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Convolutional Neural Networks Improve the

Prediction of Hand Movement Speed and Force
from Single-trial EEG

Ramiro Gatti, Yanina Atum, Luciano Schiaffino, Mads Jochumsen, and José Biurrun Manresa

Abstract—Objective. Building accurate movement decoding
models from brain signals is crucial for many biomedical ap-
plications. Decoding specific movement features, such as speed
and force, may provide additional useful information at the
expense of increasing the complexity of the decoding problem.
Recent attempts to predict movement speed and force from
the electroencephalogram (EEG) achieved classification accuracy
levels not better than chance, stressing the demand for more
accurate prediction strategies. Thus, the aim of this study was
to improve the prediction accuracy of hand movement speed
and force from single-trial EEG signals recorded from healthy
volunteers. Approach. A strategy based on convolutional neural
networks (ConvNets) was tested, since it has previously shown
good performance in the classification of EEG signals. Main
results. ConvNets achieved an overall accuracy of 84% in the
classification of two different levels of speed and force (4-class
classification) from single-trial EEG. Significance. These results
represent a substantial improvement over previously reported
results, suggesting that hand movement speed and force can be
accurately predicted from single-trial EEG.

Index Terms—Convolutional neural networks, hand movement,
speed and force, movement prediction, multi-class classification,
single-trial EEG.

I. INTRODUCTION

ECODING brain signals to predict movements is useful

in many research areas, such as neuromechanics, neuro-
science and robotics [1]. Furthermore, it is also relevant in neu-
rological rehabilitation, since it has potential to facilitate the
assessment of the central nervous system in patients, promote
neural plasticity, improve motor dysfunction and allow the
control of assistive devices through brain-computer interfaces
(BCI) [2]. In this regard, motor commands generated prior to
or during movement execution can be extracted from specific
oscillatory patterns in the electroencephalogram (EEG) [3],
[4]. Specifically, the component waves of movement-related
cortical potentials (MRCPs) immersed in the EEG, such as
the readiness potential and contingent negative variation, carry
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information about anticipatory behaviour, which can be used
to predict movements, i.e., to detect and classify a particular
movement before it is actually executed during self-paced or
cue-based paradigms [5]-[7].

The movement decoding process is generally focused on
detecting a predetermined final state and lacks attention re-
garding the quality of the action, resulting in simple, rough
commands [8]. Research on fine movements of body structures
such as fingers [9], or complex movement control [10] is
comparatively scarce. It is straightforward to hypothesize that
better commands can be achieved if movement kinematics and
kinetics are taken into account in the decoding process [11].
Indeed, the decoding of hand movement velocities [12], [13]
and 3D trajectories [14] as well as the prediction of force and
speed from a specific movement [10], [15] showed promising
results. However, recent attempts to predict speed and force
from a hand grasping tasks resulted in a classification accuracy
not better than chance level [16]-[18], stressing the need for
more accurate prediction schemes.

The control strategies generated by the nervous system
for goal-directed motor behaviour are extremely complex.
Thus, pattern recognition systems used to decode and predict
movements require careful engineering and domain expertise
to transform raw EEG signals (usually by means of a feature
extraction subsystem) into a suitable representation for the
classification stage [19]. In this regard, several techniques have
been proposed for feature extraction, e.g., common spatial
patterns, independent component analysis, and joint time-
frequency analysis, and also for classification, e.g., nearest
neighbour classifier, linear discriminant analysis, support vec-
tor machines (SVMs), and ensemble strategies, among others
[20]. An alternative is to use representation learning methods
that automatically perform a feature extraction and classifi-
cation through optimisation algorithms. Deep learning is a
paradigmatic example, with multiple levels of representation
obtained by combining simple but non-linear modules that
transform the input into increasingly more abstract levels
[19]. In line with this, a decoding model based on deep
learning implemented through convolutional neural networks
(ConvNets) recently showed promising results in classification
performance using different EEG paradigms [21].

The aim of the present study was to improve the prediction
accuracy of hand movement speed and force from single-
trial EEG signals recorded from healthy volunteers. Subjects
executed an isometric right hand palmar grasp task using two
predefined levels of force (20% and 60% of the maximum
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Fig. 1. Input data arrangement for the ConvNet based on the spatial
distribution of the recorded channels in healthy volunteers

voluntary contraction, MVC) and speed (a 3-s slow grasp and
a 0.5-s fast grasp). EEG data were minimally pre-processed,
in order to minimize user bias. A prediction strategy using
ConvNets was implemented and contrasted with results ob-
tained using SVM on the same datasets. Overall classification
accuracy, precision and recall were quantified in order to
evaluate the performance of the proposed prediction strategies.

