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Abstract 

Calcineurin Inhibitors (CNI) are the pillars of immunosuppression in transplantation. 

However, they display a potent nephrotoxicity whose mechanisms remained widely 

unsolved. We used an untargeted quantitative proteomic approach (iTRAQ technology) to 

highlight new targets of CNI in renal proximal tubular cells (RPTCs). CNI-treated RPTCs 

proteome displayed an over-representation of Actin-binding proteins with a CNI-specific 

expression profile. Cyclosporine A (CsA) induced F-Actin remodelling and depolymerisation, 

decreased F-Actin-stabilizing, polymerization-promoting Cofilin (CFL) oligomers and inhibited 

the G-Actin-regulated serum responsive factor (SRF) pathway. Inhibition of CFL canonical 

phosphorylation pathway reproduced CsA effects; however, Ser3, an analogue of the 

phosphorylation site of CFL prevented the effects of CsA which suggests that CsA acted 

independently from the canonical CFL regulation. CFL is known to be regulated by the 

Na+/K+-ATPase. Molecular docking calculations evidenced 2 inhibiting sites of CsA on 

Na+/K+-ATPase and a 23% decrease in Na+/K+-ATPase activity of RPTCs was observed with 

CsA. Ouabain, a specific inhibitor of Na+/K+-ATPase also reproduced CsA effects on Actin 

organization and SRF activity. Altogether, these results described a new original pathway 

explaining CsA nephrotoxicity.  
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Introduction 

The development of immunosuppressive regimens based on the Calcineurin Inhibitors 

(CNI), namely Cyclosporine A (CsA) and Tacrolimus (Tac), has been a breakthrough in the 

prevention of allograft rejection in solid organ transplantation (Calne et al, 1978, 1979; Starzl 

et al, 1989). Although CNI are now widely used in clinical protocols of immunosuppression 

(Hart et al, 2016, 2017) and have significantly improved short-term graft and patient survival, 

long-term exposure is associated with major limiting deleterious side effects such as 

nephrotoxicity, leading to end-stage renal disease (Myers et al, 1984). 

CNI nephrotoxicity evolves from acute, reversible vascular and hemodynamic impairments 

to chronic irreversible and generalized renal injuries (Gaston, 2009; Naesens et al, 2009). In 

particular, chronic CNI nephrotoxicity results in interstitial fibrosis and tubular atrophy (IF/TA) 

of proximal tubules, whose mechanisms remain largely unsolved. Up to now, CNI are known 

to : disrupt cell cycle and induce cell death (Lally et al, 1999; Jennings et al, 2007; Ito et al, 

1995; Healy et al, 1998; Ortiz et al, 1998; Justo, 2003); induce endoplasmic reticulum stress 

and unfolded protein response (Pallet et al, 2008a, 2008c; Han et al, 2008; Hama et al, 2013; 

Pallet et al, 2008b); promote oxidative stress (Vetter et al, 2003; Djamali, 2007); impact ion 

homeostasis (Heering & Grabensee, 1991), or induce epithelial-mesenchymal transition 

(EMT) (Hazzan et al, 2011; McMorrow et al, 2005; Slattery et al, 2005).  

These observations resulting from targeted experimental approaches only partially 

described CNI cell toxicity and do not allow a complete understanding of all the 

pathophysiological mechanisms at stake. Because the mechanisms of CNI side effects 

remain widely unsolved by targeted strategies, the design of untargeted experiments is of 

utmost importance to gain new insights and improve knowledge about the pathophysiology of 

CNI proximal tubule cell (PTCs) toxicity. 

Omics based on the high-throughput analysis of biological systems such as Shotgun 

proteomics seem particularly well suited to this purpose. In the present study, we performed 

the quantitative proteomic analysis and dynamic mapping of CNI-exposed PTC proteome to 

elucidate new intracellular pathways specifically modified under CNI exposure.  

Upon the significant over-representation and differential expression of Actin family 

cytoskeletal proteins, we focused on the deciphering of the intracellular mechanisms of CsA-

induced reorganization of the Actin cytoskeleton of PTC and its downstream consequences. 

We showed that CsA induced an inhibition of the Actin-dependent Myocardin-Related 

Transcription Factors-Serum Response Factor (MRTF-SRF) transcription activity through an 

original regulation of Cofilin (CFL) by the Na+/K+-ATPase.  
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Results 

Quantitative proteomic analysis of PTC proteome & mapping of CNI-induced perturbations 

highlight the over-representation and differential expression of Actin family cytoskeletal 

proteins. 

iTRAQ technology allowed the identification of 130 proteins in PTC lysate. The PANTHER 

over-representation test (Table 1) classified 128 Sus scrofa proteins, related to ribosome 

structure (PC00202, fold enrichment = 15.90, p-value = 1.48.10-18***), nucleic acid binding 

(PC00031, fold enrichment = 5.87, p-value = 6.08.10-10*** ; PC00171, fold enrichment = 

2.30, p-value = 4.86.10-3**), metabolism processes (PC00120, fold enrichment = 31.24, p-

value = 2.70.10-2* ; PC00092, fold enrichment = 7.83, p-value = 4.19.10-5*** ; PC00135, fold 

enrichment = 7.63, p-value = 3.09.10-2* ; PC00176, fold enrichment = 5.86, p-value = 

1.46.10-7***) and cytoskeleton dynamics (PC00228, fold enrichment = 33.32, p-value = 

1.51.10-3** ; PC00041, fold enrichment = 5.32, p-value = 4.39.10-3** ; PC00085, fold 

enrichment = 3.79, p-value = 2.24.10-3**).  

Among the 15 proteins related to cytoskeleton structure and dynamics, Actin family 

cytoskeletal proteins (PANTHER Protein Class PC00041, fold enrichment = 5.32, p-value = 

4.39.10-3**) formed a node of 10 interconnected proteins in the visualisation of functional 

protein networks (Figure EV1 A). 

Among the 70 proteins with significant variations of abundance, Actin family cytoskeletal 

proteins like Moesin, Radixin, Myosin VI, α-SMA, Troponin-C, F-Actin capping protein 

subunits α2 and β, and Cofilin-1 showed a CNI-specific expression profile (Figure EV1 B). 

CsA, but not Tac, elicited a strong reorganization of Actin cytoskeleton of PTCs. 

In fluorescence microscopy, cell monolayers of proximal tubular LLC PK-1 showcased a 

puzzled pattern as phalloidin-labelled F-Actin cytoskeleton organized cell membranes into 

intercellular convolutions (Figure 1 A, panel a). These peculiar structuring of plasma 

membranes were reminiscent of the way basolateral membranes connect inside proximal 

tubular epithelia, in vivo. 

Upon 24-hour CsA exposure, LLC PK-1 sustained a significant reorganization of cortical 

Actin cytoskeleton (Figure 1 A, panel b) related to a significant loss of F-Actin-based 

structures (Figure 1 B, -0.46 %, p<0.01**). CsA effects seemed to be related to the inhibition 

of the peptidylprolyl cis-trans isomerase activity of its target immunophilin Cyclophilin A 

(CypA) since a specific pharmacological inhibitor of CypA (CAI), without any immunological 
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effect, elicited similar Actin modifications (Figure 1 A panel e, Figure 1 B, -0.51 %, p<0.01**). 

