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Abstract 

PTSD is associated with metabolic comorbidities; however it is not clear how the 

neuroendocrine disturbances affect metabolism. To analyze this we employed a systems 

biological approach using an integrated mathematical model of metabolism, HPA axis and 

inflammation. We combined the metabolomics, neuroendocrine, clinical lab and cytokine data 

from combat-exposed veterans with and without PTSD, to characterize the differences in 

regulatory effects. We used the pattern of fold change in metabolites representing pathway level 

differences as reference for metabolic control analysis (MCA) using the model. MCA revealed 

parameters constituting the HPA axis, inflammation and GPCR pathway that yielded metabolic 

dysfunction consistent with PTSD. To support this, we performed causal analysis between 

regulatory components and the significantly different metabolites in our sample. Causal 

inference revealed that the changes in glucocorticoid receptor sensitivity were mechanistically 

associated with metabolic dysfunction and the effects were jointly mediated by insulin 

resistance, inflammation, oxidative stress and energy deficit.  
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Post-traumatic stress disorder (PTSD) is defined by a complex set of criteria including intrusive 

reminders, fear memories, emotional distress, hypervigilance and exaggerated startle responses 

that develop and persist after an exposure to trauma 1. Multiple physiological systems at the 

neuronal, metabolic, inflammatory, genomic and epigenomic levels are known to be affected in 

PTSD 2,3. Previous studies from our PTSD Systems Biology consortium reported associations 

between PTSD and insulin resistance 4, inflammation 5, reduced mitochondrial copy number 6, 

and lower methylation of the glucocorticoid receptor (NR3C1) gene 7 in the same cohorts 

assessed in the present study. The data from animal models and humans with PTSD reveal 

association between inflammation and metabolic syndrome 8. Analysis of metabolomics have 

revealed metabolic changes consistent with dysregulation in mitochondrial functioning in PTSD 

9. Another study reported differences in the mitochondrial DNA (SNPs) located in NADH 

dehydrogenase and ATP synthase genes in PTSD  10. Variants of mitochondrial genes and 

dysregulation of their associated networks have been reported in the postmortem brains of 

patients with PTSD 11.  

One of the major physiological regulatory axes, Hypothalamic-Pituitary-Adrenal (HPA) axis is 

implicated in the pathogenesis of PTSD and associated metabolic disorders 12,13. The HPA axis 

relays stress signals from the brain to peripheral parts through the release of glucocorticoids 

(GCs) and catecholamine hormones. GCs orchestrate the activities of several physiological 

functions through glucocorticoid receptor (GRs) signaling. Therefore, the feedback sensitivity of 

GC signaling among other factors can influence downstream effects of stress exposure. GR 

signaling is regulated at transcriptional and epigenetic levels and is dysregulated in HPA axis 

associated disorders 14. Recent studies have highlighted the association of genetic 
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polymorphisms of the GC receptor gene with metabolic disorders and PTSD 15. The role of GCs 

and GC receptor functioning in individuals with PTSD has been characterized 16; however, the 

underlying mechanisms by which the abnormalities in GR signaling contribute to psychiatric and 

metabolic disorders is not well delineated. Therefore, in light of the complexity of GC’s 

downstream regulatory effects, a systems level analysis is required to understand dysregulation 

of the HPA axis and its metabolic consequences.  

In view of these findings, we investigated whether the co-occurrence of the multiple metabolic 

abnormalities are independent or arise from a common underlying regulatory defect and its 

relative independence with respect to neuro-endocrine changes observed in PTSD. To address 

this question, we used an integrative systems biological approach to identify regulatory 

connections in metabolic dysfunction in PTSD. The overall analysis is divided into two sections, 

namely model-based inferences: hypothesis generation using metabolic control analysis (MCA); 

and data-based verification of the hypothesis using causal inference 17. The pipeline used for the 

current analysis is depicted in Appendix I- Figure S1. 

Initially, we performed statistical analyses on the data obtained from 83 combat-exposed 

veterans who develop PTSD and 82 combat-exposed veterans without PTSD, to identify the 

significantly different metabolites, inflammatory and neuroendocrine features in their plasma 

samples. The demographics of our sample are reported in Appendix I-Table S1. We used the 

pattern of change in significantly different metabolic pathway components as the reference for 

MCA. These pathways were represented by 12 metabolites, namely glucose, pyruvate, lactate, 

citrate, alanine, glutamine, long chain fatty acids, triglycerides, carnitines, arginine, ornithine and 

insulin (Table 1: subsections represent pathways). We refer the pattern of change in these 12 

metabolites as metabolic dysfunction (MD) signature. We used ordinary differential equations 
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(ODEs) based mathematical models from the literature to integrate metabolism with HPA axis 

activity and inflammation to identify the putative mechanisms underlying this metabolic 

signature in combat-related PTSD. The details of the model development are given in Appendix-

II. Using this model, MCA was conducted to determine potential perturbations in the model that 

could yield consistent metabolic differences as observed in our PTSD sample. The parameters 

associated with these perturbations were used to generate hypotheses on the processes that could 

potentially be affected in PTSD. From the MCA, we determined the parameters representing 

dysregulation in HPA axis, GR signaling, G-protein coupled receptor (GPCR) signaling and 

inflammatory pathways could yield the MD signature as observed in our PTSD subjects. Among 

these mechanisms, systemic GR sensitivity of HPA-immune axis showed higher control on the 

metabolic differences. Therefore, we focus our further analysis on the effects of GR sensitivity 

on metabolism.  

To ascertain the MCA-based inferences on the underlying mechanisms for the observed 

metabolic differences, we performed correlational analysis and causal inference 18 using our data. 

Since our data comes from an observational study, we used covariate balancing propensity scores 

(CBPS) for weighting in estimation of average causal effects 19 and performed sensitivity 

analysis to determine the extent of violation of the ignorability assumption 20. We incorporated 

the results from neuroendocrine and clinical lab assays for our subjects including cortisol 

suppression (a measure of GC feedback sensitivity in the HPA axis 21), IC50 of lymphocyte 

proliferation in response to dexamethasone (DEX) treatment (concentration of DEX at which 

50% of lysozyme activity was inhibited), cortisol, urinary epinephrine, hs-CRP (a marker for 

inflammation ), homeostatic model assessment insulin resistance (HOMA-IR), hypoxanthine (a 

surrogate for hypoxia and energy deficit  22,23) and gamma-glutamyl transferase (GGT, a 
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surrogate for oxidative stress 24) as the regulatory components, along with significantly different 

metabolites and cytokines for the analysis. We used eight covariates, namely age, BMI, 

education, race, ethnicity, current medications (10 categories: anti-depressants, sedatives, anti-

convulsants, anti-diabetics, anti-allergic, anti-inflammatory, anti-hypertensive, pain medicine, 

antacid and statins), smoking and alcohol use, to ensure the covariate balance on the exposure 

variable.  

Furthermore, the estimates for average causal effects were used to inform the causal mediation 

hypothesis that was tested using natural effects models with inverse probability weighting 25. We 

conducted causal mediation analysis with cortisol suppression (CS) by DEX as an exposure 

variable, HOMA-IR, hs-CRP, hypoxanthine and GGT as the joint mediators while controlling 

for covariates 26. To obtain CS specific effects we also controlled for urinary catecholamine to 

account for the effects of epinephrine on the β-adrenergic pathway, which could also yield the 

MD signature as observed by the MCA, and dehydroepiandresterone due to its effect on HPA 

axis and insulin sensitivity. Our analysis suggests that the mechanistic association of enhanced 

GC feedback sensitivity with metabolic dysfunction is partly mediated by inflammation, 

oxidative stress, insulin resistance and energy deficit.  

Results  

Group differences in features between PTSD and controls 

To assess the group differences in our data, we performed a nonparametric Mann-Whitney U test 

followed by adjustments for false discovery rate and estimation of effect sizes given by Cohen’s 

d. The summary statistics for group differences in metabolites that showed p-value<0.05 and q-

value<0.1 are reported in Table 1. We identified 31 metabolites, 2 cytokines, 14 clinical 
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variables and 3 neuro-endocrine variables significantly different (at p-value<0.05 and q-

value<0.1) between PTSD and control subjects. The alterations in the metabolite flows in the 

metabolic pathways are depicted in Figure 1. These findings can be attributable to mitochondrial 

dysfunction inferred by the disturbance in the inflow-outflow of metabolites (carbohydrates, fatty 

acids, amino acids) and mitochondrial metabolite processing (TCA cycle, beta-oxidation, urea 

cycle, and amino acid catabolism). 

MCA-based hypothesis for metabolic dysfunction in PTSD 

To analyze the putative mechanisms underlying the observed changes in metabolism and the 

effects of variation in neuroendocrine and inflammatory response on metabolism, we used a 

systems level mathematical model composed of hepatic metabolism integrated with 

mathematical models for the HPA-axis,inflammation and hypoxia signalling from the literature. 

Using the model, MCA 27 was conducted to determine potential perturbations in the model that 

could yield a consistent MD signature.  All the metabolic rate parameters and the parameters for 

signaling and transcriptional regulatory interactions from HPA-axis, inflammation and 

transcription pathways were considered for the MCA. Through MCA, we obtained metabolite 

concentration response coefficients (MCRCs) with respect to the trends in the 12 metabolites. 

MCRC quantifies the degree of control exerted by the change in a parameter value, on the 

concentration of a metabolite.  We estimated MCRCs for 360 model parameters, and identified 

34 rate parameters that could yield a mean cumulative response coefficients of at least 0.1 for 12 

metabolites taken together (with MCRC of at least 0.001 for each metabolite), across 50% 

perturbation in the parameter. Figure 2A shows the mean cumulative control coefficients of 

parameters with relative contribution towards each metabolite perturbation. Figure 2B shows the 

relative contribution of each response coefficient to changes in metabolites in MD signature. 
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These parameters, if perturbed, yielded a consistent MD signature, in terms of the direction of 

change (whether increased or decreased) in PTSD subjects with respect to controls. Among the 

most influential parameters, increasing systemic glucocorticoid receptor sensitivity (GR 

sensitivity of HPA axis central negative feedback and sensitivity of cytokine regulation taken 

together) yielded the highest control coefficient, followed by parameters for perturbations in 

inflammatory response and GPCR pathway (Figure 2A). The rate parameters and corresponding 

processes alongwith the mean cumulative MCRCs (MCRC of at least 0.001 for each the 12 

metabolites) are summarized in Appendix III (Table S5).  