II. MATERIALS AND METHODS
A. Dataset

A dataset consisting of EEG recordings from sixteen healthy
volunteers was employed [16]. Written informed consent was
obtained from all subjects prior to participation, and the Dec-
laration of Helsinki was respected. The study was approved by
the local ethical committee of Region NordJylland (approval
no. N-20100067). EEG was recorded during four isometric
right palmar grasp tasks with different execution speeds and
force levels (expressed as percentage of MVC), categorized as
follows: Slow20, 3 s to reach 20% MVC; Slow60, 3 s to reach
60% MVC; Fast20, 0.5 s to reach 20% MVC and Fast60, 0.5
s to reach 60% MVC. Forty externally cued repetitions (trials)
were performed for each task. A Neuroscan NuAmp Express
amplifier was used to record the EEG (Compumedics Ltd.,
Victoria, Australia) from the electrode locations shown in Fig.
1, in accordance to the 10/10 system. The corresponding EEG
channels were referenced to the right earlobe and grounded at
nasion. During the experiment, the impedance of all electrodes
was kept below 5 k{2, continuously sampled at 500 Hz
and stored for offline analysis. For additional details of the
experimental procedure, please refer to [16].

1) Pre-processing: EEG was notch-filtered (50 Hz) uzing a
zero-phase filter in order to reduce power line interference and
the baseline (1-s interval before the cue) was subtracted from
all trials. No further pre-processing or filtering was applied to
the EEG signals, and noisy epochs were not removed, in order
to minimize user bias. Forty trials per task were executed,
resulting in 160 trials per subject. Trials were subsequently
segmented into 500-ms epochs, from 600 ms to 100 ms
before movement onset (Fig. 2). EEG epochs were finally
arranged in a 5 x 4 x 250 matrix with a two-dimensional
spatial distribution and the time samples in the third dimension
(Fig. 1). Data were divided in 128 trials (80%) for training
and validation and 32 trials (20%) for testing. The training
and validation set was further split into 102 trials (80%) for
training and 18 trials (20%) for validation.
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Fig. 2. Representative examples of 3 s EEG trials (back) and the correspond-
ing 500 ms epochs (front) for healthy volunteers relative to movement onset.
The solid trace and shading represent mean and 95% confidence intervals for
each class, respectively, derived using 5000 bootstrap iterations. Vertical lines
represent cue (solid) and movement onset (dashed) times.

B. Prediction strategies

1) Convolutional Neural Network: The model was based
on the EEGnet described in Lawhern et al. [21]. The ConvNet
was built in TensorFlow 1.11 [22] using the Keras API [23]
and trained on an Dell Precision 7910 workstation with an
NVIDIA Titan Xp GPU, using CUDA 9 and cuDNN 7.3.

The model consisted of two blocks (Table I). The input
of the first layer was a pre-processed three-dimensional (3D)
matrix for each trial, which was reshaped to apply four tem-
poral filters (F}) to each channel. Following the original net
architecture, convolutional kernels of size (1, 64) were applied
in the temporal dimension. Kernel weights were initialized
with a Glorot uniform technique, without applying a bias
vector. The spatial dimension size was kept constant through
zero padding without stride. Then, a batch normalization
was applied. Afterwards, the matrix was reshaped and its
dimensions were permuted in order to apply a depthwise
convolution to every temporal slice by means of the wrapper
time distributed layer [24]. Two spatial filters of size (C'z,
C) for each feature map (deep multiplier parameter D) were
applied and then the matrix was reshaped and dimensions were
permuted again. Afterwards, a batch normalization followed
by a Exponential Linear Unit (ELU) activation with alpha =
1, an average pooling of size (1, 4), and drop-out with a rate
of 0.25 were applied.

In the second block, a 2D separable convolution of size
(1, 16) with eight filters (F») was applied. Henceforth, ELU
activation, batch normalization, average pooling of size (1, 8),
and drop-out were applied using the same hyperparameters as
in the first block. Finally, the data was flattened to a single
dimension and the four resulting scores of the dense layer were
transformed to probabilities by means of a softmax activation.

