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Abstract.

Objective. Building efficient movement decoding models from brain signals is crucial for

many biomedical applications. Moreover, decoding specific movement features, such

as speed and force, may provide useful information at the expense of increasing the

complexity of the decoding problem. Recent attempts to predict movement kinetics

from the electroencephalogram (EEG) achieved classification accuracy levels not better

than chance, stressing the demand for more accurate prediction strategies. Thus,

the aim of this study was to determine the prediction accuracy of movement kinetics

that can be achieved from single-trial EEG signals recorded from healthy volunteers

and stroke patients. Approach. A strategy based on convolutional neural networks

(ConvNet) was tested, since it has recently shown good performance in the classification

of EEG signals. EEG data were minimally pre-processed, in order to mimic online

classification scenarios. Main results. Overall accuracy for the 4-class classification

problem using ConvNets was close to 80% for healthy volunteers and around 60%

for stroke patients. Significance: These results represent a substantial improvement

over previously reported results, suggesting that movement kinetics can be accurately

predicted from single-trial EEG using ConvNets.

1. Introduction

The decoding of brain signals to predict movements is useful in many research areas,

such as neuromechanics, neuroscience and robotics [1]. Furthermore, it has gained

relevance in neurological rehabilitation, since it has potential to facilitate the assessment
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of the central nervous system in patients, promote neural plasticity, improve motor

dysfunction and allow the control of assistive devices through brain-computer interfaces

(BCI) [2]. Brain signals are commonly recorded in the electroencephalogram (EEG) and

specific oscillatory patterns in the EEG, such as sensorimotor rhythms and slow cortical

potentials, can be analysed to extract motor commands prior to or during movement

execution [3, 4]. Indeed, EEG waves carry information about anticipatory behaviour

[5], which makes it possible to predict movement, i.e., to detect and classify a particular

movement before it is actually executed. This is commonly performed by analysing

components of movement-related cortical potentials (MRCPs), such as the readiness

potential and contingent negative variation, during self-paced or cue-based movement,

respectively [6].

The movement decoding process is generally focused on detecting a predetermined

final state and lacks attention regarding the quality of the action, resulting in rough

commands [7] that do not correspond to the actual movement [8, 9]. Research on fine

movements of body structures, such as individual fingers from one hand [10], or complex

movement control [11] is comparatively scarce. It is straightforward to hypothesize that

better commands can be achieved if movement kinematics and kinetics are taken into

account in the decoding process [12]. Indeed, the decoding of hand movement velocities

[13, 14] and 3D trajectories [15] as well as the prediction of force and speed from a specific

movement [16, 11] showed promising results. However, recent attempts to predict speed

and force from a hand grasping tasks resulted in a classification accuracy not better than

chance level [17, 18, 19], stressing the demand for more accurate prediction strategies.

Each pattern in the EEG related to motor control has a different neurophysiological

basis, since the brain uses distinct and specialised strategies to generate commands.

Thus, pattern recognition systems used to decode and predict movements require careful

engineering and domain expertise to transform raw EEG signals (usually by means of a

feature extraction subsystem) into a suitable representation for the classification stage

[20]. In this regard, several techniques have been proposed for feature extraction, e.g.,

independent component analysis, common spatial patterns and joint time-frequency

analysis, and also for classification, e.g., linear discriminant analysis, support vector

machines (SVMs), nearest neighbour classifiers and combinations, among others [21].

An alternative is to use representation learning methods that automatically perform

feature extraction and classification through optimisation algorithms. Deep learning is

a paradigmatic example, with multiple levels of representation obtained by combining

simple but non-linear modules that transform the input into increasingly more abstract

levels [20]. Recently, a decoding model based on deep learning implemented through

convolutional neural networks (ConvNets) was proposed to improve state-of-the-art

classification performance across several tasks and across subjects using different EEG

paradigms [22].