On the contrary, CsA effects seemed independent of Calcineurin inhibition since neither Tac, 

VIVIT (a specific inhibitor of NFAT dephosphorylation by Calcineurin) nor GPI 1046 (a 

pharmacological inhibitor of FKBP12) exhibited modifications of the Actin organization 

(Figure 1A panels c, d and f, Figure 1B). 

In conclusion, these observations suggested that CsA triggered the deep remodelling of 

proximal tubular Actin cytoskeleton and the depolymerization of F-Actin, in a Cyclophilin-

dependent way, independently of Calcineurin inhibition. 

Actin depolymerization led to a decrease in MRTF-SRF transcription activity in LLC PK-1 

upon CsA exposure 

Upon 24-hour CsA exposure, SRF transcription activity was significantly reduced (Figure 

2 A, -48.5 % of control activity, p<0.001***). Likewise, CAI elicited a concentration-dependent 

negative regulation of SRF (Figure 2 C). On the contrary, neither Tac, VIVIT (Figure 2 B) nor 

GPI 1046 (Figure 2 D) reduced SRF transcription activity which was slightly increased upon 

Tac and VIVIT exposure. Profiles of drug-related Actin dynamics strictly superimposed to 

profiles of drug-related SRF transcription activity. 

In conclusion, CsA downregulated the transcription of MRTF-SRF target genes, in a 

Cyclophilin-dependent way, independently of Calcineurin inhibition. 

CsA regulates Actin-binding protein Cofilin through changes in Cofilin-Actin ratio and 

oligomerization state 

Differential quantitative proteomic analysis of identified Actin family cytoskeletal proteins 

(PANTHER Protein Class PC00041) showed that CsA decreased the CFL: Actin ratio since 

Actin was overexpressed while CFL levels remained steady. On the contrary, Tac induced 

equivalent overexpression for both Actin and CFL (Figure EV1). 

Western blot analysis of cross-linked CFL oligomers (Figure 3 A) indicated that CsA 

induced a significant decrease in dimers and tetramers (RdiCFL = 0.40 ± 0.09; RtetraCFL = 

0.38 ± 0.16) while monomers remain steady (RmonoCFL = 0.90 ± 0.06) (Figure 3 B). 

In conclusion, CsA elicited a shift in the balance between oligomeric forms of CFL, 

decreasing the protein abundance of CFL dimers and tetramers.  
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CsA effects seemed partly independent of CFL phosphorylation/dephosphorylation 

The S3-R peptide, an analogue of the CFL phosphorylation site and a non-specific 

inhibitor of Ser3-targeting proteins, did not affect the organization of the Actin cytoskeleton 

(Figure 4 A, panel b) but was linked to a slight yet significant increase in F-Actin levels 

(Figure 4 B, +0.36 %, p<0.05*). In association with CsA, S3-R nullified the CsA-induced Actin 

remodelling (Figure 4 A, panel e, Figure 4 B). Conversely, the addition of a specific 

pharmacological inhibitor of LIMK, LIMKi3, alone or associated with CsA triggered CsA-like 

phenotype of Actin dynamics (Figure 4 A, panel c & f) and significantly decreased F-Actin 

levels (Figure 4 B, LIMKi3 alone: -1.62 %, p<0.001***; LIMKi3 + CsA: -1.22 %, p<0.001***). 

 S3-R alone did not impact the MRTF-SRF transcription activity (Figure 5 A). In 

association with CsA, S3-R significantly decreased the CsA-induced inhibition of MRTF-SRF 

transcription activity (CsA: -33.1 %; S3-R + CsA: -24.5 %; +8.6 %, p<0.05*). LIMKi3 alone 

induced an inhibition of MRTF-SRF transcription activity (Figure 5 B, -52.3 %, p<0.001***) 

like what was observed with CsA alone (-35.9 %, p<0.001***). Furthermore, LIMKi3 

reinforced the CsA-induced inhibition of SRF transcription activity (-61.5 %, p<0.001***). 

The pharmacological inhibitors of the RhoGTPases pathway, Y27632 (ROCK inhibitor) 

and EHT1864 (Rac1 inhibitor) elicited the same effects as LIMKi3 at both cytoskeletal 

(Figure EV2 A) and transcriptional (Figure EV2 B) levels. 

In conclusion, CsA effects involved the phosphorylation site of CFL as a target for 

dephosphorylation. Inhibitors of the RhoGTPases pathway triggered CsA-like effects. 

CsA inhibited Na+/K+-ATPase activity in PTCs and Ouabain-induced inhibition of Na+/K+-

ATPase mimicked Actin reorganization and inhibition of MRTF-SRF transcription activity 

observed upon CsA exposure 

A significant decrease of the Na+/K+-ATPase activity (-23.1 % of control, p<0.01**) was 

observed in LLC PK-1 exposed for 24 h to CsA (Figure 6 A) whereas Tac treatment had no 

effect. 

LLC PK-1 exposed for 24 h to 100 nM Ouabain featured CsA-like Actin reorganization 

(Figure 6 B panel c) with a significantly greater loss of F-Actin (Figure 6 C, CsA: -0.76 %; 

OUA: -1.35 %, p<0.001***). Moreover, Ouabain co-treatment with CsA potentiated CsA-

induced cell stiffening (Figure 6 B panel d) and F-Actin decrease (Figure 6 C, -2.26 %, 

p<0.001***). Likewise, Ouabain exposure led to the inhibition of MRTF-SRF transcription 
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activity (Figure 6 D, -26.6 %). Ouabain co-treatment with CsA reinforced CsA effects (CsA: -

47.0 %; OUA + CsA: -62.0 %, p<0.001***).  

In conclusion, CsA targeted Na+/K+-ATPase and inhibited its activity. Na+/K+-ATPase 

inhibitor Ouabain elicited Actin reorganization the same way CsA did. Ouabain-related Actin 

dynamics induced the partial inhibition of MRTF-SRF transcription activity. The association of 

Ouabain with CsA tended to potentiate CsA effects on tubular proximal morphology and 

Actin dynamics. 

CsA molecular docking into Na+/K+-ATPase 

CsA was docked into the closed (E1) conformation of Na+/K+-ATPase with and without 

ATP and into the open (E2) conformation without any ligands (Figure EV3). All the obtained 

binding poses had similar binding affinity, ranging from -7.7 to -6.6 kcal.mol-1. Assuming the 

known membrane partitioning of CsA (Haynes et al, 1985; Wang et al, 2018), only the 

binding poses close to the membrane boundary were considered.  

On the open conformation of Na+/K+-ATPase (state E2, Figure EV3 A), there is a binding 

site at the C-terminal end of the protein, near the β-subunit, in the vicinity of the C-terminal 

pathway (Poulsen et al, 2010; Čechová et al, 2016). There is another binding site under the 

A-domain. It is noteworthy that this binding site is present in both conformations (Figure EV3 

A and B) and near the binding site of Oligomycin A in the 3WGV crystal structure (Kanai et 

al, 2013).  

