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Homogenous subgroups of atypical meningiomas defined using oncogenic signatures: 

basis for a new grading system? 

 

Abstract 

Meningiomas are the most common brain tumor with a prevalence of 3% in the population. 

Histological grading of meningiomas (1 through 3) has a major role in determining treatment 

choice and predicting outcome. While largely indolent grade 1 and the highly aggressive grade 

3 meningiomas as considered mostly homogenous in clinical behavior, atypical or grade 2 

meningiomas have highly diverse biological properties. Our aim was to identify homogenous 

subgroups of atypical meningiomas with the working hypothesis that these subgroups would 

share features with grade 1 and grade 3 counterparts. We carried out systems level analysis 

by gene module discovery using co-expression networks on the transcriptomics of 212 

meningiomas. The newly identified subgroups were characterized in terms of recurrence rate 

and overlapping biological processes in gene ontology. We were able to reclassify 33 of 46 

atypical meningiomas (72%) into a benign “grade 1-like” (14/46) and malignant “grade 3-

like” (19/46) subgroup based on oncogenic signatures. Recurrence rates of “Grade 1-like” and 

“grade 3- like” tumors was 0% and 72% respectively. These two new subgroups showed 

similar recurrence rates and concordant biological processes with the respected grades. Our 

findings help resolve the heterogeneity/uncertainty around atypical meningioma biology and 

identify subgroups more homogenous than in prior studies. These results may help reshape 

prediction, follow-up planning, treatment decisions and recruitment protocols for future and 

ongoing clinical trials. The findings demonstrate the conceptual advantage of systems biology 

approaches and underpin the utility of molecular signatures as complements to the current 

histological grading system. 
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Introduction 

Meningiomas are the most common adult brain tumor, carrying an overall prevalence of 3% 

in the population. Histopathologic analysis is the mainstay of diagnosis and together with the 

extent of surgical resection it is  a determinant of outcome and treatment planning1,2. 

According to World Health Organization (WHO) grading, majority of meningiomas (almost 

70%) fall into grade 1, of which about two thirds are cured with surgical excision alone2 and 

15-20 % recur within five years of diagnosis3. Grade 3 meningiomas, by contrast, are rare and 

aggressive with a five year recurrence rate of approximately 90%2. Grade 2 (atypical) 

meningiomas constitute 20-30% of cases and represent a biological intermediate. Predicting 

the clinical course for these tumors is particularly challenging given their heterogeneous 

biology which yields a five-year recurrence rate of approximately 50%4. Previous studies have 

suggested that some grade 2 meningiomas share features with grade 1s while others are more 

similar to grade 3s based on clinical behavior as well as genetic features such as somatic 

mutations, copy number variants5–7, methylation status8, and genome wide expression 

profiles9,10. However, most research on gene expression in meningioma focuses on single gene 

analytics. This is not optimized for the low and additive molecular signals which frequently 

underlie complex and heterogeneous diseases. Systems biology approaches such as co-

expression networks11,12, on the other hand, are able to provide a higher resolution of these 

complex genetic processes11,13–15. We therefore hypothesized that such methods may reveal 

subgroups for grade 2 meningiomas based on resemblance to grade 1 or grade 3 

counterparts. In this study, we were able to deconvolve most atypical-grade meningiomas 

into a more indolent “grade 1-like” group and a more aggressive “grade 3-like” group, with 
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concordant recurrence rates. These findings help further clarify the heterogeneity of this 

challenging disease, and support a shift towards molecular classification of meningiomas in 

clinical practice. 

The World Health Organization16 currently recognizes molecular subclasses for some of the 

most aggressive brain tumors17,18, which have refined our predictions of treatment responses 

and clinical outcomes. Meningioma, the most prevalent type of adult brain tumor, are 

nevertheless categorized solely based on their histopathological appearances, a diagnostic 

heritage dating back almost eighty years 19. Extremes of histological grades (mostly benign 

grade 1 and malignant grade 3) have relatively homogenous clinical behavior compared to 

grade 2 (or atypical) variants. There is a lot of uncertainty around the biology, clinical course 

and treatment response20 of atypical meningiomas. This is reflected by regular revisions in 

WHO definitions21, overlapping molecular signatures with adjacent grades7,8 and open 

questions about the benefits of  chemotherapy20,22 and adjuvant radiation23–25. Defining 

subgroups of atypical meningiomas with homogenous biological and clinical properties may 

be critical to successfully resolving these questions, thereby improving prognostication and 

treatment for patients.  