To probe the mechanisms by which the MD signature was accrued for these 34 parameter 

perturbations, we further analyzed the corresponding metabolic regulatory states for each 

parameter perturbation through the model simulations. We recorded the states of regulatory 

components such as ATP/ADP and NADH/NAD ratios, anabolic and catabolic signaling 

pathway components, transcriptional regulators and inflammatory pathway as shown in Figure 3. 

The details on the regulatory states associated with these parameters can be found in Appendix 

III. On further accounting for the increase in the inflammatory cytokines (IL6 and TNF) and the 

HPA-axis variables (ACTH and cortisol) along with the 12 metabolic components, parameters 

constituting GPCR signaling, GCR signaling and inflammation produced a response consistent 

with MD signature comprising these 16 features.  Therefore, from the MCA and the analysis of 

associated regulatory states, it can be inferred that the steady state perturbation in the parameters 

for HPA axis and β-adrenergic signaling are accompanied by the combination of changes in 

metabolic controller ratios (ATP/ADP and NADH/NAD), inflammatory response, insulin 

resistance and catabolic state associated with an overall energy deficit. Hence, we hypothesize 

that the trauma induced changes in the systemic glucocorticoid receptor sensitivity are 
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mechanistically associated with insulin resistance, inflammation, oxidative stress, energy deficit 

and subsequent metabolic dysfunction in PTSD. 

 

 

Causal Inference 

To assess the of model-based hypothesis on the effects of variables associated with pathways 

inferred from MCA, we performed correlation analysis followed by causal inference between the 

regulatory components and the metabolites that show statistically significant differences in the 

two cohorts. Please refer to Appendix IV on correlational analysis for the details on selection of 

metabolites and the significant correlations between regulatory components and the metabolites 

(See Figure S5 Table S6).  Since we focused on analyzing the effect of GC receptor sensitivity, 

we tested the causal hypothesis for six regulatory components (dexamethasone cortisol 

suppression (CS), IC50, HOMA-IR, hs-CRP, GGT and hypoxanthine) with respect to 35 features 

by estimating and testing the sensitivity of average causal effects (ACEs: �) to unmeasured 

confounding. The average ACEs along with their statistics and sensitivity estimate (τ1 and τ2) are 

reported in Table 2. Figure 4 (A-F) shows the statistically significant ACEs for the six regulatory 

components. 

We observed that cortisol suppression showed strong causal association with multiple regulatory 

components, such as HOMA-IR, hs-CRP and GGT; and these regulatory components were 

further causally associated with hypoxanthine and several metabolic pathways.  This indicated 

the possibility of mediation of the effects of changes in GC receptor sensitivity on metabolites 

through these components. To validate this, we next performed causal mediation analysis on the 
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causal structure as shown in Figure 5A. For the sake of simplicity we assume an acyclic graph to 

identify the causal effects. Due to possible bi-directionality of the effects within the regulatory 

components, we evaluated joint mediated effects through the mediator complex to satisfy 

ignorability. The detailed reporting of the summary statistics can be found in Table S7. Figure 

5B shows the estimates with 95% confidence interval for natural indirect effect (joint mediated 

effects) by cortisol suppression or GR sensitivity on the metabolites. Refer to Appendix V and 

Figure S6 for significant mediated effects, natural direct effect (NDE) and total causal effects.  

Mechanistic inference from MCA and causal inference 

We reconcile the MCA-based findings to mechanistically explain the effect of stress induced 

changes in HPA axis on metabolism. We then consolidate the explanations with the findings 

from our data. The regulatory landscape observed in model simulations for the  parameter 

perturbations (Table S5) indicates that changes in metabolism along with increased GR 

sensitivity and inflammation are mechanistically associated with energy deficit. At the 

physiological level, how the processes identified by the MCA (GR sensitization, inflammation, 

insulin resistance and GPCR activation) can result in an energy deficit and the metabolic 

phenotypes observed in our PTSD sample (Figure 1) are discussed below in light of the causal 

analysis and supporting literature. 

1. Increased insulin resistance  

Confronted with exposure to a traumatic event, stress hormones (cortisol and catecholamine) are 

known to initiate gluconeogenesis to facilitate hepatic glucose production to cope with the 

energy requirements of an excessive activity in brain and muscles 28. These metabolic shifts are 

achieved by reducing insulin sensitivity and increasing the beta-adrenergic receptor signaling 
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(acute stress) and glucocorticoid receptor signaling (containment of acute stress response) to 

enhance catabolism for glucose production and utilization . The effect of insulin insensitivity is 

further compensated by elevation of plasma insulin secretion to restore plasma glucose levels. In 

our data, this is observed as insulin resistance indicated by increased HOMA-IR (q=0.007) and a 

significant ACE of cortisol suppression on HOMA-IR (�=0.411, p=0.003, q=0.016, τ2=0.291). 

Moreover, in insulin dependent tissues (muscle and adipose) insulin action is required for 

glucose transport and mitochondrial conversion of pyruvate to acetyl CoA, hence insulin 

resistance would affect efficient ATP generation. Our data shows a significant association of 

hypoxanthine with HOMA-IR (ρ=0.292, p=1.44E-4, q=0.001), corroborating plausibility of this 

mechanism.  

2. Increased gluconeogenesis  

Induction of gluconeogenesis in liver is associated with increase in pyruvate derived from 

gluconeogenic precursors such as amino acids (alanine, glycine, cysteine and serine) 29. 

Gluconeogenesis consumes an equivalent of 11 ATPs for driving pyruvate to glucose with a loss 

of 8 ATPs that could be generated if pyruvate had been processed in mitochondria. Therefore, it 

is an energy consuming process and its sustained upregulation would lead to an energy deficit 

state with changes in ATP/ADP and NADH/NAD ratios, thereby affecting all the pathways that 

depend on adenosine phosphorylation and redox potential for their substrate utilization. Our data 

shows a significant association of cortisol suppression with glucose (ρ=0.214, p=0.006, q=0.02) 

and hypoxanthine with glucose (ρ=0.217, p=0.005, q=0.019), corroborating this mechanism.  

3. Potential hypoxic adaptation  

In the liver, increased diversion of pyruvate to gluconeogenesis can reduce mitochondrial 

substrate availability resulting in reduced levels citrate (p=0.039) and subsequent alpha-
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ketoglutarate (αKG). It is known that HIF1α is sensitive to the changes in the level of (αKG), 

therefore reduced αKG would induce upregulation of HIF1α 30. Additionally, the upregulation of 

pro-inflammatory state is known to induce hypoxia with upregulation of HIF1α 31. Although  

HIF1α would act to sensitize insulin action 32, the concomitant inflammation due to GR 

sensitization (discussed in subsection 9 would maintain insulin resistance and subsequent 

gluconeogenesis in liver.    

In the tissues like muscle that utilize glucose, upregulation of HIFα is known to influence 

glycolytic enzymes leading to lactate accumulation, which in turn stabilizes HIF1α 33. This leads 

to reduced TCA flux and lower ATP production through oxidative phosphorylation. Therefore in 

order to compensate for the lower supply of phosphate groups in metabolic reactions, an 

increased breakdown of ADP to AMP leads to activation of AMP kinase that upregulates 

glycolysis. These overall may lead to aerobic glycolysis and an energy deficit state.  The 

plausibility of such a mechanism is supported by our data with the significant ACE of 

hypoxanthine on pyruvate (�=0.695, p=1.07E-12, q=3.29E-11, τ2=0.583) and lactate (�=0.248, 

p=3.19E-13, q=1.12E-11, τ2=0.532). We also observed a significant association of cortisol and 

cortisol suppression with pyruvate and lactate (See Table S6), and a negative ACE of cortisol 

suppression on citrate (�=-0.534, p=0.005, q=0.026, τ2=0.259). Moreover, hypoxanthine showed 

a statistical trend of negative association with plasma phosphate levels (ρ=-0.23, p=0.04) and a 

positive association with adenosine monophosphate (AMP) (ρ=0.21, p=0.06) in our PTSD 

subjects. 

4. Reduced β-oxidation of fatty acids 

During catabolic state, it is crucial to maintain the cellular levels of NADH and ATP, therefore 

gluconeogenesis is usually associated with fatty acid β-oxidation to maintain the steady supply of 
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NADH and ATP 34. The gain of ATP from β-oxidation is relatively high, such as the ATP yield 

from oxidation of a typical palmitoyl CoA is about 106 ATP accounting for 2 ATPs used in fatty 

acid activation. Although, the conventional catabolic signaling would upregulate fatty acid β-

oxidation, the sustained higher levels of GCs or active GR signaling are known to inhibit β-

oxidation in hepatocytes 35. This is also indicated in our data from a significant association 

between plasma cortisol levels and carnitine derivatives (See Table S6). Moreover, upregulation 

of HIFα (hypoxia) is shown to be associated with reduction in β-oxidation 36 limiting carnitine 

utilization, which is also corroborated in our data by the significant ACE of hypoxanthine on 

carnitine derivatives (palmitoylcarnitine: �=0.252, p=2.45E-7, q=5.02E-6, τ2=0.576; also see Fig 

3F). This action would reduce mitochondrial carnitine utilization and further reduce ATP 

availability from β-oxidation indicating another mechanism for energy deficit. Our PTSD 

subjects (Table S7) and another study on both animal and humans with PTSD 37 show an 

increased levels of carnitines indicating the possibility of this mechanism.  

5. Impaired lipid metabolism  

While glucocorticoids induce insulin resistance (IR) in liver and muscle, it is known to sensitize 

insulin signaling in adipose tissues 38. Therefore, hyperinsulinemia due to IR would sensitize 

adipose for triglyceride synthesis, which is also associated with increased GC activity 39. 