In the closed conformation of Na+/K+-ATPase (state E1, Figure EV3 B and C), the most 

prominent binding sites are at the lipid-binding sites as previously defined (Cornelius et al, 

2015). Most of the binding poses are located at the so-called site C – a position of bound 

cholesterol and phospholipid, involving aromatic and aliphatic residues such as W32 and 

Y39 or V838. This site has been previously implicated in the Na+/K+-ATPase inhibition. 
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Discussion 

In this work, we demonstrated that CsA-induced remodelling of the Actin cytoskeleton of 

PTC was associated with a modification of the F-Actin: G-Actin ratio through an original 

regulation of CFL: Indeed, CsA exposure decreased the total CFL: Actin ratio as well as the 

levels of CFL dimers and tetramers, independently of the phosphorylation by LIM kinases but 

most likely related to the CsA-induced inhibition of Na+/K+-ATPase. 

In the kidney, the study of podocytes exposed to CsA revealed that the dynamic of the 

Actin cytoskeleton was sensitive to CsA. Indeed, CsA exerted the stabilization of the Actin 

cytoskeleton of podocyte foot processes, explaining the anti-proteinuric effect of CsA which 

is observed in nephrosis. This mechanism was demonstrated to be Calcineurin-dependent 

with the inhibition of the dephosphorylation and consequent proteolysis of Synaptopodin, a 

podocyte specific Actin-binding protein (ABP) whose activity is essential for podocyte 

structure-function (Faul et al, 2008). Besides, CsA induced the overexpression of CFL, a 

ubiquitary ABP, and its regulation in a non-phosphorylated state, independently from the 

effects on Synaptopodin (Li et al, 2014).  

In the light of early observations of CsA effects on the Actin cytoskeleton of podocytes, the 

study of the Actin dynamic in PTC appeared of utmost interest in the elucidation of 

pathophysiological mechanisms of tubular atrophy upon CNI exposure. In PTC, we 

demonstrated that the Actin cytoskeleton could be modified by CsA (Descazeaud et al, 

2012). Indeed, independently from the inhibition of NFAT, CsA triggered a reversible 

disorganization of Actin scaffolding at the periphery of the cell. Whether a mechanism 

involving the CsA-related regulation of CFL was responsible for the effects of CsA on PTC 

remained to be addressed. 

CFL was initially described as an Actin-depolymerizing factor involved in Actin 

treadmilling. CFL modifies the physical-chemical properties of the microfilaments, promotes 

Pi release and ADP-Actin-G dissociation from older segments to replenish the pool of G-

Actin and to supply enough material for microfilament renewal. Since then, the scope of CFL 

activity was expanded, in the light of the multiple mechanisms of CFL regulation. Up to date, 

CFL activity is known to be sensitive to F-Actin saturation, phosphorylation-

dephosphorylation of its Ser3 residue, PIP2 interaction, intracellular pH and oxidative stress 

(Vantroys et al, 2008).  

Since direct interaction with F-Actin microfilaments is necessary for the Actin-related 

activity CFL, the degree of saturation of the microfilament (or the density of CFL near the 

microfilament) play a major role in the regulation of CFL. Saturation is correlated to global 
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CFL concentration, CFL: Actin ratio and CFL oligomerization. At high saturation and CFL 

density, F-actin filaments are severed and prone to the nucleation and polymerization of new 

branches. Conversely, at low saturation and CFL density, F-actin filaments are severed and 

completely depolymerized into G-Actin. Low CFL concentrations are related to low 

saturation, and so, the higher the concentration, the higher the saturation of microfilaments 

(Andrianantoandro & Pollard, 2006; Yeoh et al, 2002). Besides, in vivo and in vitro, CFL may 

exist as monomers, dimers and tetramers with higher-order oligomers related to higher CFL 

concentration and F-Actin saturation (Pfannstiel et al, 2001; Goyal et al, 2013). 

The switches between phosphorylated and dephosphorylated status are an-other level of 

regulation between active and inactive CFL. Phosphorylation of the Ser3 residue prevents 

CFL-Actin interaction while dephosphorylation rescues CFL-Actin interaction and enables 

Actin-related CFL activity. Phosphorylation of Ser3 is only catalysed by LIM kinases, 

downstream small RhoGTPases and their associated kinases (Geneste et al, 2002). 

Dephosphorylation of CFL Ser3 is catalysed by Slingshot phosphatases (Huang et al, 2006), 

which itself is activated by Calcineurin.  

The regulation of CFL orientates Actin dynamics towards the polymerization of G-Actin 

monomers into F-Actin microfilaments, or, conversely, promotes the depolymerization of F-

actin into G-Actin. In case of a cytoplasmic accumulation of G-Actin, G-Actin traps 

Myocardin-Related Transcription Factor (MRTF), a co-factor of the Serum Response Factor 

(SRF) transcription factor. Complexes of MRTF-G-Actin are restricted to the cytoplasm. Gene 

transcription by MRTF-SRF complexes depends on the nuclear import of MRTF hence the 

cytoplasmic accumulation of G-Actin leads to SRF transcription inhibition (Miralles et al, 

2003). In that way, the Actin dynamic was described as a potent intracellular fulcrum for cell 

adaptation to its environment, connecting upstream RhoGTPases to downstream MRTF-SRF 

pathway (Hill et al, 1995; Sotiropoulos et al, 1999; Maekawa, 1999). 

As mentioned above, studies on podocytes reported that CsA had anti-proteinuric effects 

via the stabilization of the Actin cytoskeleton structuring the foot processes. This stabilization 

relied on the overexpression and dephosphorylation of Cofilin. Even though the study did not 

focus on CFL oligomerization, the CFL: Actin ratio was in favour of CFL and the CFL 

concentration was higher, therefore the activity of CFL was regulated to promote Actin 

polymerization and stabilize microfilaments. What we observed in PTC was a destabilization 

of the Actin cytoskeleton structuring the intercellular convolutions. This indicated a different 

regulation of CFL activity where CFL would have to i) exert low saturation of F-Actin 

microfilaments (lower CFL: Actin ratio; lower levels of CFL oligomers), ii) be active for Actin-

related functions i.e. dephosphorylated. 
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CsA had already been reported to elicit the remodelling of the Actin cytoskeleton of PTC 

(Martin-Martin et al, 2012). In this study, CsA (4.2 µM, 24 h) activated RhoA and the 

phosphorylation cascade, which led to CFL phosphorylation by LIMK. CFL inhibition results 

in the formation of stress fibres and the tightening of tight junctions. Our findings are just the 

opposite of these previous results and are incompatible with the previously described 

mechanism. Indeed, pharmacological inhibition of the RhoGTPases pathway elicited CsA-

like effects i.e. the loss of proximal tubular morphology and the inhibition of MRTF-SRF 

activity. These discrepancies might result from differences in cell culture conditions as, in the 

study by Martin-Martin et al, control LLC PK-1 seemed non-confluent, less differentiated, with 

non-convoluted membranes and a significant amount of stress fibres. Although the cell 

culture protocol appeared to be similar, the serum deprivation prior to drug exposure differed 

as it is not supplemented with hormones allowing advanced epithelial differentiation of LLC 

PK-1 cells at the morphological and cytoskeletal levels. Our present in vitro model seemed 

closer to the in vivo aspect of PTC than the in vitro one Martin-Martin et al developed. 