The aim of the present study was to determine the prediction accuracy of movement

kinetic that can be achieved from single-trial EEG signals recorded from healthy

volunteers and stroke patients. Subjects executed an isometric right hand palmar grasp
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task using two predefined levels of force (20% and 60% of the maximum voluntary

contraction, MVC) and speed (a 3-s slow grasp and a 0.5-s fast grasp). EEG data were

minimally pre-processed, in order to mimic online classification scenarios. A prediction

strategy using ConvNets was implemented and contrasted with results obtained using

SVM on the same datasets. Overall classification accuracy, precision and recall were

quantified in order to evaluate the performance of the proposed prediction strategies.

Materials and methods

Dataset

A dataset consisting of EEG recordings of sixteen healthy volunteers and five stroke

patients was employed [17]. Written informed consent was obtained from all subjects

prior to participation and the Declaration of Helsinki was respected. The study was

approved by the local ethical committee of Region NordJylland (approval no. N-

20100067). EEG was recorded during four isometric right hand palmar grasp tasks with

different execution speeds and force levels (expressed as percentage of MVC), categorized

as follows: Slow20, 3 s to reach 20%MVC; Slow60, 3 s to reach 60%MVC; Fast20, 0.5 s to

reach 20% MVC and Fast60, 0.5 s to reach 60% MVC. Forty externally cued repetitions

(trials) were performed for each task. A Neuroscan NuAmp Express amplifier was used

to record the EEG (Compumedics Ltd., Victoria, Australia) from the electrode locations

shown in Fig. 1, in accordance to the 10/10 system. The corresponding EEG channels

were referenced to the right earlobe and grounded at nasion. During the experiment,

the impedance of all electrodes was kept below 5 kΩ, continuously sampled at 500 Hz

and stored for offline analysis. For the full description of the experimental procedure,

please refer to [17].

Prediction strategies

Pre-processing. EEG was notch-filtered (50 Hz) in order to reduce power line

interference. No further pre-processing or filtering was applied to the EEG signals,

and noisy epochs were not removed, in order to test the prediction schemes in settings

that resemble as much as possible an online prediction scenario. Forty trials per task

were executed, resulting in 160 trials per subject. All trials were baseline corrected

using a 1-s interval before the cue as reference. Trials were subsequently segmented

into 500-ms epochs, from 600 ms to 100 ms before movement onset (Fig. 2). EEG

epochs were finally arranged in a 5 × 4 × 250 matrix with a two-dimensional spatial

distribution and the time samples in the third dimension (Fig. 1). Data were divided in

128 trials (80%) for training and validation and 32 trials (20%) for testing. The training

and validation set was further split into 102 trials (80%) for training and 18 trials (20%)

for validation.
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Figure 1: Input data arrangement for the ConvNet based on the spatial distribution of

the recorded channels in healthy volunteers (a) and stroke patients (b).

Convolutional Neural Network The model was based on the EEGnet described in

Lawhern et al. (2016) [22]. The ConvNet was built in Keras 2.0.5 [23] using the

TensorFlow 1.2.1 back-end [24] and trained on an Dell Precision 7910 workstation with

an NVIDIA Titan Xp GPU, using CUDA 8 and cuDNN 8.

The model consisted of four layers (Table 1). The input of the first layer was a pre-

processed three-dimensional (3D) matrix for each trial, which was reshaped so the 16

convolutional kernels (size 2 × 2) were applied to each time sample, generating linear

combinations of four neighbouring channels in the spatial dimension (spatial filter).

Kernel weights were initialized with a Glorot uniform technique and were regularized

with an elastic-net (L1 + L2) penalties, with L1 = L2 = 0.01, because the weights were

expected to be small and sparse. Padding was not applied and stride was set to 1 for

all dimensions. Exponential Linear Unit (ELU) activation with alpha = 1 was applied

afterwards, followed by a batch normalization and drop-out with a rate of 0.25.