The ConvNet architecture was devised taking into account
temporal and spectral characteristics of the EEG signals tested
in the original experiment, such as sampling rate, window
size and frequency resolution of the filters resulting from the
convolutional kernels. For this reason, an alternative archi-
tecture was also tested, whose parameters were derived from
extrapolating the original criteria to match the characteristics
of the dataset used in this study. The resulting architecture
had the first convolutional kernels of size (1, 250), an average
pooling of size (1, 4) in the second block. The rest of the
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TABLE I
CONVNET ARCHITECTURE
Block  Layer Output size ~ Param. #
1 Input (Cy x Cz xT) 0
Reshape (I1xCyxCypxT) 0
Conv2D (1,64) x Fy (4X CyxCy xT) 256
Batch normalization (4xCy*xCy xT) 16
Reshape (4% CyxCyxT) 0
Permute (T'x4xCy xCy) 0
TD (Cy, C) XD  Fy (TxD*Fy x1x1) 160
Permute (DxF1 x1x1xT) 0
Reshape (D Fy x1xT) 0
Batch normalization (D*xFy x1xT) 32
Activation (ELU) (DxFy x1xT 0
AveragePooling2D (1, 4) (D% Fy x1xT/4) 0
Dropout (.25) (D% Fy x1xT/4) 0
2 SeparableConv2D (1, 16) X Fa (Fa x1xT/4) 192
Batch normalization (F2 x1xT/4) 32
Activation (ELU) (F2 x1xT/4) 0
AveragePooling2D (1, 8) (Fo x 1 xT/32) 0
Dropout (.25) (Fo x 1 xT/32) 0
Flatten (F2 % T/32) 0
Dense (N) 228
Activation (Softmax) (N) 0
Total 916

C, = channels (mediolateral direction), C', = channels (anteroposterior direction),
T = time samples, F; = number of temporal filters, TD = TimeDistributed
(DepthwiseConv2D), D = depth multiplier (number of spatial filters), F2 = number of
pointwise filters, N = number of classes.

parameters remained unchanged.

The learning process consisted of a fixed number of learning
steps using mini-batchs of 16 randomly selected trials and
the Adam optimization. The initial number of learning steps
was set to 500, and validation accuracy and loss curves as
a function of the number of learning steps were obtained
in order to derive the smallest number of learning steps
required to achieve an acceptable classification accuracy. The
loss obtained from the validation set was used as metric, and
the model was updated if the loss decreased compared to
the last saved model. To prevent model overfitting, only the
model with the lowest validation loss was kept. In this regard,
the relationship between training set size and performance
was also analyzed to verify that the training set size was
appropriate in relation to the dataset size [25].

2) Support vector machine: SVMs are popular supervised
learning models used for classification, that transform a non-
linearly separable problem into a linearly separable problem
by projecting data into a new feature space through the use
of kernel functions, in order to find the optimal decision
hyperplane in this feature space. This method was initially
proposed to solve two-class problems, although strategies were
later developed to extend this technique to multi-class classifi-
cation problems [26]. For this study, SVMs were implemented
for reproducibility purposes, as they would allow a direct
comparison with prior studies using the same data [15], [16].
Unlike ConvNets, SVMs require a separate feature extraction
stage before classification is performed [16], [27]-[29]. In this
regard, ten features were calculated for each 500-ms epoch: 1)
Basal amplitude value, using the Hilbert transform to estimate
the area envelope, 2) Kurtosis, 3) Curve length, as the sum of
consecutive distances between amplitudes, 4) Noise level, as 3
times the standard deviation of the amplitudes, 5) Number of

positive peaks, 6) Average nonlinear energy, using the Teager
energy operator, 7) Number of zero crossings, 8) Maximum
negativity peak, 9) Root-mean-square (RMS) amplitude, and
10) Average power in the interval from O to 5 Hz, using Welch
power spectral density estimator with a Hamming window
and a 50% overlap. With regards to the SVM parameters, a
Radial Basis Function (RBF) were used as kernel. Based on a
heuristic search, the cost hyperparameter of the SVM was set
to 0.001 and the gamma hyperparameter of the kernel was set
to 0.0002. Furthermore, a one-against-one strategy was used
to implement the multi-class SVM prediction strategy. This
method constructed k(k-1)/2 classifiers, where k is the number
of classes of the problem. Each classifier used the training data
from two classes chosen out of k classes. After the training
process was over, a voting strategy was used to determine to
which class each pattern belongs to. The open source library
tool for classification and regression problems (LIBSVM) was
used to build the SVMs [30].