Outside Actin-related functions, CFL is known to interact with Na+/K+-ATPase to provide 

energetic fuel to the pump motion. CFL binds triose phosphate isomerase and interacts with 

the alpha subunit of Na+/K+-ATPase to locally provide ATP. When Na+/K+-ATPase is inhibited 

(by potassium depletion or the action of a pharmacological inhibitor), a feedback mechanism 

disrupts energetic supply by CFL dephosphorylation (Jung et al, 2002, 2006a, 2006b). 

CsA effects on TCP were reminiscent of OUA effects on HeLa cells (Jung et al, 2006a). 

OUA exerted a similar reorganization of the Actin cytoskeleton by dephosphorylating CFL via 

a mechanism where the inhibition of Na+/K+-ATPase activates the Ras/Raf/MEK cascade, in 

a Src-EGFR-dependent way, leading to the inhibition of LIMK downstream the small 

RhoGTPases pathway. OUA effects were reproduced by Y27632 just like CsA effects were 

mimicked by the RhoGTPases inhibitors.  

Earlier findings about the mechanism of Na+/K+-ATPase energetic supply by pCFL-TPI 

complexes (Jung et al, 2002) reported that the overexpression of constitutively active CFL 

(Ser3 was replaced by Ala) was sufficient to cut endogenous CFL out of 

phosphorylation/dephosphorylation-based regulation which made TPI localization insensitive 

to the activation/inhibition of the RhoGTPases pathway. Likewise, in our study, the addition 

of S3-R was enough to partially exclude endogenous CFL from CsA-induced regulation. 

Dephosphorylation of CFL by Slingshot phosphatases seemed unlikely since Slingshot 

phosphatases are activated by Calcineurin. CsA effects on CFL were unlikely to be related to 
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Calcineurin since Tac and VIVIT did not elicit CsA-like effects on the Actin cytoskeleton or 

the MRTF-SRF transcription activity. 

Numerous studies have already reported the inhibition of Na+/K+-ATPase by CsA, in vitro 

and in vivo. However, the observations were limited to the consequences in ion transport 

(Ihara et al, 1990; Tumlin & Sands, 1993; Lea et al, 1994; Ferrer-Martínez et al, 1996; Deppe 

et al, 1997; Younes-Ibrahim et al, 2003; Marakhova et al, 1998, 1999). Although this work is 

not the first one to study the relationship between the Na+/K+-ATPase pump and the Actin 

cytoskeleton, the partial inhibition (about 25%) of proximal tubular Na+/K+-ATPase by CsA 

has been the first observation of a direct correlation between variations in the pump activity 

and cytoskeletal remodelling so far. Besides, the potentiation of the CsA-induced 

depolymerization of F-Actin by OUA is in favour of a Na+/K+-ATPase -related mechanism. 

How CsA inhibits Na+/K+-ATPase has yet to be elucidated. CsA is known to induce over-

expression of endothelin, which is a well-known inhibitor of Na+/K+-ATPase activity (Zeidel et 

al, 1989; Nakahama, 1990). Furthermore, CsA can downregulate Na+/K+-ATPase activity 

through the inhibition of Cyclophilin B. The PPIase was described as a crucial partner for the 

structure and activity of Na+/K+-ATPase catalytic subunit (Suñé et al, 2010). Besides, the 

proteome monitoring of HEK cells by SILAC-LC-MS/MS reported the decrease in CypB 

protein abundance upon CsA exposure (Lamoureux et al, 2011). These findings, together 

with the observations of CsA-like effects upon CAI exposure, support the implication of Cyps 

in the inhibition of Na+/K+-ATPase by CsA. To what extent the Cyps are implicated has yet to 

be elucidated. However, our work suggests another mechanism leading to Na+/K+-ATPase 

inhibition. 

Indeed, our molecular modelling of CsA docking into Na+/K+-ATPase was performed to 

visualise the potential interactions. CsA is mostly made of hydrophobic amino acids favouring 

its membrane partitioning (Haynes et al, 1985). Therefore, the preferential binding site to 

Na+/K+-ATPase is likely to be in the transmembrane site C, known to bind hydrophobic 

compounds such as lipids and cholesterol. Such binding is mostly expected to hinder proper 

motions of the transmembrane helices by impairing specific protein-lipid interactions. This 

may explain the experimentally observed inhibition of Na+/K+-ATPase by CsA given that the 

Na+/K+-ATPase (i) undergoes large-scale conformational changes during its reaction cycle 

and (ii) its activity is strongly dependent of the membrane environment (Bhatia et al, 2016). 

Interestingly, in the open structure, there are no binding sites in the transmembrane region, 

but there are two at the membrane interface that could (i) impair domain motions and (ii) 

prevent the proper closing of N- and A- domains during the reaction cycle. It is noteworthy 

that there is also a binding site under the A-domain, similar to the one in the closed 
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conformation. Such preliminary results are in favour of direct interactions between CsA and 

Na+/K+-ATPase leading to impairment of large-scale conformational motions. It is important 

to note that the confirmation of the aforementioned molecular mechanism would require an 

important computational effort by biased molecular dynamics simulations, which if off-topic of 

the present study. 

Altogether, these results let us propose a model (Figure 7) where: i) the inhibition of 

Na+/K+-ATPase by CsA leads to the dephosphorylation of CFL, independently from the 

classical regulation pathways; ii) CsA decreases the CFL: Actin ratio and the protein 

abundance of F-Actin-stabilizing and polymerization-promoting CFL oligomers; iii) active, 

minority, monomeric CFL depolymerizes low-saturated F-Actin microfilaments and replenish 

G-Actin pools; iv) the accumulation of G-Actin leads to the cytoplasmic trapping of the SRF 

co-factor MRTF; v) the low nuclear abundance of MRTF results in the low abundance of 

transcription-ready MRTF-SRF complexes and the decrease in MRTF-SRF transcription 

activity; overall, vi) CsA inhibits gene transcription by the MRTF-SRF complex via drug-

specific, G-Actin-prone Actin-dynamics. 

The CsA-induced inhibition of MRTF-SRF gene transcription might have feedback 

consequences on Actin dynamics since ACTB, Cfl1 and other ABP-coding genes are 

identified genes of the CArGome (the ensemble of MRTF-SRF genes whose promoters 

contain CArG boxes) and the activity of the MRTF-SRF complex was shown to be required 

for the homeostasis of Actin levels and the organization of the Actin cytoskeleton (Sun, 

2005). 

As a matter of facts, cellular consequences of MRTF-SRF inhibition might be large-scale 

perturbations since MRTF-SRF regulates the transcription of genes coding for transport and 

adhesion proteins, enzymes of the lipid and glucose metabolisms, transcription factors, 

growth factors, growth factor receptors, etc. 