In the second layer, both spatial and temporal dimensions were taken into account,

using eight convolutional kernels (size 2 × 2 × 27) for each map. In this case, the spatial

dimension size was kept constant through zero padding. Henceforth, a 3D max pooling

step was applied to the layers (stride set to 1, no padding), which selected the maximum

value from a kernel with a size of 2 × 3 × 4. ELU activation, batch normalization, and

drop-out were applied using the same hyperparameters as in the first layer.

The third layer consisted of four convolutional kernels (size 2 × 2 × 27) for each
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Figure 2: Representative examples of 3 s EEG trials (back) and the corresponding 500

ms epochs (front) for healthy volunteers (top) and stroke patients (bottom), relative

to movement onset. The solid trace and shading represent mean and 95% confidence

intervals for each class, respectively, derived using 5000 bootstrap iterations. Vertical

lines represent cue (solid) and movement onset (dashed) times.

map, corresponding to the four classes of the problem. The max pooling kernel size

in this layer was 2 × 1 × 4. A 3D global average pooling was applied at the end of

this layer. Finally, the four resulting scores were transformed to probabilities in the last

layer by means of a softmax activation.

The learning process consisted of a fixed number of learning steps using mini-

batch of 16 randomly selected trials and the Adam optimization. The final number of

steps was set to 150 after analysing the learning curves for all subjects. The accuracy

obtained from the validation set was used as metric, and the model was updated through

a model check point if the accuracy improved compared to the last saved model. To

prevent model overfitting, only the model with the best validation accuracy was kept.

This regularization procedure is similar to that obtained by early stopping, with the
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Table 1: ConvNet architecture

Layer Type Output size Parameters #

1 Input (Cy × Cx × T ) 0

Reshape (Cy × Cx × T × 1) 0

Conv3D (2, 2, 1) × 16 (4× 3× T × 16) 80

Batch normalization (4× 3× T × 16) 64

ELU (4× 3× T × 16) 0

Dropout (.25) (4× 3× T × 16) 0

2 Conv3D (2, 2, 27) × 8 (4× 3× T × 8) 13832

Batch normalization (4× 3× T × 8) 32

ELU (4× 3× T × 8) 0

Max pooling 3D (2, 3, 4) (3× 1× 62× 8) 0

Dropout (.25) (3× 1× 62× 8) 0

3 Conv3D (2, 1, 3) × N (2× 1× 62×N) 196

Batch normalization (2× 1× 62×N) 16

ELU (2× 1× 62×N) 0

Max pooling 3D (2, 1, 4) (1× 1× 15×N) 0

Dropout (.25) (1× 1× 15×N) 0

Global Average Pooling 3D (N) 0

4 Activation (Softmax) (N) 0

Cx = channels (mediolateral direction), Cy = channels (anteroposterior direction),

T = time samples, N = number of classes.

disadvantage of performing the training procedure through all steps. Nevertheless, this

method was selected because the ConvNet has a relatively small number of training

examples, and early stopping did not always result in the best possible accuracy. In this

regard, the relationship between training set size and performance was also derived

to verify that the training set size was appropriate in relation to the dataset size

[25]. Furthermore, the performance of the ConvNet was evaluated with a modified

version of the dataset in which the labels for each class were randomly scrambled, in

order to determine the level of classification by chance. Additionally, the ConvNet

was also evaluated in the case where the spatial distribution of the electrodes was

randomly shifted, in order to test the importance of the spatial relationship between

input channels. The results from these analyses (selection of step size and training set

size, and prediction accuracy after random scrambling of labels and spatial distribution)

are included in the supplementary material.
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Support vector machine SVMs are popular supervised learning models used for

classification. SVMs transform a non-linearly separable problem into a linearly separable

problem by projecting data into a new feature space through the use of kernel functions,

in order to find the optimal decision hyperplane in this feature space. This method was

initially proposed to solve two-class problems, although strategies were later developed

to extend this technique to multi-class classification problems [26]. For this study, SVMs

were implemented for reproducibility purposes, as they would allow a direct comparison

with prior studies using the same data [16, 17]. In this regard, a Radial Basis Function

(RBF) were used as kernel. Based on a heuristic search, the cost hyperparameter of

the SVM was set to 0.001 and the gamma hyperparameter of the kernel was set to

0.0002. Furthermore, a one-against-one strategy was used to implement the multi-class

SVM prediction strategy. This method constructed k(k-1)/2 classifiers, where k is the

number of classes of the problem. Each classifier used the training data from two classes

chosen out of k classes. After the training process was over, a voting strategy was used

to determine to which class each pattern belongs to. The open source library tool for

classification and regression problems (LIBSVM) was used to build the SVMs [27].