C. Data analysis

An individual prediction strategy was trained for each
subject (i.e., one ConvNet and 6 SVMs to address the 4-
class classification problem), and the same data partitioning
for training, validation, and testing was used for the ConvNet
and the SVMs. Additionally, ConvNets were trained with
the same dataset partitioning, but with randomly scrambled
labels, in order to determine the chance classification accuracy
level. Furthermore, ConvNets were also trained with increasing
number of examples in order to test the effect of training set
size on classification accuracy. To ensure the generalizability
of the final results, a 5-fold cross-validation procedure was
performed, in which a new individual prediction strategy
(ConvNet or SVM) was trained for each fold. The overall
classification accuracy and Cohen’s kappa, together with per-
class precision and recall were quantified for each subject, as
the mean values of the 5-fold cross-validation procedure com-
puted from the test sets. Finally, to ensure the reproducibility
of these results, the source code for the ConvNet is available
at [link placeholder] and the dataset is available from from the
corresponding author on reasonable request.

D. Statistics

A paired t-test was used to assess differences in overall
classification accuracy and kappa values between classifiers
(ConvNet vs. SVM) and between ConvNet architectures. A
repeated measures analysis of variance was used to assess
differences in precision and recall, with Classifier (levels:
ConvNet, SVM), Speed (levels: Fast, Slow) and Force (levels:
20% MVC, 60% MVC) as factors. Main effects and two-
way interactions were analysed. The Shapiro-Wilk test was
performed in order to assess the assumption of normality,
which held for all indexes. Performance indexes are reported
as mean =+ standard deviation unless stated otherwise.
P values smaller than 0.05 were regarded as statistically
significant.
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III. RESULTS
A. ConvNet validation

The evolution of the validation accuracy and validation loss
as a function of the number of learning steps is shown in
Fig. 3 (left). It can be observed that the accuracy reaches
a stable value after 100 steps while the loss stabilizes after
approximately 300 steps, indicating that more training steps
would not improve the results and that the ConvNet is not
overfitting the data. As a reference, training the ConvNets
using 500 steps took approximately 3 min per subject and
classifying each new trial took approximately 7 ms. Further-
more, Fig. 3 (right) shows the chance level accuracy obtained
after training the model with randomly scrambled labels. In
this case, the prediction accuracy is close to the theoretical
chance level of 25% for a 4-class classification problem and
it does not improve with the number of training steps. Fig. 4
shows the relationship between test accuracy and training set
size, from which it can be deduced that the ConvNet strategy
can be trained with as few as 80 examples and still achieve
an acceptable classification accuracy above 80%.

B. Performance of the classification strategies

The overall classification accuracy for the ConvNet model
(84.0 == 7.0%) was significantly higher compared to the SVM
(72.4 + 7.9%; t15 = 5.072, p < 0.001). Likewise, kappa
values were significantly higher for the ConvNet (0.80 £ 0.09)
that for the SVM (0.63 £+ 0.10; t15 = 5.434, p < 0.001).
Precision and recall values for all healthy volunteers are shown
in Fig. 5. The precision of the ConvNet model (84.2 + 7.0%)
was higher compared to the SVM (72.4 + 7.9%; Fi 15 =
27.252, p < 0.001). With regards to recall, it was significantly
higher for the ConvNet model (84.0 + 7.0%) compared to
the SVM (73.2 £ 7.5%; Fi15 = 23.933, p < 0.001). No
further significant main effects or interactions were found
for precision or recall. Finally, no significant differences in
accuracy were found between the original and the alternative
architecture (83.8 & 5.6%; t15 = 0.200, p = 0.844).