For instance, past studies clearly elucidated the role of MRTF-SRF inhibition in 

multifactorial biological processes like proapoptotic mechanisms (Cao et al, 2011; Sisson et 

al, 2015) and epithelial-mesenchymal transition (Korol et al, 2016; Gasparics & Sebe, 2018), 

which have been widely described as CsA-related pathophysiological mechanisms. 

Hence why the proposed model of an inhibition of MRTF-SRF transcription activity 

downstream an original regulation of Actin dynamics upon CsA exposure might be of utmost 

interest to explain known in vitro effects of CsA and provide a unified mechanism of CsA 

toxicity in PTC.  
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Materials and methods 

Chemicals 

Dulbecco’s Modified Eagle’s Medium-Ham’s F12 (DMEM-F12 1:1, #31331, Gibco), Fetal 

Bovine Serum (FBS, #10500), 1 M HEPES (#15630), 7.5 % Sodium bicarbonate (#25080), 

10,000 UI.mL-1 Penicillin / Streptomycin (#15140), 0.05% Trypsin-EDTA (#25300-054) 

Dulbecco’s Phosphate Buffer Saline (PBS, #14190) were purchased from Gibco. Sodium 

selenite (#S5261), CsA (#30024), Tac (#F4679), Jasplakinolide (#J4580), Latrunculin A 

(#L5163), ROCK inhibitor Y27632 (#Y0503), Rac1 inhibitor EHT 1864 (#E1657), Alamethicin 

(#A4665), Digitonin (#D141), ATP (#A1852) Na+/K+-ATPase inhibitor Ouabain (#O3125), 

insulin (#I4011), triiodothyronine (#T6397), dexamethasone (#D4902), Protease Inhibitor 

Cocktail (#P8340) and Phosphatase Inhibitor Cocktail 2 (#P5726) were purchased from 

Sigma-Aldrich. Cyclophilin A inhibitor (#239836, Calbiochem) was purchased from Millipore. 

LIMK1/2 inhibitor LIMKi3 (#4745) was provided by Tocris. 

S3-R peptide (MASGVMVSDDVVKVFNRRRRRRRR), an analogue of the Cofilin 

phosphorylation site, was synthetized by ProteoGenix (Schiltigheim, France). 

Cell culture conditions 

LLC PK-1 (Lilly Laboratories Porcine Kidney-1) porcine proximal tubule cells (ATCC-CL-

101, ATCC, Manassas, VA) were expanded in 75 cm² flasks at 37 °C with 5 % CO2 and 

passed once confluence was reached. Culture medium consisted in a 1:1 DMEM-F12 mix 

supplemented with 5 % FBS, 15 mM HEPES, 0.1 % Sodium bicarbonate, 100 UI.mL-1 

Penicillin / Streptomycin and 50 nM Sodium selenite. Passages were performed with 0.05% 

Trypsin-EDTA. LLC PK-1 cells were cultured between passage 7 and passage 30. 

Seeded LLC PK-1 sustained serum starvation and were fed with hormonally-defined (25 

µg.mL-1 insulin, 11 µg.mL-1 transferrin, 50 nM triiodothyronine, 0.1 µM dexamethasone, 0.1 

µg.mL-1 desmopressin) fresh medium to engage epithelial differentiation, for 24 hours. 

Hormonally-defined LLC PK-1 cells sustained cell transfection or were exposed for 24 

hours to: vehicle mix (Ethanol, DMSO), 5 µM CsA, 0.05 µM Tac, 1 µM VIVIT (a specific 

NFAT inhibitor), 0.5 µM Cyclophilin A inhibitor, 200 nM Jasplakinolide, 100 nM Latrunculin 

A,10 µM ROCK inhibitor Y27632, Rac1 inhibitor EHT 1864, and LIMK inhibitor LIMKi3, 100 

nM Na+/K+-ATPase inhibitor Ouabain or 100 µg.L-1 S3-R.  
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Actin cytoskeleton characterization 

Immunocytochemistry 

Serum-starved, hormonally-defined, treated LLC PK-1 cells seeded on glass cover slips in 

6-well plates were washed twice for 3 min in PBS. Then, cells were fixed in 4 % 

paraformaldehyde-PBS for 10 min, at room temperature. Cells were washed once again in 

PBS for 3 min then permeabilised with 0.1 % Triton/X-100-PBS for 5 min, at room 

temperature. Permeabilised cells were washed three times for 3 min in PBS before 

incubation in Phalloidin-TRITC-PBS for 30 min, at 37 °C, in the dark. Eventually, cover slips 

were washed three times for 3 min in PBS then mounted on glass microscope slides using 

ProLong® Gold Antifade Reagent as a mounting medium and a DAPI nuclei staining. 

Florescence labelling was visualized using a Leica DM-RX microscope (16x40). 

Image analysis 

For each exposure condition, ten photographs (*.tiff) were randomly taken to report from 

an independent experiment. Image analysis was conducted using the ImageJ software 

(v.1.48). Early image processing consisted in a restriction to the green channel of the RGB 

picture. The implemented Auto Local Threshold tool further selected the fluorescence-

positive pixels (Niblack thresholding method, radius = 15). Thus, for each photograph, a 

semi-quantitative ratio was calculated as a percentage of the total image area. 

All above-mentioned steps were automatized thanks to the macro editing tool of the 

ImageJ software. 

Statistical analysis of fluorescence area data was performed using the one-way analysis 

of variance (1-way ANOVA) test followed by the Bonferroni’s Multiple Comparison post-test 

with a significance threshold at p<0.05, as implemented in GraphPad Prism (v. 5.04). 

Luciferase Gene Reporter Assay for SRF/SRE Activity 

Stable cell transfection & clone selection 

Volumes equivalent to 0 µg, 2 µg or 4 µg of plasmid DNA (pGL4.34[luc2P/SRF-RE/Hygro] 

Vector, Promega) and transfection reagent lipofectamine (1:25, Lipofectamine™ 2000 

Transfection Reagent, Invitrogen) were separately diluted in FBS-free, antibiotic-free routine 

medium. Then, DNA and lipofectamine preparations were blended and put at rest for 15 min, 

at room temperature. Serum-starved, hormonally-defined LLC PK-1 cells in 6-well plates 

were incubated with DNA-lipofectamine mixtures for 24 h, at 37 °C. 
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Transfected LLC PK-1 cells (LLC PK-1 SRE) were incubated in routine medium for 72 h 

before antibiotic selection to allow proper plasmid integration. Then, cells were re-suspended 

in 0.05 % Trypsin-EDTA, 10 min at 37 °C. Cell suspensions were diluted 10 times and re-

seeded in routine medium completed with 1 % Hygromycin B (50 mg.mL-1) refreshed every 

48 h until colonies appear. Colonies were harvested thanks to trypsin-soaked paper disks 

(#Z374431, Sigma-Aldrich) and re-seeded to start routine culture in antibiotic-supplemented 

growth medium. 