Data analysis and statistics

An individual prediction strategy was trained for each subject (i.e., one ConvNet and 6

SVMs to address the 4-class classification problem), and the same data partitioning

for training, validation and testing was used for the ConvNet and the SVMs to

ensure comparability. A 5-fold cross-validation procedure was performed to ensure the

generalizability of the results. The overall classification accuracy and per-class precision

and recall were quantified for each subject, as the mean values of the 5-fold cross-

validation. Furthermore, confusion matrices were computed to evaluate classification

bias. Only test results were shown.

A paired t-test was used to assess differences in overall classification accuracy

between classifiers (ConvNet vs. SVM). A repeated measures analysis of variance was

used to assess differences in precision and recall, with Classifier (levels: ConvNet, SVM),

Speed (levels: Fast, Slow) and Force (levels: 20% MVC, 60% MVC) as factors. Main

effects and two-way interactions were analysed. The Shapiro-Wilk test was performed

in order to assess the assumption of normality, which held for all indexes. Significant

interactions were evaluated using a Tukey post hoc test when required. Performance

indexes are reported as mean ± standard deviation unless stated otherwise. P values

smaller than 0.05 were regarded as statistically significant.

Results

Performance indexes for healthy subjects

The overall classification accuracy for the ConvNet model (78.6±7.9%) was significantly

higher compared to the SVM (64.4 ± 6.9%; t15 = 6.524, p < 0.001). Precision and
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recall values for all healthy volunteers are shown in Fig. 3. The precision of the

ConvNet model (79.8± 7.9%) was higher compared to the SVM (65.8± 6.7%; F1,15 =

41.320, p < 0.001). Additionally, there was a significant interaction between Speed and

Force (F1,15 = 16.318, p = 0.001). Post hoc analysis revealed that precision to predict

slow movements at 20% MVC (78.5± 8.1%) was significantly higher compared to slow

movements at 60% MVC (67.9 ± 9.8%; p = 0.004) and fast movements at 20% MVC

(70.3 ± 9.2%; p = 0.027). With regards to recall, it was significantly higher for the

ConvNet model (78.6± 7.8%) compared to the SVM (64.4± 6.9%; F1,15 = 42.563, p <

0.001). No further significant main effects or interactions were found.

Performance indexes for stroke patients

No significant differences were found in the overall classification accuracy for the

ConvNet model (57.0 ± 19.6%) compared to the SVM (39.9 ± 7.1%; t4 = 2.551, p =

0.062). Precision and recall values for stroke patients are shown in Fig. 4. No significant

main effects or interactions were found in terms of precision. With regards to recall, there

were significant interactions between Classifier and Speed (F1,4 = 28.289, p = 0.006)

and also between Classifier and Force (F1,4 = 107.302, p < 0.001). Post hoc tests

on the Classifier × Speed interaction showed that the recall for the prediction of slow

movements using the SVM (26±9.6%) was significantly lower compared to the remaining

three combinations (p values ranging from 0.007 to 0.022). Moreover, post hoc tests on

the Classifier × Force interaction showed that the recall for the prediction of movements

at 60% MVC using the ConvNet (63.5 ± 17.5%) was significantly higher compared to

the remaining three combinations (p values ranging from 0.001 to 0.008). Finally, the

recall for the prediction of movements at 60% MVC using the SVM (32.2 ± 7.6%) was

significantly lower compared to the remaining three combinations (p values ranging from

0.001 to 0.004).