Triglyceride synthesis is an energy intensive process that consumes 6 ATPs per 3 molecules of 

fatty acids and 1 molecule of glycerol. Therefore, the sustained higher activity of GCs would 

further add to the effect of lowering ATP availability. This action can be corroborated from our 

data by significant positive ACE of HOMA-IR (�=0.235, p=5.31E-6, q=8.71E-5, τ2=0.34) and 

cortisol suppression (�=0.213, p=0.017, q=0.07, τ2=0.135) on plasma triglyceride levels. 
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Fatty acid synthesis is a redox dependent process that consumes ATP and NADH and is 

regulated by insulin action 40. The reduction in mitochondrial citrate (p=0.039) due to increased 

lactate flux can lead to reduced substrate availability for lipogenesis. Therefore, the lower 

availability of these substrates and insulin resistance can reduce lipogenesis in non-adipose 

tissues, whereas high GCs drive fatty acids to triglyceride synthesis in adipose tissues. These 

dual action can lead to lower levels of circulating fatty acid. This is indicated by significant 

negative causal association of HOMA-IR and cortisol suppression with fatty acids in our data 

(See Table 2 and Table S6).  

6. Impaired amino acid metabolism  

Proteins may be broken down to produce individual amino acids, ready to be converted into 

usable molecules for gluconeogenesis (or the TCA cycle to produce energy) through anaplerosis. 

While alanine (p=0.015) is directly converted to pyruvate, glutamine (p=0.021) and tyrosine 

(p=0.005) enters the TCA cycle at αKG and fumarate nodes, respectively. Stress induced GC 

activity is known to upregulate proteolysis 41. Similarly, our data shows a significant ACE of 

cortisol suppression on total plasma proteins (�=0.056, p=0.014, q=0.058, τ2=0.198) and a trend 

level effect on alanine and tyrosine. Efficient insulin action is essential for inhibition of 

proteolysis 42; therefore, insulin resistance would enhance the proteolytic effect adding to amino 

acid pool in the plasma. This is indicated by significant causal association between HOMA-IR 

and amino acids (see Table 2) in our data. Under tonic hypoxia, HIFα is also known to 

upregulate glutaminolysis 43 in an attempt to restore mitochondrial redox potential. This is also 

indicated in our sample by negative association between hypoxanthine and glutamine (ρ=-0.159, 

p=0.041, q=0.098).  Moreover, an efficient catabolism of branched chain amino acids (BCCAs) 

contributes to the pool of NADH and ATP generation in muscle, therefore impaired BCCA 
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catabolism would lead to lower energy supply and increased BCCAs in the circulation as 

observed by significant associations between BCCAs, GGT and hypoxanthine in our data (See 

Table 2). Further, amino acids have an ability to influence glucagon secretion and induce 

gluconeogenesis 44 leading to an auto positive feedback effect. 

7. Impaired urea cycle and NO production 

The processing of amino acids involves deamination generating ammonia that needs to be 

purged from the body through the urea cycle 45. In the urea cycle, formation of carbamoyl 

phosphate from ammonia and carbon dioxide requires 2 ATPs. The reduced availability of ATP 

can thus limit formation of carbamoyl phosphate and its subsequent reaction with ornithine, 

thereby leading to accumulation of ornithine (p=0.01) and reduced levels of citrulline and 

arginine (trend), as observed in our data. Further, elevated arginase expression is shown to be 

associated with increased inflammatory cytokines and GC activity 46, which could further lead to 

a lower urea cycle flux, reduced arginine levels and subsequent nitric oxide production. This is 

also supported by a significant positive association between cortisol suppression and ornithine 

(ρ=0.223, p=0.004, q=0.015) and a trend of causal association between hs-CRP and arginine (�=-

0.05, p=0.05, q=0.145, τ2=0.211). The corresponding findings of reduced global arginine 

bioavailability in the individuals with PTSD were also previously reported in our sample 47.  

8. Increased β-adrenergic GPCR signaling  

The upregulation of β-adrenergic GPCR signaling by catecholaminergic  and non-genomic 

actions of glucocorticoid receptor signaling  48 is known to activate cAMP and calcium signaling 

that influence TCA enzymes and oxidative phosphorylation for production of NADH and ATP, 

respectively. However, sustained elevation the in cellular calcium signal stimulates higher 

mitochondrial ROS generation 49 due to enhanced electron flow through respiratory chain and 
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subsequent inhibition of complex I & III of Q-cycle. ATP depletion and increase in AMP/ATP 

ratios is also associated with increase in ROS generation 50. In our sample, urinary epinephrine 

(activator of β-adrenergic signaling) showed a significant correlation with hypoxanthine (ρ=0.17, 

p=0.029, q=0.07) implying an additional role of enhanced GPCR signaling in energy deficient 

state. 

9. Increased GR Sensitivity and inflammation  

Although glucocorticoids are widely known for their anti-inflammatory activity, the pro-

inflammatory effects are also documented 51. Our model analysis showed that increasing GR 

sensitivity of central negative feedback of HPA axis and its anti-inflammatory activity, increased 

the pro-inflammatory response. This is because of the feedback loop that leads to reduction in the 

gain on GR synthesis due to lower ACTH stimulated cortisol release and subsequent reduction in 

the anti-inflammatory response (See Figure S7). This results in increased pro-inflammatory 

milieu that acts to further upregulate HPA axis in an attempt to restore homeostasis, however at 

the cost of dysregulated immune response 52. Our sample revealed a significant and robust 

positive causal association of cortisol suppression with hs-CRP (�=1.808, p=0.009, q=0.038, 

τ2=0.315) and IL6 (�=1.234, p=0.026, q=0.091, τ2=0.255); and a trend level reduction in IC50 

levels (p=0.08). These indicates the plausibility of such a mechanism for increased GR 

sensitivity of central negative feedback and immune system. 

10. Interplay of oxidative stress, inflammation, insulin resistance and energy deficit 

Chronic exposure to higher glucocorticoid is associated with oxidative stress 53. Oxidative stress 

is known to inhibit insulin signaling thereby causing insulin resistance . Oxidative stress is also 

associated with induction of inflammation 54 and activation of HIFα. Systemic inflammation is 

known to induce insulin resistance 55 and oxidative stress. Moreover, inflammatory cytokines 
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and ROS are known to activate sphingosine 1 phosphate (S1p) and is implicated in 

pathophysiology of hypoxia and psychiatric disorders 56,57. These interactions are also supported 

by our data with significant ACEs among HOMA-IR, GGT, hs-CRP and hypoxanthine (See 

Table 2 and Table S6). Corroborating in our data, we also observed the correlates of impaired 

antioxidant pathway noted by significant differences in gammaglutamyl tyrosine (p=0.008)  and 

oxoproline (p=0.002), and the elevated levels of stearoyl sphingomyelin (p=0.006) that is 

implicated in oxidative stress, insulin resistance and inflammation 58. We also observed 

significant causal associations of S1p with hypoxanthine (�=0.252, q=5.02E-6, τ2=0.428), 

suggesting an association of inflammation and energy deficit. These multiple interaction between 

comorbidities would constitute a mechanism for positive feedback on mitochondrial dysfunction.  

11. Effects of sensitive GR on metabolism are jointly mediated by regulatory complex 

Through the model simulations, for a modest increase in GC sensitivity, we observed increase in 

inflammatory cytokines, plasma insulin and glucose indicating insulin resistance, hypoxic 

response and impaired NADH/NAD and ATP/ADP ratios indicating energy deficit. These 

features were collectively responsible for the metabolic phenotype observed in the MD signature. 

The model-based observations matched well with the interplay of these phenotypes in our data as 

described in earlier sections. Accordingly, we observed a significant ACE of cortisol suppression 

on hs-CRP (� = 1.394, q=0.067, τ2=0.207), HOMA-IR (� = 0.372, q=0.01, τ2=0.265) and GGT 

(� = 0.32, q=0.028, τ2=0.256). Moreover, the causal mediation analysis showed that the effect of 

increased GR sensitivity on metabolic phenotypes of abnormalities in glycolysis, TCA cycle, 

amino acid metabolism, triglyceride metabolism, and hepatic function were jointly mediated by 

these regulatory components along with energy deficit (hypoxanthine) (See Table S7 and 

Appendix V for detail on significant joint mediated effects).  
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Discussion 

Our analysis involves a systems approach to identify mechanisms that may cause metabolic 

dysfunction consistent with group differences in our cohort. We made a novel attempt to 

integrate earlier observations at multiple levels of the HPA axis, immune system, metabolism 

and their regulations together in a form of systems model. A model-based analysis reveals how 

multiple pathways at metabolic, signaling and transcriptional levels interact together to ensure 

homeostasis and its disruption in disease state. This multilevel analysis provides insight on 

etiological aspects of physiological response to chronic stress and the resulting metabolic 

dysfunction.  We used statistical analysis, mathematical modeling and causal inference to 

generate and verify the mechanistic hypothesis.  

In our analysis, we have shown how the defects in GR signaling might affect systemic metabolic 

regulation and subsequent changes in metabolic pathways in PTSD. Based on our overall 

analysis we infer that the metabolic phenotype of MD observed in PTSD could at least in part be 

due to the effect of trauma induced glucocorticoid receptor sensitivity that may result in insulin 

resistance, inflammation, oxidative stress and subsequent energy deficit. The sustained elevation 

of these effects may induce (i) enhanced gluconeogenesis in liver; (ii) tonic pseudo-hypoxia 

induced aerobic glycolysis and reduced β-oxidation in muscle and liver; and (iii) enhanced 

triglyceride synthesis in adipose tissues and liver. These collectively may affects mitochondrial 

fuel processing leading to an apparent mitochondrial dysfunction. Moreover, we shed light on 

the mechanistic understanding of the process that can yield the state of energy deficit and 

concomitant changes in metabolic landscape as observed in our PTSD subjects. Although the 

analysis was focused on metabolic featues in PTSD, the mechanistic insights obtained from the 

model analysis can be generalized to glucocorticoid related diseases that involve metabolic 
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dysfunction. Our findings of the defective energy metabolism also replicated the findings 

reported by other studies on patients with psychiatric disorders as reported by Zuccoli et al. 

(2017)59 and in PTSD specific population 10,11, implying mitochondrial dysfunction in PTSD. 

Our analysis indicates potential of targeting redox regulation 60, inflammation and modulation of 

GR sensitivity as a therapeutic alternatives for managing metabolic abnormalities in PTSD.   

