusions 1033 

Having adequate generative models that describe eye movements have been stressed before 1034 

[80,82-86] as an important tool to assess, at the single patient level, a variety of movement 1035 

abnormalities that have been identified as markers of neurological conditions or disorders at a 1036 

group level. In this study, elaborating on the idea of tracking a memory of errors [65], we attempted 1037 

to identify and constrain a relatively minimal set of requirements that would suffice to model 1038 

saccade adaptation data collected under the paradigm and stimulus that we recently implemented 1039 

[11]  but that would also include previous accounts of the phenomenon under other known 1040 

paradigms. While certainly many refinements are still due, we unveiled features of an algorithm 1041 

that seems suitable to account for the sensorimotor learning observed in our data. We hope it can 1042 

be generalized, extended and adapted for use in future research.   1043 
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 1047 

S1 Table. Generative parameters fitted with the best four models.  Model name is shown at the top. The 1048 
corresponding datasets can be identified by the stimulus frequencies tested: ORIG: 3, 4 and 6cpb. FREQ: 1, 3, 6, 12 and 1049 
24cpb.  1050 

S2 Table. ANOVA results on the generative parameters fitted with the best four models. Repeated-measures 1051 
ANOVA (2 X 3 on data from ORIG; 2 X 5 on data from FREQ) with factors type of adaptation and stimulus frequency was 1052 
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run on each of the four best models. Model name is shown at the side of the table and parameter names are on the top. 1053 
The dataset is indicated in the cell at the upper left corner next the the parameter names. Highlights indicate the cases 1054 
where the corresponding factor shows significant effects. 1055 

S1 Appendix. Predictions of a state-equation with a sigle, most-recent error-based correction term. Effects of 1056 
including next-to-last error-sampling.   1057 
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