IV. DISCUSSION
A. Neurophysiological aspects of movement prediction

Building efficient movement decoding models from brain
signals is crucial for many biomedical applications, particu-
larly in the BCI field that require precision in online control of
assistive devices. Moreover, decoding specific movement fea-
tures, such as speed, force and/or direction, provides additional
degrees of freedom, resulting in more accurate and natural
motor commands at the expense of increasing the complexity
of the decoding problem [12]-[14], [31]. Early attempts to
decode movement from brain signals during movement execu-
tion or imagination were focused on classifying between limb
movements [32]-[34]. Classification accuracy for these studies
was close to 80% for 2 classes [32], [33], and close to 56% for
4 classes [34]. Other studies have tried to decode movement
of specific body parts from a single limb, such as wrist [35],
or individual finger movements [9], obtaining similar results.
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On the other hand, prediction of movement, i.e., decoding
movement not during, but before its execution, is a much
more difficult task. Considering the brain as a predictive
neural system, expectation can be seen as a representation of
prediction that serve to sensory or motor areas as preparatory
processing prior to an event, particularly in short time scales
[36]. Movement intention is the first interesting command to
decode from EEG before a movement is executed, as trigger
for other more complex motor instructions. It is well known
that information about movement intention is encoded in the
MRCPs, around 1.5 s prior to movement onset [7]. The timing
of the prediction is a relevant feature to study, since it has been
shown that a sensory stimulus delivered synchronously with
the peak negativity of the MRCP maximizes neural plasticity
[37]. Furthermore, kinetic information encoded in the move-
ment intention could be particularly useful; for example, by
decoding these movement parameters it would be possible to
introduce task variability in the rehabilitation training, which
has been shown to maximize the motor learning [38].

It has been already shown that pre-movement EEG contains
valuable information about motion. Indeed, detection of vol-
untary movement from single trial EEG using a matched filter
approach demonstrated relatively good performance in a 2-
class classification scheme (sensitivity ~ 82.5% for healthy
subjects) [39]. However, classification rates for multi-class
classification problems are still relatively low in healthy vol-
unteers. As an example, recent studies directed towards the
extraction of additional information from movement intention
beyond simple detection, such as the prediction of the body
part that is about to perform the movement [18], or the
classification between different types of movement used in
daily life, such as palmar, lateral and pinch grasps [10],
resulted in classification accuracies not better than chance
levels for the 4-class classification attempts.

In particular, previous work with the same dataset used in
this study obtained mean accuracy values of approximately 32-
40% for the 4-class classification [16], which is on par with the
chance level for that type of problem [40]. These result might
be partially explained by the fact that the aim of the study was
to obtain a fast prediction scheme using few electrodes and a
simple classifier that did not require extensive calibration. As
such, only one channel was used as input, and the signals were
band filtered using low cut-off frequencies values. However,
it was recently suggested that information from the entire
EEG spectrum is needed to discriminate between task-related
parameters from single-trial movement intention [17].

Based on this idea, in this study it was possible to sig-
nificantly improve the movement prediction accuracy using
twenty available channels without additional pre-processing,
such as artifact removal or epoch selection. Accuracy levels
reached values close to 85% in healthy volunteers, represent-
ing an improvement of almost 45% compared to previous
results. Therefore, it could be hypothesized that the decoding
of complex movement requires more information (in terms
of number of channels or features) in order to achieve a
classification accuracy comparable with that obtained for sim-
pler movements, such ankle or wrist flexion/extension (binary
classification problems) [15], [35], [41], [42]. Finally, previous
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Fig. 3. Left: evolution of the validation accuracy (acc) and validation loss (loss) from all volunteers as a function of the number of learning steps. Right:
Validation accuracy from all volunteers as a function of the number of learning steps with randomly scrambled labels. In both the dark line represents the
mean validation accuracy for all subjects in each group, and each light line represents the mean validation accuracy for a single subject, derived from the
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studies have shown that classification of speed tasks achieved
higher accuracy in the prediction of ankle dorsiflexion move-
ments [15]. However, it was not the case for hand grasping
tasks, since no significant effects of speed or force and no
interactions were observed, in line with previous results [16].

B. Methodological aspects of movement prediction

Deep learning methods were originally developed in the
computer vision field [43], and recently gained popularity
in EEG analysis, in which they are used with the aim of
improving classification performance over more traditional
approaches, such as linear discriminant analysis, k-nearest
neighbours or SVMs [20]. ConvNets are a type of feed-
forward deep learning networks that are useful when data have
a known topological structure [19], [25]. As a representation
learning method, one of the advantages of ConvNets is that
feature extraction and classification is intrinsically optimized.
Typically, ConvNets consist of a combination of convolutional
and pooling layers. The convolutional layer applies mathemat-
ical convolution operations through a number of kernels that
perform a local weighted sum along the input and return each
one in a feature map. Then, the same weights are shared across
the input and have only local connections, thereby reducing
the amount of network parameters. The pooling layer performs
a reduction of the input by applying a function to nearby units,
e.g. the maximum value among neighbours, where the units are
the pixels of an image or the temporal samples of a biosignal.