In this study, we have focused our analysis on perturbations in single process parameter at a time 

to analyze metabolic regulatory defects as observed in our PTSD sample, however, the 

possibility of perturbations in multiple procesess in PTSD is more likely and would need further 

exploration. The model could yield the MD signature for increasing the systemic GR sensitivity 

composed of GR-cytokine anti-inflammatory effect and central negative feedback effect, 

although by separately increasing the sensitivity of GR effects in these pathways produced 

opposite effects.  The model reveals the MD signature for increasing the GR sensitivity of the 

cytokines but metabolites in our data did not show significant association with IC50. These 

discrepancies indicate a synergistic effect of the GR sensitivity of HPA-immune axis togather on 

the metabolism with the metabolic respone being sensitive to both an increase or decrease in the 

GR sensitivity. From the model analysis, our inferences are limited by what could be observed 

by model perturbations predominantly in hepatic metabolism; however the systemic effects may 

produce varied results. Moreover, modeling assumes proportionality between the serum and 

intracellular levels of metabolites, which may not be always true in reality. Not all individuals 

who are exposed to trauma will develop PTSD, therefore our design is observational. It would be 

practically infeasible and unethical to randomize individuals and expose them to trauma or 

modulate GR sensitivity in people. Hence, to test the model-based hypothesis, we used the 

results of dexamethasone suppression test as a proxy for systemic GR sensitivity in our subjects 
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and the continuous exposure variable for causal inference. Since the causal structure assumed 

was an acyclic graph, it might be subject to weaker assumptions on sequential ignorability. 

Further controlled experiments are required to validate our hypothesis on the causal role of 

enhanced GC sensitivity in metabolic dysregulation in PTSD.  

 

 

 

Methods 

Participants  

One hundred and sixty-five men between 20 and 60 years of age who served in Iraq (Operation 

Iraqi Freedom: OIF) or Afghanistan (Operation Enduring Freedom: OEF) were included in the 

analyses for this paper. Veterans were recruited to participate in the study as part of a systems 

biology approach to identify biomarkers for PTSD in OEF/OIF veterans.  Participants were 

recruited at two sites including the James J. Peters Veterans Affairs Medical Center (JJPVAMC)/ 

Icahn School of Medicine at Mount Sinai (ISMMS), and New York University Langone Medical 

Center (NYULMC)/ NYU School of Medicine (NYUSM) through advertising in the clinic 

(VAMC) and community (local colleges and universities, vet centers, media advertisements).  

All participants provided written, informed consent for study procedures and the study was 

approved by the IRBs of the JJPVAMC, ISMMS, NYULMC and the Human Research 

Protection Office at the United States Army Medical Research and Materiel Command.    

Neuro-endocrine data 
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Procedures: 

All participants had exposure to a warzone-related DSM-IV PTSD Criterion a trauma while 

deployed and the presence of a diagnosis of PTSD was determined by a doctoral level 

psychologist using the Clinician Administered PTSD Scale (CAPS). Participants in the no-PTSD 

group were required to have a current (past month) CAPS scores ≤ 20 and had never met criteria 

for PTSD in the past.  Participants in the PTSD group were required to have a current (past 

month) CAPS score ≥ 40 and to meet full DSM-IV criteria for PTSD.   Participants were also 

asked to report their symptoms during the month when their symptoms were most distressing 

(lifetime). All cases were adjudicated in weekly consensus meetings across the two recruitment 

sites.   The Structured Clinical Interview for DSM-IV (SCID) was used by the same clinician to 

determine other DSM-IV diagnoses.  Participants with a lifetime history of any psychiatric 

disorder with psychotic features, bipolar disorder, current alcohol dependence, current drug 

abuse or dependence or obsessive-compulsive disorder, prominent suicidal or homicidal ideation 

or a suicide attempt in the past year were excluded. Medical exclusions included neurological 

disorder, loss of consciousness greater than 10 minutes, or other systemic illness affecting CNS 

function. Participants taking medications for psychiatric or medical conditions had to report 

consistent use for more than two months to be eligible to participate.   

Blood sample collections and Dexamethasone Suppression Test: Participants reported to the 

laboratory at JJP VAMC or ISMMS between 7:30 and 8:00 after an overnight fast.  Vital signs, 

weight, height and waist-hip ratio were measured and then approximately 160 cc of whole blood 

was collected and processed for subsequent assays, including the Dexamethasone Suppression 

Test (DST).   Participants received a 0.50 mg tablet of Dexamethasone to ingest at 11:00 pm and 

returned the following morning (post-Dex) for collection of 10cc of blood.   Blood samples were 
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delivered to a CLIA certified lab at ISMMS or JJP VAMC for assessment of a variety of clinical 

labs (e.g., gamma-glutamyl transferase (GGT), high-sensitivity C-reactive protein (hs-CRP). 

Lysozyme IC50-DEX : For the lysozyme IC50-DEX assay, mononuclear leukocytes were 

prepared immediately following the blood drawing procedure. For the preparation of 

mononuclear leukocytes, platelet-rich plasma was separated by low speed centrifugation. After 

collecting plasma, the remaining cells were diluted by the sample volume with Hanks’ Balanced 

Salt Solution (HBSS) and the lymphocytes were isolated by density centrifugation utilizing 

Ficoll-Paque (GE Healthcare) and washed twice in PBS according to the method of Boyum 61. 

The final cell pellet was re-suspended in a medium (RPMI-1640) containing 10% fetal calf 

serum, penicillin, streptomycin, and L-glutamate (Life Technologies, Grand Island, NY) at a 

density of 1.75-2.00 x 106 cells/ml. The test for examining the inhibition of lysozyme synthesis 

and release was carried out in 96-well culture plate in a total volume of .22 mL, modified from 

62. Lysozyme activity was measured by turbidimetric method using Micrococcus lysodeikticus 

(Sigma) as the substrate. Micrococcus lysodeikticus was prepared in 0.1 mol/L phosphate buffer, 

pH 6.3, at a concentration of .05% and homogenized with a tissue grinder equipped with a 

Teflon pestle (Wheaton, St. Millville, New Jersey) with 3 strokes. 20 µL of supernatant of cell 

culture was incubated with 150 µL of substrate in a 96-well plate at 37°C for 7–10 min with 

shaking and then kinetically read by a microplate reader at 450 nm for 20 min. Cells (3.5-4.0 X 

105) were incubated with 0, .5, 1, 2.5, 5, 10, 50, and 100 nmol/L of dexamethasone (DEX) 

(Sigma) at 37°C in a humidified atmosphere with 5% CO2 for 3 days. Each concentration of 

DEX was incubated in triplicate. After centrifuging the plate, 120 µL of supernatant were 

removed and pooled from each triplicate well. The standards were prepared using pure lysozyme 

from chicken egg white (Sigma) dissolved in RPMI-1640 as used for the cell culture. The 
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inhibition curve was drawn as concentration of DEX versus relative activity of lysozyme. Results 

were expressed as IC50-DEX (nmol/L) based on the concentration of DEX at which 50% of 

lysozyme activity was inhibited. The intra- and inter-assay coefficients of variation for the 

measurement of lysozyme activity were 6.9% and 9.8% respectively 63. 

Plasma Cortisol: Cortisol levels in plasma were assayed using Cortisol ELISA Kit from IBL-

America (Minneapolis, MN), a solid phase enzyme-linked immunosorbent assay, based on the 

principle of competitive binding. The microtiter wells were coated with a monoclonal antibody 

directed towards an antigenic site on the cortisol molecule. Endogenous cortisol from an 

unknown competes with a cortisol-horseradish peroxidase conjugate for binding to the coated 

antibody. After incubation the unbound conjugate was washed off. The amount of bound 

peroxidase conjugate is inversely proportional to the concentration of cortisol in the unknown. 

After addition of the substrate solution, the intensity of color developed is inversely proportional 

to the concentration of cortisol in the unknown. Assay sensitivity: 2.5 ng/mL. The intra-assay 

and inter-assay coefficients of variation for this assay 5.3% and 9.8%, respectively.  Two blood 

samples were assayed for the determination of cortisol before and after DEX administration.  

Decline of cortisol from Day 1 to Day 2 was used as a measure of DEX suppression.   

Plasma ACTH: ACTH levels in plasma was assayed by using ACTH ELISA kit (ALPCO 

Diagnostics, Windham NH). In this assay, calibrators and research samples were simultaneously 

incubated with the enzyme labeled antibody and a biotin coupled antibody in a streptavidin-

coated micro plate well. At the end of the assay incubation, the microwell was washed to remove 

unbound components and the enzyme bound to the solid phase was incubated with the substrate, 

tetramethylbenzidine (TMB). An acidic stop solution was added to stop the reaction and convert 

the color to yellow. The intensity of the yellow color is directly proportional to the concentration 
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of ACTH in the sample. A dose response curve of absorbance unit vs. concentration was 

generated using results obtained from the calibrators. Concentrations of ACTH present in the 

samples was determined directly from this curve. Assay sensitivity: 0.5 pg/mL. The intra-assay 

and inter-assay coefficients of variation for this assay 5.7% and 8.0%, respectively. Two blood 

samples were assayed for the determination of ACTH before and after DEX administration.  

Plasma DHEA: DHEA and DHEA-S were measured using ALPCO ELISA DHEA and DHEA-

S kits (ALPCO Diagnostics, Windham NH). Both kits utilize a competitive immunoassay 

specifically designed and validated for the in vitro diagnostic measurement of 

dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEA-S) in human 

blood. Assay sensitivity for DHEA: 0.1 ng/mL. The intra-assay and inter-assay coefficients of 

variation for this assay 3.6% and 6.1%, respectively. Assay sensitivity for DHEA-S: 5.0 pg/ml. 

The intra-assay and inter-assay coefficients of variation for this assay 5.7% and 10.0%, 

respectively.  

24-hour Urine Collection: At the end of the first study visit, subjects were given instructions 

and materials to collect urine at home over 24 hours.  Urine was kept in a freezer for the duration 

of the collection and kept frozen until it was returned to the laboratory.   