Discussion

The aim of this study was to determine the prediction accuracy of movement kinetics

that can be achieved from single-trial EEG signals recorded from healthy volunteers

and stroke patients. In this regard, a ConvNet was proposed as prediction strategy.

Furthermore, a SVM classifier was also implemented for reproducibility purposes, as

this was the prediction strategy used in previous reports using the same data. EEG

data were minimally pre-processed, in order to mimic online classification scenarios.

Overall accuracy for the 4-class classification problem using ConvNets was close to 80%

for healthy volunteers, representing a substantial improvement over previously reported

accuracy using the same data. The prediction accuracy improvement for stroke patients

was lower, with average values around 60%.
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Figure 3: Classification results over test data. Top: precision and recall for healthy

volunteers (n = 16). Boxes represent the median and the 25th and 75th percentiles,

whiskers represent 5th and 95th percentiles, diamonds represent values outside of the 5th

- 95th percentile range and the individual dots represent the average precision/recall for

each individual subject, calculated from the 5-fold cross-validation. Bottom: confusion

matrix for all available trials. Slow20, 3 s to reach 20% MVC; Slow60, 3 s to reach 60%

MVC; Fast20, 0.5 s to reach 20% MVC and Fast60, 0.5 s to reach 60% MVC.

Neurophysiological aspects of movement prediction

Building efficient movement decoding models from brain signals is crucial for many

biomedical applications, particularly in the BCI field that require precision in online
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Figure 4: Classification results over test data. Top: precision and recall for stroke

patients (n = 5). Boxes represent the median and the 25th and 75th percentiles,

whiskers represent 5th and 95th percentiles, diamonds represent values outside of the 5th

- 95th percentile range and the individual dots represent the average precision/recall for

each individual subject, calculated from the 5-fold cross-validation. Bottom: confusion

matrix for all trials. Slow20, 3 s to reach 20% MVC; Slow60, 3 s to reach 60% MVC;

Fast20, 0.5 s to reach 20% MVC and Fast60, 0.5 s to reach 60% MVC.

control of assistive devices. Moreover, decoding specific movement features, such as

speed, force and/or direction, provides additional degrees of freedom, resulting in more
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accurate and natural motor commands at the expense of increasing the complexity of

the decoding problem [28, 15, 13, 14]. Early attempts to decode movement from brain

signals during movement execution or imagination were focused on classifying between

limb movements [29, 30, 31]. Classification accuracy for these studies is close to 80% for

2 classes [29, 30], and close to 56% for 4 classes [31]. Other studies have tried to decode

movement of specific body parts from a single limb, such as wrist [32], or individual

finger movements [10], obtaining similar results (accuracy ≈ 80% for 2 classes).

On the other hand, prediction of movement, i.e., decoding movement not during,

but before its execution, is a much more difficult task. Considering the brain as a

predictive neural system, expectation can be seen as a representation of prediction that

serve to sensory or motor areas as preparatory processing prior to an event, particularly

in short time scales [33]. Movement intention is the first interesting command to decode

from EEG before a movement is executed, as trigger for other more complex motor

instructions. It is well known that information about movement intention is encoded in

the MRCPs, around 1.5 s prior to movement onset [6]. The timing of the prediction is a

relevant feature to study, since it has been shown that a sensory stimulus delivered

synchronously with the peak negativity of the MRCP maximizes neural plasticity

[34]. Furthermore, kinetic information encoded in the movement intention could be

particularly useful; for example, by decoding these movement parameters it would be

possible to introduce task variability in the rehabilitation training, which has been shown

to maximize the motor learning [35].

In general terms, and although it has been shown that pre-movement EEG

contains valuable information about motion kinetics, classification rates were still

relatively low in healthy volunteers, particularly for multi-class classification problems.

Whereas detection of voluntary movement from single trial EEG was achieved using a

matched filter approach, obtaining relatively good performance in a 2-class classification

(sensitivity ≈ 82.5% for healthy subjects) [36], recent studies directed towards the

extraction of additional information from movement intention beyond simple detection,

such as the prediction of the body part that is about to perform the movement [19], or

the classification between different types of movement used in daily life, such as palmar,

lateral and pinch grasps [11], resulted in classification accuracies not better than chance

levels for the 4-class classification attempts.