Luciferase gene reporter assay/Bioluminescence assay 

Serum-starved, hormonally-defined, treated LLC PK-1 SRE were re-suspended 

mechanically in 1X lysis buffer (Cell Culture Lysis 5X Reagent, #E153A, Promega). Cell 

lysates were distributed in technical duplicates in a white 96-well plate (#3912, Costar). 

Bioluminescence signals were detected by the Enspire Multimode Reader (Perkin-Elmer). 

Oligomer cross-linking and Western blot 

Serum-starved, hormonally-defined, treated LLC PK-1 cells in 60 mm Petri dishes were 

incubated in hormonally-defined medium – 1 % formaldehyde (cross-linking range 2.9 Å) for 

15 min under agitation. Formaldehyde cross-linking was quenched by the addition of 1 M 

glycine (final concentration 125 mM). LLC PK-1 were washed twice with PBS and lysed by 

scrapping in a custom RIPA lysis buffer (150 mM NaCl, 50 mM TRIS-HCl, 0.1 % NP-40, 0.1 

% SDS, 1 mM EDTA in ultrapure H2O, supplemented with a 1:100 anti-protease / anti-

phosphatase mix). Cell lysates were incubated on ice for 30 min and centrifuged for 15 min 

at 21000 g. Supernatants were stored until protein concentration was measured using the 

Bradford colorimetric method. Forty micrograms of proteins per exposure condition were 

separated by electrophoresis under reducing and denaturing conditions on a NuPAGE® 12% 

Bis-Tris pre-cast gel (#NP0341, ThermoFisher) in 1X NuPAGE™ MOPS SDS running buffer 

(#NP0001, ThermoFisher) and transferred to a nitrocellulose (NC) membrane (NP23001, 

ThermoFisher) using the iBLOT 2 Dry Blotting system (#IB21001, ThermoFisher). 

Membranes were stained with 0.1 % Ponceau S, 5 % acetic acid solution for total protein 

visualisation. Membranes were blocked for 1 h at room temperature under agitation with 

TBS-Tween (TBS-T) buffer (10 mM Tris 7.6, 150 mM NaCl, 0.1 % Tween-20) complemented 

with 5 % (W/V) non-fat milk powder to obtain BLOTTO buffer. Primary antibody incubation 

(anti-CFL, 1:10,000, #PA1-24931, ThermoFisher) was done in BLOTTO for 1 h at room 

temperature. After three 5-min washes in TBS-T, secondary antibody incubation (F(ab')2-

Goat anti-Rabbit IgG (H+L) Secondary Antibody, HRP, 1:10,000, #A24531, ThermoFisher) 

was performed in BLOTTO for 1 h at room temperature then washed again. Membranes 
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were incubated in a 1: 1 mix of SuperSignal™ West Pico PLUS Chemiluminescent Substrate 

kit (#34577, ThermoFisher) and analyzed by the ChemiDoc Imaging system (Bio-Rad) for 

chemiluminescent signal detection and acquisition. Quantitation was computed via the 

ImageLab software (Bio-Rad) after total protein normalisation. 

Na+/K+-ATPase activity/Phosphate release assay 

Serum-starved, hormonally-defined, treated LLC PK-1 cells in 24-well plates were 

permeabilised by osmotic shock in ultrapure water (150 µL) and fast freeze in liquid nitrogen 

(10 s). Cells were thawed (200 µL) in a buffer with a composition of 200 mM sodium chloride, 

80 mM histidine, 20 mM potassium chloride, 6 mM magnesium chloride, 2 mm EGTA, 2 

µg.mL-1 Alamethicin, 30 µM Digitonin. For each drug exposure condition, a volume of 30 mM 

Ouabain (final concentration 1 mM) or ultrapure water was added to every other well. Cells 

were either incubated 30 min at 37 °C. A volume of 30 mM ATP (final concentration 1 mM) 

was added to each well. Cells were incubated 30 min more at 37 °C. On ice, trichloroacetic 

acid: water (1:1) terminated ATP hydrolysis reactions. Plates were centrifuged at 3000 rpm 

for 10 min at room temperature. Supernatants were diluted 50 times and distributed (50 µL) 

in technical triplicates to a 96-well plate.  

Concentration of free phosphate released from ATP hydrolysis was measured using the 

BIOMOL® Green kit (BML-AK-111-0250, Enzo). Na+/K+-ATPase activity (expressed in nmol 

of released phosphate/30min/105 cells) was calculated as the difference in free phosphate 

concentration in the presence and absence of Ouabain. 

iTRAQ shotgun proteomics 

Protein extraction, sample preparation, iTRAQ labelling and isoelectric focusing 

After 24 h drug exposure, LLC PK-1 cells were washed twice with PBS and lysed by 

scrapping in a custom RIPA lysis buffer (150 mM NaCl, 50 mM TRIS-HCl, 0.1 % NP-40, 0.1 

% SDS, 1 mM EDTA in ultrapure H2O, supplemented with an anti-protease / anti-

phosphatase mix). Cell lysates were incubated on ice for 30 min and centrifuged for 15 min 

at 21000 g. Supernatants were stored until protein concentration was measured using the 

Bradford colorimetric method and iTRAQ labeling. Twenty-five micrograms of proteins were 

precipitated by - 20 °C cold acetone. After acetone evaporation, the precipitates were 

solubilized in 25 mM ammonium bicarbonate then were incubated with 50 mM dithiothreitol 

for 40 min at 60 °C, to reduce disulfide bonds, 100 mM iodoacetamide in the dark for 40 min 

at room temperature, to alkylate/block cysteine residues and eventually were digested for 24 
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h at 37 °C with mass-spectrometry grade trypsin (#V5280, Promega) at a 1: 50 enzyme: 

substrate ratio. 

After digestion, samples were incubated with iTRAQ tags (iTRAQ Reagents Multi-plex 

kits, 4-plex, #4352135, Sigma-Aldrich) – one tag per drug exposure condition and five 

different tag/condition associations over five experiments – for 1 h at room temperature. 

Labeled samples were mixed and separated into 12 fractions by isoelectric focusing 

(OFFGEL 3100 Fractionator, Agilent Technologies, Santa Clara, CA) for 24 h at increasing 

voltage and steady intensity of 50 µA in a 3-10 pH IPG strip. Fractions were retrieved for 

further MS analysis after the IPG strip was incubated in a 1:1 acetonitrile (ACN): water, 0.1 % 

formic acid (FA) wash solution for 15 min at room temperature. 

nano-LC peptide separation and Q-Q-TOF mass spectrometry 

IEF fractions were analyzed by nano-LC MS/MS using a nano-chromatography liquid 

Ultimate 3000 system (LC Packings DIONEX, Sunnyvale, CA) coupled to a Triple TOF 

5600+ mass spectrometer (ABSciex, Toronto, Canada). For each sample, 5 µL were injected 

into a pre-column (C18 Pepmap™ 300 µm ID x 5 mm, LC Packings DIONEX) using the 

loading unit. After desalting for 3 min with loading solvent (2 % ACN, 0.05 % trifluoroacetic 

acid (TFA)), the pre-column was switched online with the analytical column (C18 Pepmap™ 

75 µm ID x 150 mm, LC Packings DIONEX) pre-equilibrated with 95 % solvent A (ACN 5 % - 

FA 0.1 %). Peptides were eluted from the pre-column into the analytical column and then into 

the mass spectrometer by a linear gradient from 5 % to 25 % in 70 min, then to 95 % of 

solvent B (98 % ACN, 0.1 % FA) over 120 min at a flow rate of 200 nL/min. 