Urinary catecholamines: Urinary catecholamines (E, NE, and DA) were extracted using 

Urinary Catecholamine Kit developed by Bioanalytical Systems, Inc (BAS). Extraction of 

catecholamines from 0.5 ml of urine sample was performed on the Solid Phase Extraction (SPE) 

Columns using the company's proprietary reagents. 12µl of dihydroxybenzoic acid (DHBA) was 

added to each sample as an internal standard. HPLC analysis of the elute was performed on 

Thermo Scientific Dionex UltiMate 3000 with an autosampler and Dionex Coulochem III 
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electrochemical detector. Quantitation was performed by integrating peak areas and comparing 

the ratios of the analyte to those of the internal standard with reference to a calibration curve 

across the range of concentrations using Chromeleon 7 Chromatography Data System. 

Metabolomics and cytokine data data 

The blood samples of 82  combat veterans without PTSD and 83 combat veterans who developed 

PTSD were used for metabolomics profiling. These two group served as controls and cases in 

our current study. The subjected reported to the laboratory in the morning 7.30 AM under fasting 

condition and the blood samples were colled around  8 AM. The metabolic profiling of the blood 

samples were performed by Metabolon, Inc. (Durham, NC). The primary metabolic data and 

details of the sample collection and metabolic profiling are reported in Mellon et al., (in review 

at PLOS one). The cytokine data was obtained as per our previous reports 5. 

Statistical analysis 

In the present analysis, we used the sample of 82 controls and 83 PTSD subjects for the 

statistical analysis. The data for metabolomics, neuro-endocrine, clinical labs and cytokines was 

log-transformed and median normalized before the statistical analysis. Due to heterogeneity in 

the distributions of some features in the data across cohorts, we used non-parametric Mann-

Whitney U test to identify the features that show statistically significant difference in the PTSD 

and control groups. The statistical significance for all analysis was set at α=0.05 and trend level 

significance was set to 0.05<α<0.1. The false discovery rate for the multiple comparisons was 

reported by the q-values obtained from q-value package in R . All the statistical analysis was 

performed in R. 
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To assess the model based hypothesis we performed correlation analysis using Spearman 

Correlation Coefficients (ρ) between the regulatory components and the metabolites that show 

statistically significant differences in PTSD case versus controls. Correlation matrices for both 

controls and PTSD samples were obtained separately and a relative difference (Rd) of the 

correlations with respect to correlations in control subjects were estimated after rescaling the two 

matrices in the range of 1 to 10. The relative difference was obtained by, 

                    ����,�� � ���	�� ,��
 ���	��,�� 

���	��,�� 
                    (1)                                                  

where, ����� and �����  represent the (i,j)th correlation coefficient in the correlation matrix of i 

number of rows and j number of columns for PTSD and control, respectively. We used the psych 

package in R  to estimate correlation coefficients and the corresponding p-values and the R 

package corrplot to plot correlation plots 64. 

Mathematical model development 

To analyze the defects in metabolism we used a published mathematical model of the human 

liver to simulate metabolic trends. To study the regulatory effects of the HPA axis and 

inflammation on metabolism, we further integrated the metabolic simulator with the models for 

HPA axis, inflammation and hypoxia. We adopted four sub models published in literature, 

namely hepatic metabolism 65, HPA axis  and inflammation model 66, glucocorticoid receptor 

model 67, and hypoxia signaling by 68. These models were integrated by linking the regulatory 

nodes according to the interactions reported in the literature. We used a semi-empirical approach 

to incorporate regulatory effects by using the saturating rate equations modeled by Michalis-

Menten and Hill type of biochemical kinetics. In the semi-empirical approach, we emphasize on 

incorporating the known regulatory interactions from the literature and reproducing the 
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qualitative trends in input-output physiological response. The equations were formulated to 

satisfy the experimentally observed physiological responses at basal conditions and the 

qualitative behavior on changing the regulatory stimulus. The regulatory functions were applied 

to metabolic pathways with an assumption of parallel activation mechanism, wherein, if a rate 

limiting step in a pathway is regulated by a regulator, the regulatory effect is applied to series of 

reactions in the pathway until a branch point or a store or a sink, or the next regulated variable of 

the pathway.   

The source of the additional interactions in the integrated model and the scheme of model 

development are reported in the Appendix II-Table S2. The model is composed of ODEs which 

can simulate the dynamical profiles for metabolites, signaling and transcriptional regulatory 

components in the metabolic regulatory network. The model is comprised of major metabolic 

pathways of glycolysis, TCA cycle, amino acid metabolism, urea cycle, lipid metabolism and 

plasma metabolite transport along with regulatory signaling pathways for insulin (IRS-AKT), 

glucagon and catecholamine (GPCR-cAMP-PKA), HPA axis for cortisol and glucocorticoid 

receptor (GRs) dynamics, inflammation and hypoxia (Appendix II : Figure S2 & S3).  The model 

was validated to reproduce the qualitative physiological responses for different input conditions 

(Appendix II : Figure S4). The overall model is comprised of 189 ODEs for the state variables. 

The model was developed and analyzed using MATLAB (2017a). 

Metabolic control analysis 

Metabolic control analysis 27  was performed by perturbation of parameters in the model, 

wherein parameters represents rate of reactions and strength of interaction in the metabolic and 

regulatory network, respectively. We performed the metabolic control analysis to obtain 
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concentration response coefficients to identify the rate parameters that can yield the metabolic 

signatures as showed by statistically significant group differences in subjects with and without 

PTSD.  To quantify the changes in metabolite concentrations with respect to changes in the 

parameters for reactions or regulatory interactions we calculate metabolite concentration 

response coefficients (MCRCs) and as, 

                      	��� � 

�


�
� �

�
�            (2) 

where, C and P are the concentration of a metaboliteand parameters for reaction rates in the 

model, respectively. We recorded MCRCs for 100 metabolic reaction rates and 260 signaling and 

transcriptional regulatory interaction rates, with respect to the trends observed in 12 metabolites 

that were identified significantly different in PTSD dataset. Due to the nonlinear nature of the 

regulatory influences of hormonal signaling and transcriptional factors, instead of infinitesimal 

perturbation we obtained the response coefficients for a modest perturbation across 50% change 

in the reaction and interaction rates (i.e. 1.5 fold and 0.5 fold of the native value). We obtained 

the net response coefficnet by taking the mean of  response coeffeicinets recoreded for 

decreasing (0.5 fold) and increasing (1.5 fold) the parameter across the nominal values, with at 

least MCRC of 0.001 for each of the 12 metabolites . The steady state simulation results for 

those 12 metabolites were compared with the pattern of change in direction of significantly 

different metabolites in PTSD subjects.  The directions of the change in metabolite 

concentrations (positive or negative) with respect to baseline levels for a particular rate 

perturbation were used to determine whether a concentration of a metabolite would decrease or 

increase for a perturbation in a rate of reaction. The control coefficients that yielded all the 

changes as observed in the MD signature were recorded for further inferences related to the 
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disease. The simulations for MCA were carried out under contant glycogen levels to mimic the 

normal supply of energy source and maintain steady state levels in the model. 

 

Causal inference and sensitivity analysis 

We used the covariate balancing propensity scores (CBPS) 19 package in R to obtain the weights 

for covariate/confounder adjustments while deducing causal effects. The covariate balancing 

generalized propensity scores obtained from CBPS are optimized to maximize both the covariate 

balance and prediction of treatment assignment in the sample by minimizing the association 

between covariates and the treatment/exposure variable. A non-parametric version called 

npCBPS was used to obtain the weights for fitting the average causal effects (ACEs).  To obtain 

the population level causal estimates we used the entire sample for analysis by controlling for the 

group effects. We computed the average causal effects (ACE-�) of six regulatory components 

using the CBPS package, with respect to 35 metabolites in our sample. The ACEs (represented 

by (�) gamma) can be interpreted as the percent change in the affected metabolite per unit 

percent change in the regulatory component. ACEs capture the average causal association 

between two variables controlling for covariates without referring to the direction of causality. 

We used treatSens package in R 69 to perform sensitivity analysis of the causal estimates for 

unmeasured confounding. The sensitivity analysis (SA) employs a simulation based non-

parametric method, wherein a sensitivity parameter is the coefficient of the association between 

the unknown confounder and the treatment and outcome variables. The method determines the 

sensitivity estimates that can account for the bias due to model misspecification and unmeasured 

confounding. The data was standardized for the SA to obtain the sensitivity coefficient ranging 
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from 0-1. The sensitivity is assessed graphically by plotting the 2D plot of the causal estimates 

with respect to bi-parametric variation (correlation of unknown confounder with treatment and 

outcome variables) 20. We recorded sensitivity parameters representing the intersection of the bi-

parametric curve with the x=y line on the plot. Two sensitivity parameters were recorded, 

namely τ1: the point of intersection of the x=y line with the curve that represents the causal 

estimate equals to zero; τ2: the point of intersection of the x=y line with the curve that represents 

the lack of significance (where p>0.05) of the causal estimate. The sensitivity parameters were 

evaluated only for the statistically significant causal associations. 

 

 

 

Causal mediation analysis 

We used the Medflex package in R 70 to perform causal mediation analysis (CMA) using natural 

effect models 25. The package employs computations on conditional mean models for nested 

counterfactuals to estimate the causal effects. These models allow for estimation of natural direct 

and indirect or mediated effects (NDE and NIE) through its coefficients, which provides easier 

interpretation of effects with respect to the exposure variables. The CMA uses a counterfactual 

framework of causal inference which works by identifying the difference between the potential 

outcomes of a design or a graph with and without a mediator estimated by following equations, 

                              ��� �0� � ��� �� � �1, 	 �0�� –  � �� � 0, 	 �0���      (3) 

                                 ��� �1�  � ��� �� � �1, 	 �1�� –  � �� � �1, 	 �0���     (4)                                             
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where, Y, T and M are the outcome variable, treatment or exposure variable and mediator 

variable, respectively. The suffix 1 and 0 in the parenthesis represent the notation for with and 

without the change in treatment or mediator variables. To obtain generalized estimates of the 

causal effects we performed a population level mediation analysis on the entire cohort 

controlling for the disease status. The population level effects were thus obtained by weighting 

by the reciprocal of the conditional exposure density of the treatment variable through inverse 

probability weighting in the functional models. The causal inference problem is based on 

assumptions of sequential ignorability on the causal structure invoked by non-parametric 

structural equation models with independent error terms (NPSEM-IE) 71. The package employs 

generalized linear models (glm) for mediation analysis and 1000 non-parametric bootstrapped 

simulations to generate inference and related standard errors. The natural direct effect (NDE: ψd) 

is interpreted as, for a subject with baseline covariates, one percent change from average level of 

cortisol suppression results in a percent change in a corresponding metabolite level by the factor 

of NDE.  The natural indirect effect (NIE: ψi) can be interpreted as, for altering the level from 

that would have been observed at the average levels of cortisol suppression to the level that 

would have been observed at one percent change in cortisol suppression would result in the 

percent change in metabolite level by the factor of NIE. The total causal effect (TCE: ψt) is the 

sum of the direct and indirect effects. 