In particular, previous work with the same dataset used in this study obtained mean

accuracy values of approximately 32-40% for the 4-class classification [17], which is on

par with the chance level for that type of problem [37]. These result might be partially

explained by the fact that the aim of the study was to obtain a fast prediction scheme

using few electrodes and a simple classifier that did not require extensive calibration. As

such, only one channel was used as input, and the signals were band filtered using low

cut-off frequencies values. However, it was recently suggested that information from the

entire EEG spectrum is needed to discriminate between task-related parameters from

single-trial movement intention [18].

In this work, it was possible to significantly improve the movement prediction
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accuracy using twenty available channels without band filtering or additional pre-

processing, such as artifact removal or epoch selection. Accuracy levels reach values

close to 80% in healthy volunteers, representing an improvement of almost 40%

compared to previous results. Therefore, it could be hypothesized that the decoding

of complex movement requires more information (in terms of number of channels or

features) in order to achieve a classification accuracy comparable with that obtained

for simpler movements, such ankle or wrist flexion/extension (binary classification

problems) [38, 32, 39, 16]. Furthermore, precision and recall were also evaluated for each

class, with slow movements at low force levels showing a slightly higher classification

precision without any differences in terms of recall. This difference can be explained by

a small negative classification bias for the aforementioned class from the SVM, as can

be observed in the confusion matrices in Fig. 3. No such interactions between force and

speed were observed in the previous study with this dataset [17], although speed tasks

resulted in higher accuracy values in the prediction of ankle dorsiflexion tasks [16].

The decoding of brain signals becomes even more complex when the EEG is

recorded from volunteers that suffered neurological damage [40]. Indeed, it has been

shown that a disruption in cortex integrity changes brain activation patterns and

responses in patients with motor impairments [41, 42]. One of the first studies involving

BCI and patients attempted to use imagination of foot movement to recover hand

function by orthotic devices in one tetraplegic patient [8]. This was followed by other

studies, in which binary classification was usually tested, either between both hands,

hands and feet, or simply against a resting state, resulting in accuracy levels between

60% and 70% for 2-class classification [8, 43, 44, 45]. Further studies attempting

movement detection from EEG signals of stroke patients generally resulted in a lower

classification accuracy compared to healthy volunteers (accuracy ≈ 55% for binary

classification) [36].

However, little research has been performed on movement prediction in patients.

In particular, Jochumsen et al. attempted to predict movement kinetics from stroke

patients, but the results were barely above chance levels (around 30%) [17]. Our results

using the same data showed an average classification accuracy around 60% for 4-class

classification. A large variation was generally observed in performance between subjects

(fig. 4), which might be attributed to the differences in the type and degree of lesion and

differences in electrode density compared to healthy volunteers. In any case, it is worth

noting that a moderate classification accuracy does not impede positive rehabilitation

[46, 44, 47].

Methodological aspects of movement prediction

Deep learning methods were originally developed in the computer vision field [48],

but recently started to gain popularity in EEG analysis, with the aim of improving

classification performance over traditional approaches, such as linear discriminant

analysis, k-nearest neighbours or SVMs [21]. ConvNets are a type of feed-forward deep
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learning networks that are useful when data have a known topological structure [20, 25].

As a representation learning method, one of the advantages of ConvNets is that feature

extraction and classification is intrinsically optimized. Typically, ConvNets consist of

a combination of convolutional and pooling layers. The convolutional layer applies

mathematical convolution operations through a number of kernels that perform a local

weighted sum along the input and return each one in a feature map. Then, the same

weights are shared across the input and have only local connections, thereby reducing

the amount of network parameters. The pooling layer performs a reduction of the input

by applying a function to nearby units, e.g. the maximum value among neighbours,

where the units are the pixels of an image or the temporal samples of a biosignal.