The ConvNet implemented in this study is based on a
recently proposed architecture that demonstrated good perfor-
mance employing a small number of parameters in the classi-
fication of EEG signals recorded using different paradigms
[21]. In this model, the first convolutional layer works as
a frequential filter, in which the outcome consists of four
different band-pass filters that minimize the error at the
output. In accordance with the input structures used in image
processing, the EEG input to a ConvNet is usually reshaped
into a 2D distribution, by arranging channels along the rows
and time samples in the columns [44], [45] or by trans-
forming the input into a new space [8], e.g., to a time-
frequency domain through Fourier transform and averaging
along the channels [46], [47]. The ConvNet implemented in
this study considered the localization of the electrodes in order
to keep the spatial relationship between them. Furthermore,
EEG signals are commonly pre-processed by using temporal
and spatial filters, and epochs containing artifacts or with
amplitudes above a certain threshold are rejected in order
to improve the signal-to-noise ratio [7]. These processes are
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time-consuming, prone to user bias and may result in the
loss of useful information to decode movement. Taking this
into consideration, only minimal and automatic pre-processing
(baseline correction and notch filtering) was performed in this
study prior to the classification stage, and no epochs were
removed. Furthermore, it is worth noting that this strategy
does not require extremely large datasets for training and the
training time is negligible compared to the average setup time
for a BCI, which makes it viable for use in rehabilitation.

The present study neither attempted to find the optimal strat-
egy for movement prediction nor advance the knowledge on
machine learning strategies for single-trial EEG classification.
Instead, the main goal of this work was to determine the
achievable levels of prediction accuracy from single-trial EEG
using state-of-the-art machine learning techniques, and com-
pare the results obtained with recent reports from the literature,
using SVMs as classification strategy and feature selection
based on temporal and spatial parameters [16]. The prediction
results of the ConvNet were better than the SVM for all tasks
and all performance indexes in healthy volunteers by an aver-
age of 12 percentage points (Fig. 5). This is even more relevant
considering that the SVMs implemented in this study (using
twenty available channels) already improved the classification
accuracy by approximately 32 percentage points compared to
the previous study with the same dataset (using only a single
channel, C3, plus an eight-channel Laplacian filter) [16]. It
is worth mentioning that preliminary tests performed using
other classification strategies, such as bagging trees [48] and
random forest [49], resulted in similar performances compared
to the SVM (accuracies of 72.6 = 5.1% and 72.0 £+ 5.7%,
respectively), significantly lower than ConvNet performance.
Furthermore, a systematic investigation regarding movement
prediction performed with combinations of spatial filtering
(principal component analysis, independent component anal-
ysis, common spatial patterns analysis, and surface Laplacian
derivation), temporal filtering (power spectral density esti-
mation and discrete wavelet transform), pattern classification
(linear and quadratic Mahalanobis distance classifier, Bayesian
classifier, multi-layer perceptron neural network, probabilistic
neural network, and SVM), and multivariate feature selection
strategy using a genetic algorithm, achieved a maximum
accuracy of 75% for binary classification [50]. In contrast, the
ConvNet shows better results with minimal pre-processing and
optimal combination of feature extraction and classification in
a multi-class classification scenario.

C. Limitations and future work

Several constraints need to be considered: attempts to use
a single ConvNet to predict movements from all subjects
resulted in low performance indexes during pilot tests (average
accuracy of 27.4 + 4.4%). This is not an issue in most real-
life applications where the decoding is used to control a
device for a single subject (and thus an individual ConvNet
is trained for each subject), but nevertheless highlights the
difficulty in describing a general behavior of the EEG signal
in terms of decoding force and speed. The same issue can
be observed when attemtping to understand and visualize of

aCC-BY-NC-ND 4.0 International license.

the specific features that allow a good classification, since it
is not straightforward to extract and interpret physiological
information from the network, and these feature vary between
subjects. Furthermore, even if high accuracy was achieved
offline, it is crucial to perform real-time tests with adequate
feedback. Future work will be directed towards testing the
strategy with a real application, for which an accurate detection
of the movement onset is necessary and an idle state should be
considered [51]. Finally, once the definitive scheme has been
defined, efficient hardware implementations should be tested
in chips or field-programmable gate arrays [19].

V. CONCLUSION

The results from this study suggest that hand movement
speed and force can be accurately predicted from single-trial
EEG using convolutional neural networks, although additional
considerations are still required to transfer these protocols
from laboratory to clinic.
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