Data availability 

The metabolomics, neuroendocrine and cytokine data analyzed during this study are available at 

https://sysbiocube-abcc.ncifcrf.gov/ and will be made available on reasonable  request. 

Software and code availability 

The codes used for the analysis in this study will be made available on reasonable  request. 
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Figure 1. Boxplot representation of metabolite differences in controls and PTSD. Red arrows represent the upregulated fluxes and the green arrows
represent down regulated metabolic fluxes. The side panels represent differences in metabolic regulatory hormones, tests for GR sensitivity and
markers for inflammation, oxidative stress and ATP hydrolysis. A red star on the box plots represent the statistically significant difference
(p<0.05) in PTSD versus controls. Green box = PTSD, red box = controls. It is noted that gluconeogenesis potentially in liver, hypoxic adaptation
potentially in muscle, amino acid catabolism, triglyceride synthesis and ATP hydrolysis are upregulated, whereas, urea cycle, lipogenesis and beta
oxidation are down-regulated. The measures of GR sensitivity, inflammation and oxidative stress; and the hormones: insulin, cortisol, urinary
epinephrine are also elevated in PTSD. 
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                                      (a)                                                                                    (b) 

Figure 2 (A) Plot represents the result of MCA: 34 model parameters that elicited the metabolic signature as observed in PTSD subjects, along
with their mean cumulative metabolic concentration respose coefficient measured across 12 metabolites (middle of the figure) with at least 0.1
mean cumulative MCRC. The sign (-) in prefix of the parameters represent the direction of change that yielded the MD signature. These
parameters belong to the HPA axis and GR signaling, GPCR signaling, inflammation and metabolic fluxes for triglyceride synthesis, plasma
lactate and amino acid levels. The color codes the fraction of the control coefficients corresponding to each metabolite. (B) The representation of
percent contribution of the control coefficients with respect to individual metabolites per parameter. It was noted that citrate and pyruvate were
mostly affected by these parameters contributing to around 40% of the total effect per parameter followed by the effect on amino acid (alanine and
glutamine) concentration (~15%), lipid metabolites (carnitine, fatty acids and triglycerides) concentration (~15%), urea cycle metabolites (~15%)
and glucose, lactate and insulin together (~15%).   
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Figure 3: Matrix representation of the changes in the states of metabolite and regulatory component with respect to reference state for perturbation
in the 34 parameter, identified through MCA. The states are coded as either increased (red) or decreased (green) and <1% change (blue) per cel
corresponding to the parameter-state combination. It can be noted that the trends in reference metabolites (MD signature observed in PTSD) are
replicated for the parameters on Y-axis. The predicted states of other regulatory components corresponding to these parameter perturbations are
shown appended to reference metabolites. It can be noted that β-adrenergic-GPCR pathway is upregulated for all parameters along with an
upregulation of catabolic state. The ATP/ADP ratio is also reduced for all the parameter perturbation along with upregulation of AMPK and HIFα
A net catabolic state can be observed (last column: metabolic state) for all the 34 parameter perturbations.  
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Figure 4: Plots for average causal estimates (ACE) for regulatory components on metabolites. The number on error bar is the sensitivity parameter
(A) Higher CS shows negative effect on citrate, bilirubin and nonadecenoate, whereas positive effect on triglycerides, IL6, alkaline phosphatase
plasma proteins, HOMA-IR, GGT and hs-CRP. (B) IC50 is shows a trend with stearate and triglycerides. (C) HOMA-IR shows an identical effec
to MD signature for glycolytic metabolites, amino acids, fatty acids, CS, GGT and hypoxanthine along with hepatic function components.  (D) hs
CRP shows a negative association with citrate, glutamine, unedecenoate, and glycerate and a positive effect on IL6, CS, triglyceride and GGT. (E)
GGT shows a causal effect identical to the MD signature for pyruvate and citrate, ornithine, amino acids, triglycerides, stearoyl sphingomyelin and
gammaglutamyltyrosine, hepatic function components, CS, HOMA-IR and hs-CRP. (F) Hypoxanthine corroborates with several features of MD
signature: pyruvate, lactate, amino acids, carnitines and HOMA-IR along with glycerate, sphingosine 1 phosphate, hepatic function and CS. 
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(a)                                                                                                                              (b) 

 
 

Figure 5 : (A) Causal graph used to test for mediation hypothesis of the effect of glucocorticoid sensitivity measured by dexamethason
suppression test (DST). The mediator complex of hs-CRP, hypoxanthine, GGT and HOMA-IR were considered as the joint mediators as informed
from the model analysis. (B) Forest plot representation of the natural indirect effects (joint mediated effects) of increased GC feedback sensitivity
(measured by cortisol suppression test) on 35 metabolites for the causal hypothesis tested on the entire cohort adjusting for the group effects. The
error bar represents 95% confidence intervals of the point estimates of the effects. It is noted that the joint mediated effects on pyruvate, lactate
citrate, gluconeogenic and branched chain amino acids, oxidative stress, inflammation and hepatic function components are statistically
significant. Mediated effects on fatty acids and carnitines were insignificant

one 
ed 
ity 
he 

ate, 
lly 
nt.

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

under a
not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available 

T
he copyright holder for this preprint (w

hich w
as

this version posted D
ecem

ber 17, 2018. 
; 

https://doi.org/10.1101/492827
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/492827
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1 : The features with statistically significant difference in controls and PTSD subjects with 
p<=0.05 and q<=0.01. Age & BMI adjusted p and q values are reported. (*) sign in suffix indicate 
additional features (with 0.05< p <= 0.1) that were included in analysis due to their association with 
significantly different pathways.  

 

Metabolites p.values q.values Adjusted 
p.values 

Adjusted 
q.values 

median   
  (FC) 

Cohen's 
d 

Glycolysis             

Lactate 2.36E-07 3.42E-05 1.13E-06 1.73E-04 1.301 -0.867 

Pyruvate 0.001 0.024 0.014 0.104 1.308 -0.453 

Citrate* 0.039 0.138 0.049 0.188 0.949 0.346 

Amino acids             

Alanine 0.015 0.076 0.038 0.175 1.123 -0.371 

Glutamine 0.021 0.099 0.021 0.137 0.969 0.423 

Tyrosine 0.005 0.050 0.007 0.068 1.074 -0.483 

Isoleucine* 0.044 0.138 0.505 0.511 1.048 -0.168 

leucine* 0.090 0.184 0.281 0.400 1.034 -0.236 

Valine* 0.086 0.182 0.557 0.526 1.039 -0.152 

Urea cycle         

Arginine* 0.067 0.164 0.053 0.196 0.973 0.386 

Ornithine 0.011 0.061 0.046 0.188 1.097 -0.331 

Long cahin fatty acids             

10-Nonadecenoate 19:1 (ω-9) 0.004 0.047 0.001 0.030 0.775 0.460 

10-Undecenoate 11:1 (ω-1) 0.006 0.054 0.033 0.165 0.821 0.371 

17-Methylstearate 0.001 0.026 0.002 0.030 0.881 0.441 

2-Hydroxypalmitate 0.008 0.056 0.010 0.089 0.933 0.407 

Nonadecanoate 19:0 3.02E-05 0.002 2.17E-04 0.016 0.815 0.595 

Arachidonate 20:4 (ω-6) 0.010 0.061 0.011 0.094 0.815 0.371 

Stearate 18:0 0.007 0.056 0.005 0.054 0.911 0.376 

Essential fatty acids             

Dihomolinoleate 20:2 (ω-6) 0.008 0.056 0.002 0.030 0.806 0.429 

Dihomolinolenate 20:3 (ω-3 or ω-6) 1.84E-04 0.009 4.30E-04 0.016 0.785 0.504 

Docosahexaenoate (DHA) 22:6 (ω-
3) 

0.001 0.024 0.003 0.041 0.812 0.479 

Docosapentaenoate (DPA) 22:5 (ω-
3) 

0.001 0.024 0.001 0.023 0.730 0.480 

Eicosapentaenoate (EPA) 20:5 (ω-3) 0.006 0.055 0.022 0.142 0.821 0.323 

Eicosenoate 20:1 0.002 0.026 0.002 0.030 0.801 0.472 
Linolenate 18:3 (ω-3 or ω-6) 0.002 0.027 0.002 0.034 0.808 0.425 

Carnitines             

Decanoylcarnitine 0.011 0.061 0.031 0.164 1.234 -0.328 

Octanoylcarnitine 0.021 0.099 0.030 0.164 1.093 -0.343 

Palmitoylcarnitine* 0.044 0.138 0.148 0.337 1.103 -0.268 
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Energy deficit and  
oxidative stress 

            