Data acquisition was carried out by IDA (Information-Dependent Acquisition) mode of 

Analyst 1.7 TF software (ABSciex). The data from MS and MS/MS were continuously 

recorded with a cyclic duration of 3 s. For each MS scan, up to 50 precursors were selected 

for fragmentation based on their intensity (greater than 20,000 cps), their charge state (2+, 

3+) and if the precursor had already been selected for fragmentation (dynamic exclusion). 

The collision energies were automatically adjusted according to charge state, ionic mass of 

selected precursors and iTRAQ labelling. 

Mass spectrometry data processing and relative protein identification / quantification 

MS and MS/MS data for five independent experiments (biological replicates) (*.wiff, 1 per 

fraction, 12 files per experiment) were submitted to Mascot Server 2.2.03 via ProteinPilot 

(version 5.0, ABSciex) for protein identification, and searched against two complementary 

Sus scrofa databases: a Swiss-Prot database (2015_10 release) and a TrEMBL database 
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(2015_10 release). Carbamidomethyl (C) was defined as a fixed modification. Oxidation (O), 

iTRAQ4plex (K), iTRAQ4plex (Y), iTRAQ4plex (N-term) were defined as variable 

modifications. MS/MS fragment mass tolerance was set at 0.3 Da. Precursor mass tolerance 

was set at 0.2 Da. 

Mascot raw data files (*.dat, 1 per experiment) were saved for further isobaric tags-based 

peptide and protein quantitation with the Java implementation of the Quant algorithm, 

jTRAQx (version 1.13, (Muth et al, 2010)). Reporter mass tolerance was set at 0.05 Da while 

iTRAQ correction factors were implemented as provided by ABSciex. This tool generated 

one *.jpf file (tab-delimited text file) for each series. 

*.jpf were submitted to the CiR-C (Customizable iTRAQ Ratio Calculator) algorithm which 

excluded irrelevant data according to: i) identification confidence: peptides are retained if the 

probability that the observed positive match is a random match is below 5 % (p < 0.05, 

Mascot score > 30); ii) quantification confidence: peptides are retained if all iTRAQ ratios 

have been successfully calculated i.e., peptides with 0.0 ratios or uncalculated ratios (null 

ratios) are discarded; iii) peptides related to ‘Fragment’- and ‘REVERSED’-annotated 

proteins are discarded. After irrelevant data removal, CiR-C drew up an exhaustive catalogue 

of identified peptide sequences with their associated Swiss-Prot or TrEMBL accession IDs. 

Peptides were assigned to a frequency index of positive matches (identification in {1;2;3;4;5} 

out of 5 independent experiments) and CiR-C drew a second catalogue of peptides with the 

highest frequency index (n=5). Protein ratios were calculated as both overall and series-

specific median values of peptide ratios associated with a given accession ID and frequency 

index. 

PANTHER Overrepresentation test 

The protein list analysis was performed by submitting Swiss-Prot accession IDs to the 

online tool powered by the PANTHER Classification system. The PANTHER 

Overrepresentation test (release date 20170413) parsed the PANTHER database (version 

12.0, released on 2017-07-10) using the Sus scrofa reference list and the PANTHER Protein 

Class annotation data set. Only p<0.05 items were retained and considered significantly 

over-represented. 

Visualisation of protein networks 

The visualisation of protein networks was performed by submitting Swiss-Prot accession 

IDs to the online tool STRING. 
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Biological significance criteria 

Frequency distribution of the iTRAQ peak intensities ratios could be approximated as a 

Gaussian distribution: iTRAQ peak intensities ratios frequency distribution significantly fitted 

implemented Gaussian non-linear regression (n = 370, R² = 0.9946, mean = 1.02 ± 0.10). 

One of the Gaussian distribution properties is: I) 66% of the values lie in a 1 S.D. range 

around the mean, II) 95 % of the values lie in a 2 S.D. range around the mean, III) 99 % of 

the values lie in a 3 S.D. range around the mean. Applying the “mean ± n S.D.” property to 

the set of iTRAQ peak intensity ratios, the upper thresholds for significant upregulations upon 

drug exposure would be “1.02 – 0.10 = 0.92”, “1.02 – 2 x 0.10 = 0.82” and “1.02 – 3 x 0.10 = 

0.72” while the lower thresholds for significant downregulations upon drug exposure would 

be “1.02 + 0.10 = 1.12”, “1.02 + 2 x 0.10 = 1.22” and “1.02 + 3 x 0.10 = 1.32”. Thus, proteins 

were classified thanks to their distance from the unity: proteins with median ratios between 

0.92 and 1.12 were annotated as non-impacted proteins; up-regulated proteins with 

quantitative ratios beyond 1.12 were ranked according to three tiers of significant fold 

increase: +σ (1.12 ≤ r < 1.22), +2σ (1.22 ≤ r < 1.32) or +3σ (1.32 ≤ r). The same way down-

regulated proteins with quantitative ratios below 0.82 were ranked according to three tiers of 

significant fold decrease: -σ (0.92 ≥ r > 0.82), -2σ (0.82 ≥ r > 0.72) or -3σ (0.72 ≥ r). 

Hierarchical clustering & heat-map representation 

Heat map representation and hierarchical clustering were generated using the Euclidian 

distance calculation as provided by the GENE-E software (version 3.0.204). 

Data availability 

The MS proteomics data have been deposited to the ProteomeXchange Consortium 

(http://proteomecentral.proteomexchange.org) (Deutsch et al, 2017) via the PRIDE partner 

repository (Vizcaíno et al, 2016) with the data set identifier PXD007891 (username: 

reviewer72095@ebi.ac.uk, password: TPSGICw9). 

Setup of cyclosporine docking into Na+/K+-ATPase 

A cyclosporine structure was docked into a human-sequence homology model of Na+/K+-

ATPase based on crystal structures (PDB IDs: 2ZXE and 4HQJ respectively for the open 

conformation E2 state (Shinoda et al, 2009), and the closed conformation E1 state (Nyblom 

et al, 2013)). 

The molecules were prepared for docking in Autodock Tools (Morris et al, 2009) and the 

docking was performed in Autodock Vina (Trott & Olson, 2009), with grid covering the whole 
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protein and exhaustiveness set to 400. A second docking was performed into the lipid 

binding site C to better evaluate the cyclosporine binding in this position.  

The docking was performed in three variations, with 20 binding poses generated for each 

case: i) the closed structure E1 with a bound ATP molecule, ii) the closed structure E1 

without ATP, iii) the open structure E2 without phosphate. 