The ConvNet implemented in this study is based on a recently proposed architecture

that demonstrated good performance employing a small number of parameters in the

classification of EEG signals recorded using different paradigms [22]. In this model,

the first layer works as a spatial filter, in which the outcome consists of a number of

feature maps representing different combinations of channels that minimize the error at

the output. In accordance with the input structures used in image processing, the EEG

input to a ConvNet is usually reshaped into a 2D distribution, by arranging channels

along the rows and time samples in the columns [49, 50] or by transforming the input

into a new space [7], e.g., to a time-frequency domain through Fourier transform and

averaging along the channels [51, 52]. In both options, the spatial relationship between

neighbouring electrodes is lost. The ConvNet implemented in this study considered the

localization of the electrodes in order to keep the spatial relationship between them.

Furthermore, EEG signals are commonly pre-processed by using temporal and spatial

filters, and epochs containing artifacts or with amplitudes above a certain threshold

are rejected in order to improve the signal-to-noise ratio [6]. These processes are often

performed offline, are subjective and time-consuming and may result in the loss of

useful information to decode movement. Taking this into consideration, only minimal

pre-processing (baseline correction and notch filtering) was performed in this study

prior to the classification stage, and no epochs were removed in order to emulate online

classification scenarios.

The present study neither attempted to find the optimal strategy for movement

prediction nor advance the knowledge on machine learning strategies for single-trial EEG

classification. Instead, the main goal of this work was to determine the achievable levels

of prediction accuracy from single-trial EEG using state-of-the-art machine learning

techniques, and compare the results obtained with recent reports from the literature,

using SVMs as classification strategy and feature selection based on temporal and spatial

parameters [17]. The prediction results of the ConvNet were better than the SVM for all

tasks and all performance indexes in healthy volunteers by an average of 15 percentage

points. This is even more relevant considering that the SVMs implemented in this

study (using twenty available channels) already improved the classification accuracy by

20 to 30 percentage points compared to the previous study with the same dataset (using

only a single channel, C3, plus an eight-channel Laplacian filter) [17]. For comparison
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purposes, a systematic investigation regarding movement prediction performed with

combinations of spatial filtering (principal component analysis, independent component

analysis, common spatial patterns analysis, and surface Laplacian derivation), temporal

filtering (power spectral density estimation and discrete wavelet transform), pattern

classification (linear and quadratic Mahalanobis distance classifier, Bayesian classifier,

multi-layer perceptron neural network, probabilistic neural network, and support vector

machine) and multivariate feature selection strategy using a genetic algorithm, achieved

a maximum accuracy of 75% for binary classification [53]. In contrast, the ConvNet

shows better results with minimal pre-processing and optimal combination of feature

extraction and classification in a multi-class classification scenario.

Limitations

Several constraints need to be considered: attempts to use a single ConvNet to predict

movements from all subjects resulted in low performance indexes during pilot tests. This

is not an issue in most real-life applications where the decoding is used to control a device

for a single subject (and thus an individual ConvNet is trained for each subject), but

nevertheless highlights the difficulty in describing a general behaviour of the EEG signal

in terms of decoding force and speed. Another issue is related to the understanding and

visualization of the specific features that allow a good classification, since it is not always

straightforward to extract and interpret physiological information from the network.

Furthermore, even if high accuracy was achieved offline, it is crucial to perform real-

time tests with adequate feedback. With regards to the dataset from stroke patients,

there was a trend for better performance indexes with the ConvNets, but these results

should be interpreted with caution given the small sample size.

Conclusion

The results from this study suggest that movement kinetics can be accurately predicted

from single-trial EEG using convolutional neural networks. However, additional

considerations are required to transfer these protocols from laboratory to clinic. Future

work will be directed towards closing the loop to test the strategy with a real application,

for which an accurate detection of the movement onset is necessary and an idle state

should be considered [54]. Finally, once the definitive scheme has been defined, efficient

hardware implementations should be tested in chips or field-programmable gate arrays

[20].
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