Hypoxanthine 2.38E-04 0.009 0.002 0.030 1.354 -0.557 

5-oxoproline 0.002 0.027 0.000 0.016 1.104 -0.522 

Gamma glutamyltyrosine 0.008 0.056 0.075 0.235 1.102 -0.331 

Sphingosine1phosphate 0.015 0.076 0.062 0.207 1.128 -0.327 

Stearoyl sphingomyelin 0.006 0.055 0.010 0.089 1.085 -0.437 

Other             

Threonate 0.010 0.061 0.061 0.207 0.828 0.362 

Transurocanate 0.003 0.035 0.013 0.103 0.778 0.446 

Bilirubin EE 0.018 0.089 0.029 0.164 0.854 0.389 

Glycerate* 0.028 0.111 0.047 0.188 0.908 0.369 

3-Hydroxybutyrate (BHBA) 0.008 0.056 0.061 0.207 0.804 0.287 

Cytokines              

IL6 2.00E-04 0.007 0.014 0.161 1.308 -0.441 

TNFα 0.005 0.031 0.003 0.097 1.077 -0.498 

Clinical Labs             

Insulin 0.002 0.017 0.025 0.188 1.122 -0.497 

Glucose 0.002 0.017 0.133 0.363 1.023 -0.375 

HOMA-IR 3.96E-04 0.007 0.008 0.132 1.146 -0.553 

Triglyceride 0.027 0.067 0.425 0.659 1.055 -0.274 

Total protein 0.001 0.012 0.006 0.132 1.015 -0.490 

Albumin 0.015 0.048 0.062 0.277 1.011 -0.286 

Alkaline phosphatase 0.006 0.031 0.084 0.304 1.037 -0.375 

GGT 3.70E-04 0.007 0.010 0.132 1.131 -0.513 

hs-CRP 0.016 0.048 0.033 0.195 1.298 -0.455 

Pottassium (K) 0.006 0.031 0.046 0.227 1.025 -0.391 

Chlorine (Cl) 0.015 0.048 0.021 0.178 1.001 -0.424 

Whilte blood cells (WBC) 0.009 0.036 0.016 0.162 1.049 -0.444 

Red blood celld (RBC) 0.011 0.041 0.064 0.277 1.018 -0.371 

Platelets 0.014 0.048 0.109 0.341 1.015 -0.327 

MPV 0.030 0.068 0.035 0.195 1.009 -0.377 

Neuro-endocrine features             

ACTH 0.036 0.074 0.219 0.467 1.069 -0.281 

Cortisol suppression 0.005 0.031 0.022 0.178 1.021 -0.388 

Urinary epinephrine 0.050 0.092 0.099 0.331 1.226 -0.285 

Cortisol* 0.069 0.114 0.054 0.256 1.056 -0.290 

IC50-Dex* 0.082 0.123 0.086 0.304 0.913 0.284 
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Table 2: Population level average causal effects. Sensitivity coefficient τ1 representing the coefficient of unobserved confounder at which 
ACE=0, sensitivity coefficient τ2 representing the coefficient of unobserved confounder at which ACE becomes statistically insignificant 
(p>0.05). Red, yellow and green shade highlights the p and q values <0.05, between 0.05 and 0.1 and τ2 >0.2, respectively. 

Metabolic 
pathways 

Regulators  
Cortisol Suppression 

  
IC50  Dex-lysozyme suppression 

  

  
HOMAIR 

  
  Metabolites ACE 

(�) 
Std. 
error 

p-value q-value τ1 τ2 ACE 
(�) 

Std. 
error 

p-
value 

q-
value 

τ1 τ2 ACE 
(�) 

Std. 
error 

p-value q-value τ1 τ2 

  
Glycolysis and 
TCA Cycle 
  

Glucose 0.020 0.031 0.513 0.671 0.000 0.000 0.008 0.010 0.420 0.579 0.000 0.000 0.100 0.016 1.94E-09 4.76E-08 0.519 0.405 

Pyruvate 1.156 0.674 0.089 0.210 0.000 0.000 -0.217 0.232 0.352 0.535 0.000 0.000 1.416 0.391 4.06E-04 0.004 0.450 0.310 

Lactate 0.407 0.281 0.149 0.306 0.000 0.000 -0.035 0.094 0.712 0.804 0.000 0.000 0.813 0.145 9.70E-08 2.17E-06 0.507 0.407 

Citrate -0.534 0.187 0.005 0.026 0.457 0.259 0.013 0.063 0.832 0.902 0.000 0.000 -0.204 0.111 0.067 0.180 0.000 0.000 

Urea Cycle 
  

Arginine 0.080 0.207 0.698 0.795 0.000 0.000 0.012 0.069 0.866 0.915 0.000 0.000 0.165 0.127 0.194 0.366 0.000 0.000 

Ornithine 0.380 0.318 0.233 0.416 0.000 0.000 0.111 0.113 0.327 0.503 0.000 0.000 0.462 0.188 0.015 0.061 0.387 0.119 

Glucogeneic  
amino acids 
  

Alanine 0.483 0.228 0.036 0.115 0.403 0.167 0.069 0.079 0.382 0.560 0.000 0.000 0.395 0.130 0.003 0.017 0.410 0.218 

Glutamine -0.088 0.105 0.403 0.579 0.000 0.000 -0.029 0.035 0.422 0.579 0.000 0.000 -0.063 0.063 0.312 0.494 0.000 0.000 

Tyrosine 0.313 0.184 0.091 0.212 0.000 0.000 -0.005 0.062 0.932 0.959 0.000 0.000 0.275 0.118 0.021 0.080 0.379 0.195 

Branched 
chain  
amino acids 
  

Isoleucine 0.281 0.162 0.086 0.207 0.000 0.000 -0.005 0.055 0.926 0.957 0.000 0.000 0.205 0.100 0.041 0.123 0.361 0.094 

Leucine 0.143 0.137 0.299 0.483 0.000 0.000 0.000 0.044 0.992 0.995 0.000 0.000 0.128 0.082 0.120 0.260 0.000 0.000 

Valine 0.077 0.149 0.607 0.729 0.000 0.000 -0.018 0.051 0.723 0.805 0.000 0.000 0.116 0.089 0.195 0.366 0.000 0.000 

  
  
Long chain  
fatty acids 
  
  
  

10-Nonadecenoate 19:1 (ω-9) 0.003 0.324 0.992 0.995 0.000 0.000 -0.087 0.111 0.432 0.590 0.000 0.000 -0.450 0.190 0.019 0.076 0.371 0.180 

10-Undecenoate 11:1 (ω-1) -0.141 0.353 0.691 0.795 0.000 0.000 0.151 0.118 0.201 0.375 0.000 0.000 -0.118 0.199 0.554 0.704 0.000 0.000 

17-Methylstearate -0.050 0.156 0.749 0.830 0.000 0.000 0.055 0.052 0.291 0.478 0.000 0.000 -0.261 0.091 0.005 0.025 0.402 0.183 

2-Hydroxypalmitate -0.542 0.287 0.061 0.169 0.000 0.000 0.166 0.100 0.099 0.223 0.000 0.000 -0.385 0.164 0.020 0.079 0.359 0.092 

Nonadecanoate 19:0 -0.876 0.388 0.025 0.091 0.413 0.142 0.094 0.127 0.461 0.624 0.000 0.000 -0.502 0.233 0.033 0.107 0.349 0.123 

Arachidonate 20:4 (ω-6) -0.462 0.244 0.060 0.169 0.000 0.000 0.157 0.081 0.055 0.158 0.000 0.000 -0.251 0.144 0.082 0.207 0.000 0.000 

Stearate 18:0 -0.224 0.201 0.268 0.456 0.000 0.000 0.169 0.067 0.013 0.055 0.430 0.189 -0.164 0.120 0.174 0.344 0.000 0.000 

  
Carnitines 
  
  

Carnitine 0.062 0.116 0.592 0.720 0.000 0.000 0.047 0.038 0.222 0.402 0.000 0.000 -0.008 0.069 0.911 0.949 0.000 0.000 

Decanoylcarnitine 0.497 0.708 0.484 0.647 0.000 0.000 -0.212 0.237 0.374 0.560 0.000 0.000 -0.462 0.430 0.284 0.469 0.000 0.000 

Octanoylcarnitine 0.299 0.685 0.663 0.781 0.000 0.000 -0.189 0.232 0.417 0.579 0.000 0.000 -0.258 0.425 0.546 0.703 0.000 0.000 

Palmitoylcarnitine -0.175 0.268 0.516 0.671 0.000 0.000 -0.051 0.087 0.554 0.704 0.000 0.000 -0.019 0.164 0.910 0.949 0.000 0.000 

 Triglycerids 
metabolism 

Glycerate -0.154 0.230 0.503 0.665 0.000 0.000 -0.030 0.076 0.697 0.795 0.000 0.000 -0.340 0.133 0.011 0.049 0.380 0.162 

Triglyceride 0.213 0.088 0.017 0.070 0.403 0.135 0.063 0.030 0.038 0.118 0.375 0.111 0.235 0.050 5.31E-06 8.71E-05 0.475 0.340 

  
Oxidative 
stress  
and 
Inflammation 
  
  

Gamaglutamyltyrosine 0.362 0.201 0.073 0.190 0.000 0.000 0.070 0.069 0.315 0.494 0.000 0.000 0.300 0.131 0.024 0.088 0.383 0.195 

5-Oxoproline 0.134 0.132 0.310 0.494 0.000 0.000 -0.016 0.045 0.720 0.805 0.000 0.000 -0.033 0.083 0.689 0.795 0.000 0.000 

Stearoyl sphingomyelin 0.275 0.262 0.294 0.480 0.000 0.000 -0.003 0.085 0.971 0.987 0.000 0.000 0.314 0.153 0.043 0.127 0.353 0.121 

IL6 1.234 0.547 0.026 0.091 0.415 0.255 0.001 0.178 0.994 0.995 0.000 0.000 0.002 0.334 0.995 0.995 0.000 0.000 

TNFα 0.261 0.213 0.221 0.402 0.000 0.000 0.080 0.073 0.278 0.465 0.000 0.000 -0.068 0.132 0.607 0.729 0.000 0.000 

Sphingosine 1 phosphate -0.144 0.381 0.705 0.800 0.000 0.000 -0.127 0.125 0.314 0.494 0.000 0.000 0.186 0.229 0.419 0.579 0.000 0.000 

  
Hepatic 
function 
  
  

Albumin 0.041 0.029 0.156 0.314 0.000 0.000 -0.006 0.009 0.495 0.658 0.000 0.000 0.066 0.016 6.11E-05 0.001 0.473 0.335 

Alkaline phoshatase 0.162 0.053 0.003 0.016 0.478 0.306 0.033 0.018 0.068 0.180 0.000 0.000 0.101 0.033 0.002 0.015 0.428 0.236 

Bilirubin EE  -1.154 0.425 0.007 0.038 0.454 0.188 -0.033 0.153 0.828 0.901 0.000 0.000 -0.997 0.248 9.25E-05 0.001 0.472 0.341 

Total protein 0.056 0.023 0.014 0.058 0.429 0.198 0.003 0.008 0.664 0.781 0.000 0.000 0.040 0.013 0.003 0.017 0.410 0.185 

  
  
Regulators 
  
  

