Abstract
While intrinsic changes in aging hematopoietic stem cells (HSCs) are well-characterized, it remains unclear how hematopoietic niche affects HSC aging. Here, we demonstrate that cells in the niche — endothelial cells (ECs) and CXCL12-abundant reticular cells (CARs) — highly express the heme-degrading enzyme, heme oxygenase 1 (HO-1), but then decrease its expression with age. RNA-sequencing shows that ECs and CARs from HO-1-deficient animals (HO-1-/-) produce less hematopoietic factors. Consequently, HSCs from young HO-1-/- animals lose quiescence and regenerative potential. Young HO-1-/- HSCs exhibit features of premature aging on the transcriptional and functional level. HO-1+/+ HSCs transplanted into HO-1-/- recipients exhaust their regenerative potential early and do not reconstitute secondary recipients. In turn, transplantation of HO-1-/- HSCs to the HO-1+/+ recipients recovers the regenerative potential of HO-1-/- HSCs and reverses their transcriptional alterations. Thus, HSC-extrinsic activity of HO-1 prevents HSCs from premature aging and may restore the function of aged HSCs.