Given the similarity of the docking results between the closed conformation with and 

without ATP, and the experimental conditions, only the results of the docking with ATP are 

presented. The residues taking part in ligand binding were evaluated using PLIP (Salentin et 

al, 2015). Figures were made using PyMOL (The PyMOL Molecular Graphics System, 

Version 1.6, Schrödinger, LLC).  
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Figure legends 

Figure 1 – CsA, but not TAC, triggers F-Actin depolymerization in a NFAT-independent, 

immunophilin inhibition-related way. 

A. Fluorescence images of LLC PK-1 Actin cytoskeleton labelled with TRITC-Phalloidin. 

Scale bar 10 µm 

B. Quantification of red fluorescence-positive area. Mean ± SEM. One-way ANOVA plus 

Dunnett’s post-test (** p<0.01) 

Drug condition: (a) Vehicle (0.5 % Ethanol) (b) 5 µM CsA (c) 0.05 µM Tac (d) 1 µM VIVIT (e) 

0.5 µM CAI (f) 0.5 µM GPI 1046. Exposure time: 24 h (n=3). 

 

Figure 2 – CsA-induced accumulation of G-Actin leads to inhibition of SRF-MRTF 

transcription activity in a NFAT-independent, immunophilin inhibition-related way. 

SRF transcription activity was measured by luciferase gene reporter assay in LLC PK-1 SRE 

exposed for 24 h to: 

Drug condition: A-D. Vehicle (0.5% Ethanol-0,2% DMSO), 5 µM CsA, 0.2 µM Jasplakinolide; 

A-B. 0.1 µM Latrunculin A; B. 0.05 µM Tac, 1 µM VIVIT; C. 0.01-1 µM CAI, D. 0.01-1 µM GPI 

1046. Mean ± SEM. One-sample t-test (p<0.01**, p<0,001***). A-C, D (n=3). B (n=5). 

 

Figure 3 – CsA, but not Tac, induced changes in CFL concentration-to-Actin 

A. Western blot detection of formaldehyde-cross-linked CFL oligomers in LLC PK-1 

lysates. 

B. Quantification of relative protein abundance of CFL oligomeric forms. Mean ± SEM. 

One-way ANOVA plus Dunnett’s post-test (*p<0.05, **p<0.01). 

Drug condition: 5 µM CsA, 0.05 µM Tac. Exposure time: 24 h (n=5)  
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Figure 4 – Cofilin is involved in CsA-induced Actin reorganization through its phosphorylation 

site 

A. Fluorescence images of LLC PK-1 Actin cytoskeleton labelled with TRITC-Phalloidin. 

Scale bar 10 µm 

B. Quantification of red fluorescence-positive area. Mean ± SEM. One-way ANOVA plus 

Tukey’s post-test (* p<0.05,*** p<0.001) (n=4). 

Drug condition: (a) Vehicle (b) 100 µg/mL S3R (c) 10 µM LIMKi3 (d) 5 µM CsA (e) S3R + 

CsA (f) LIMKi3 + CsA. Exposure time: 24 h (n=4). 

 

Figure 5 – Cofilin is involved in CsA-induced inhibtion of MRTF-SRF transcription activity. 

SRF transcription activity was measured by luciferase gene reporter assay in LLC PK-1 SRE 

exposed 24 h to:  

A. S3-R 100 µg/mL; S3R + CsA. (n=6) 

B. LIMKi3 10 µM ; LIMKi3 + CsA. (n=7) 

Mean ± SEM. One-sample t-test for versus control comparison, One-way ANOVA plus 

Tukey’s post-test for multiple condition comparison (p<0.01*, p<0.001***).  
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Figure 6 – CsA partially inhibits Na+/K+-ATPase activity; Na+/K+-ATPase inhibitor Ouabain 

triggers and potentiates CsA-like actin reorganization and inhibition of SRF-MRTF 

transcription activity 

A. Na+/K+-ATPase activity was measured by colorimetric phosphate assay in LLC PK-1. 

Mean ± SEM. One-way ANOVA plus Dunn’s post-test (p<0.01**,p<0.001***) (n=3) 

B. Fluorescence images of LLC PK-1 Actin cytoskeleton labelled with TRITC-Phalloidin. 

Scale bar 10 µm. 

C. Quantification of red fluorescence-positive area. Mean ± SEM, One-way ANOVA plus 

Tukey’s post-test (p<0.01*, p<0.001***) (n=4). 

D. SRF transcription activity was measured by luciferase gene reporter assay in LLC PK-

1 SRE. One-sample t-test for versus control comparison, One-way ANOVA plus 

Tukey’s post-test for multiple condition comparison (p<0.001***) (n=4) 

Drug condition: (a) Vehicle (b) 5 µM CsA (c) 100 nM Ouabain (d) CsA + Ouabain. Exposure 

time: 24 h. 

 

Figure 7 – Proposed model of CsA-induced MRTF-SRF inhibition through Na+/K+-ATPase 

inhibition and remodelling of the Actin cytoskeleton. 

 

Table legends 

Table 1 – Cytoskeletal proteins are significantly overrepresented in the proteome of CNI-

exposed LLC PK-1 monitored by iTRAQ shotgun proteomics 

Swiss-Prot IDs from 128 identified proteins were submitted to the PANTHER 

Overrepresentation test (release date 20170413) parsing the PANTHER database (version 

12.0, released on 2017-07-10) using the Sus scrofa reference list and the PANTHER Protein 

Class annotation data set. Bonferroni correction was applied.  
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Expanded View figure legends 

Figure EV1 – Dynamic mapping of LLC PK-1 proteome highlights CNI-specific expression 

profiles of Actin family cytoskeletal proteins. 

A. STRING visualization of iTRAQ-monitored Actin family cytoskeletal protein network 

(PANTHER Protein Class PC00041) 

B. Heat-map representation of the identified Actin family cytoskeletal proteins. Cut-offs 

for biological significance were calculated as Mean ± 1 SD (1.02 ± 0.10) based on the 

approximation of the iTRAQ ratio frequency distribution. Lower cut-off: 0.92 (green); 

upper cut-off: 1.12 (red). 

 

Figure EV2 – Inhibitors of the RhoGTPases pathway elicited CsA-like features and 

potentiated CsA effects 

A. Quantification of red fluorescence-positive area. Mean ± SEM, One-way ANOVA plus 

Tukey’s post-test (p<0.01**,p<0.001***) (n=3). 

B. SRF transcription activity was measured by luciferase gene reporter assay in LLC PK-

1 SRE. Mean ± SEM. One-sample t-test for versus control comparison, One-way 

ANOVA plus Tukey’s post-test for multiple condition comparison 

(p<0.01**,p<0.001***) (n=3) 

Drug condition: Vehicle (0.5% Ethanol-0,2% DMSO), 5 µM CsA, 10 µM Y27632, Y27632 + 

CsA, 10 µM EHT1864, EHT1864 + CsA. Exposure time: 24 h. 

 

Figure EV3 – Molecular modelling of CsA docking into Na+/K+-ATPase 

A. Binding poses of CsA docking into Na+/K+-ATPase open conformation (E2 state) 

B. Binding poses of CsA docking into Na+/K+-ATPase closed conformation (E1 state) 

C. Close-up of site C-located binding poses of CsA docking into Na+/K+-ATPase closed 

conformation (E1 state) 
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