Cortisol suppression         -0.016 0.027 0.559 0.705 0.000 0.000 0.156 0.048 0.001 0.010 0.437 0.287 

IC50-Dex  -0.135 0.247 0.586 0.720 0.000 0.000         -0.029 0.150 0.848 0.912 0.000 0.000 

HOMA-IR 0.411 0.134 0.003 0.016 0.419 0.291 0.027 0.048 0.576 0.719 0.000 0.000         

hs-CRP 1.808 0.683 0.009 0.042 0.428 0.315 0.097 0.227 0.671 0.782 0.000 0.000 0.343 0.392 0.383 0.560 0.000 0.000 

GGT 0.362 0.134 0.008 0.038 0.428 0.298 0.011 0.042 0.799 0.882 0.000 0.000 0.304 0.074 5.94E-05 0.001 0.442 0.307 

Hypoxanthine 0.74 0.56 0.18 0.36 0.00 0.00 -0.11 0.20 0.59 0.72 0.00 0.00 0.73 0.34 0.03 0.10 0.36 0.09 
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Table 2 (continued) 

Metabolic 
pathways 

Regulators   
hsCRP 

 

  
GGT 

  

  
Hypoxanthine 

  
  Metabolites ACE 

(�) 
Std. 
error 

p-value q-value τ1 τ2 ACE 
(�) 

Std. 
error 

p-value q-value τ1 τ2 ACE 
(�) 

Std. 
error 

p-value q-value τ1 τ2 

  
Glycolysis and 
TCA Cycle 
  

Glucose -0.005 0.003 0.094 0.215 0.000 0.000 -0.004 0.017 0.803 0.882 0.000 0.000 0.000 0.004 0.965 0.985 0.000 0.000 

Pyruvate 0.014 0.072 0.849 0.912 0.000 0.000 0.797 0.370 0.033 0.107 0.360 0.135 0.695 0.089 1.07E-12 3.29E-11 0.699 0.583 

Lactate -0.017 0.028 0.542 0.702 0.000 0.000 0.196 0.150 0.192 0.366 0.000 0.000 0.248 0.031 3.19E-13 1.12E-11 0.619 0.532 

Citrate -0.084 0.022 1.82E-04 0.002 0.489 0.350 -0.379 0.101 2.67E-04 0.003 0.461 0.315 -0.034 0.025 0.169 0.337 0.000 0.000 

Urea Cycle 
  

Arginine -0.050 0.025 0.050 0.145 0.365 0.211 0.093 0.114 0.414 0.579 0.000 0.000 0.065 0.029 0.030 0.101 0.392 0.211 

Ornithine -0.043 0.043 0.317 0.494 0.000 0.000 0.454 0.175 0.011 0.046 0.398 0.222 -0.048 0.043 0.262 0.451 0.000 0.000 

Glucogeneic  
amino acids 
  

Alanine -0.004 0.024 0.860 0.912 0.000 0.000 0.142 0.125 0.257 0.448 0.000 0.000 0.086 0.029 0.004 0.021 0.429 0.231 

Glutamine -0.026 0.011 0.023 0.088 0.379 0.101 -0.112 0.058 0.054 0.158 0.000 0.000 -0.021 0.014 0.126 0.268 0.000 0.000 

Tyrosine 0.023 0.019 0.211 0.391 0.000 0.000 0.368 0.099 2.99E-04 0.003 0.454 0.313 0.084 0.025 0.001 0.006 0.457 0.192 

Branched 
chain  
amino acids 
  

Isoleucine 0.032 0.018 0.074 0.190 0.000 0.000 0.446 0.089 1.52E-06 2.87E-05 0.538 0.300 0.045 0.020 0.028 0.097 0.380 0.165 

Leucine 0.015 0.015 0.336 0.514 0.000 0.000 0.244 0.071 0.001 0.006 0.448 0.184 0.057 0.017 0.001 0.006 0.458 0.309 

Valine 0.012 0.019 0.514 0.671 0.000 0.000 0.218 0.081 0.008 0.038 0.409 0.219 0.055 0.018 0.003 0.018 0.435 0.237 

  
  
Long chain  
fatty acids 
  
  
  

10-Nonadecenoate 19:1 (ω-9) -0.108 0.040 0.008 0.040 0.439 0.229 0.101 0.185 0.585 0.720 0.000 0.000 -0.070 0.044 0.117 0.255 0.000 0.000 

10-Undecenoate 11:1 (ω-1) 0.044 0.039 0.262 0.451 0.000 0.000 -0.255 0.189 0.178 0.344 0.000 0.000 -0.021 0.048 0.663 0.781 0.000 0.000 

17-Methylstearate 0.020 0.017 0.239 0.420 0.000 0.000 -0.156 0.085 0.067 0.180 0.000 0.000 -0.034 0.021 0.113 0.250 0.000 0.000 

2-Hydroxypalmitate 0.027 0.032 0.409 0.579 0.000 0.000 -0.315 0.152 0.040 0.123 0.348 0.142 -0.016 0.038 0.675 0.783 0.000 0.000 

Nonadecanoate 19:0 -0.006 0.045 0.900 0.946 0.000 0.000 -0.187 0.209 0.371 0.559 0.000 0.000 0.046 0.056 0.416 0.579 0.000 0.000 

Arachidonate 20:4 (ω-6) 0.012 0.026 0.635 0.759 0.000 0.000 -0.200 0.133 0.135 0.284 0.000 0.000 -0.059 0.034 0.083 0.207 0.000 0.000 

Stearate 18:0 0.041 0.022 0.061 0.169 0.000 0.000 -0.104 0.105 0.323 0.500 0.000 0.000 0.044 0.027 0.106 0.236 0.000 0.000 

  
Carnitines 
  
  

Carnitine -0.019 0.012 0.126 0.268 0.000 0.000 0.015 0.064 0.821 0.897 0.000 0.000 0.010 0.016 0.555 0.704 0.000 0.000 

Decanoylcarnitine -0.083 0.075 0.271 0.456 0.000 0.000 -0.336 0.403 0.405 0.579 0.000 0.000 0.180 0.101 0.078 0.200 0.000 0.000 

Octanoylcarnitine -0.099 0.073 0.175 0.344 0.000 0.000 -0.334 0.396 0.400 0.578 0.000 0.000 0.218 0.095 0.024 0.088 0.407 0.276 

Palmitoylcarnitine -0.033 0.030 0.282 0.468 0.000 0.000 0.128 0.148 0.388 0.565 0.000 0.000 0.144 0.033 2.40E-05 3.69E-04 0.528 0.359 

  
Triglycerids 
metabolism 

Glycerate -0.053 0.024 0.029 0.099 0.367 0.146 -0.450 0.120 2.67E-04 0.003 0.460 0.283 -0.147 0.030 3.58E-06 6.30E-05 0.558 0.422 

Triglyceride 0.020 0.009 0.030 0.102 0.344 0.127 0.216 0.050 2.82E-05 4.09E-04 0.482 0.074 0.011 0.012 0.380 0.560 0.000 0.000 

  
Oxidative 
stress  
and 
Inflammation 
  
  

Gamaglutamyltyrosine 0.039 0.021 0.067 0.180 0.000 0.000 0.425 0.114 2.92E-04 0.003 0.466 0.320 0.040 0.027 0.138 0.288 0.000 0.000 

5-Oxoproline -0.008 0.015 0.579 0.719 0.000 0.000 -0.078 0.076 0.305 0.490 0.000 0.000 -0.031 0.018 0.092 0.213 0.000 0.000 

Stearoyl sphingomyelin 0.015 0.029 0.594 0.720 0.000 0.000 0.394 0.132 0.003 0.019 0.420 0.298 0.002 0.035 0.951 0.975 0.000 0.000 

IL6 0.373 0.057 1.04E-09 2.85E-08 0.620 0.422 -0.107 0.299 0.720 0.805 0.000 0.000 -0.053 0.070 0.452 0.614 0.000 0.000 

TNFα -0.021 0.030 0.473 0.636 0.000 0.000 -0.192 0.114 0.094 0.215 0.000 0.000 -0.053 0.031 0.085 0.207 0.000 0.000 

Sphingosine 1 phosphate 0.057 0.039 0.142 0.293 0.000 0.000 -0.248 0.208 0.236 0.417 0.000 0.000 0.252 0.046 2.45E-07 5.02E-06 0.576 0.428 

  
Hepatic 
function 
  
  

Albumin -0.004 0.003 0.228 0.410 0.000 0.000 0.030 0.014 0.038 0.118 0.338 0.118 0.010 0.004 0.010 0.045 0.414 0.183 

Alkaline phoshatase 0.010 0.006 0.086 0.207 0.000 0.000 0.099 0.029 0.001 0.007 0.449 0.212 0.025 0.007 0.001 0.009 0.473 0.192 

Bilirubin EE  -0.055 0.050 0.269 0.456 0.000 0.000 -0.346 0.242 0.154 0.313 0.000 0.000 -0.105 0.060 0.084 0.207 0.000 0.000 

Total protein 0.003 0.002 0.177 0.344 0.000 0.000 0.020 0.012 0.089 0.210 0.000 0.000 0.010 0.003 0.001 0.009 0.455 0.283 

  
  
Regulators 
  
  

Cortisol suppression 0.022 0.009 0.010 0.044 0.395 0.158 0.131 0.045 0.004 0.022 0.426 0.257 0.021 0.010 0.040 0.123 0.374 0.193 

IC50-Dex -0.016 0.028 0.572 0.718 0.000 0.000 -0.214 0.136 0.117 0.255 0.000 0.000 -0.030 0.034 0.382 0.560 0.000 0.000 

HOMA-IR -0.018 0.014 0.215 0.394 0.000 0.000 0.307 0.075 7.44E-05 0.001 0.428 0.237 0.051 0.019 0.008 0.040 0.376 0.163 

hs-CRP         1.251 0.349 4.54E-04 0.004 0.429 0.218 0.017 0.096 0.859 0.912 0.000 0.000 

GGT 0.053 0.013 1.03E-04 0.001 0.442 0.308         -0.002 0.018 0.916 0.951 0.000 0.000 

Hypoxanthine 0.03 0.06 0.67 0.78 0.00 0.00 0.06 0.32 0.86 0.91 0.00             
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