Given the relatively consistent biological features of benign grade 1 and malignant grade 3 

meningiomas, we used them as genetic “hallmarks” around which to “deconvolve” the 

heterogeneous atypical class into “grade 1-like” and “grade 3-like” subgroups. Rather than 

relying on single gene markers, we used co-expression networks, a well-established system-

based approach to analyze the gene expression arrays of 212 meningiomas from 6 

independent cohorts (Supplementary table S1). The novelty of this systems-based approach is 

its sensitivity to small and cumulative signals from interacting genes within a biological 

cascade. This technique has been successful at defining gene expression patterns behind 

complex phenotypes in Huntington’s disease14, peripheral nerve regeneration15 or weight 
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gain11. Though to our knowledge it has not been used to decipher molecular characteristics of 

atypical meningiomas. 

 

Results 

We firstly established the gene expression profile that differentiates grade 1 from grade 3 

meningiomas. Differential gene expression showed 1 up-regulated and 11 down-regulated 

genes (log2 fold change ≥ 1.5, p ≤ 0.0001) summarized in Figure 1A and Supplementary Table 

2.  

We created another signature to distinguish grade 1 from grade 3 meningiomas using gene 

co-expression networks. This yielded 20 co-expressed gene modules (Figure 1B), of which 13 

had expression levels that differed significantly between grades 1 and 3 (Mann-Whitney 

p<0.05, Figure 1C). A subset of these 13 were also significant between grades 1 and 2 and/or 

between grades 2 and 3 tumors, suggesting the intermediate biology of atypical meningiomas.  

To find a genetic signature that best differentiates grades 1 and 3 tumors, we used two-

centroid soft clustering and evaluated the resultant distribution of patients with a balanced 

sigmoidal cost function. An iterative feature selection approach was conducted using single 

genes and gene modules which were differentially expressed between grades 1 from 3. 

Notably, modules consistently yielded better performance (lower cost) than single genes 

(Figure 2A). The lowest cost was achieved with two modules as inputs; one of which 

contained 120 genes and is most associated with mRNA splicing while the other consisted of 

98 genes and was involved in cell cycle. Using 80% membership probability as a cutoff, we 

reclassified 33 of 46 atypical meningiomas (72%) into a “grade 1-like” (14/46) and “grade 3-

like” (19/46) subgroup of atypical meningiomas. (Figure 2B, Supplementary Figure 2). 

Recurrence rates were available for only a subset of cases (26/46) and were significantly 

higher in “grade 3-like” (8/11) compared to “grade 1-like” (0/9) subgroups (p <0.005). 
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Concordantly, there was no difference in recurrence rates between grade 1 and “grade 1-like” 

groups nor between grade 3 and “grade 3-like” groups.  

Next, we verified the molecular identity of the newly detected subgroups of atypical 

meningiomas. Using a systematic comparison based on median module expression levels 

(Figure 3), we found concordance between the biology of our newly identified atypical 

subtypes with either grade 1 or grade 3 meningiomas (Figure 3A). Differential analysis also 

suggested that the overall biological separation between the newly described subgroups is 

similar to the separation between grades 1 and 3. This further lends to the validity of dividing 

atypical meningiomas into biologically homogenous subgroups which parallel existing grades. 

 

Discussion 

The highly heterogeneous clinical behavior of atypical meningiomas suggests that 

histological criteria do not adequately capture it’s biology, thus motivating the discovery of 

molecular markers for better disease resolution. So far, molecular profiling of meningiomas 

has largely taken a monogenetic approach to marker discovery for aggressive phenotypes9. 

This has been fruitful in identifying recurrence mutations7 and transcripts9 linked to 

oncogenic cascades in meningiomas. These approaches however rely on differential gene 

expression to identify relevant molecular mechanisms and thereby remains limited in its 

ability to resolve small additive signal often relevant in tumor biology. Bypassing this 

problem, we applied gene co-expression networks to establish molecular signatures which 

identified indolent and aggressive subtypes of atypical meningiomas. Furthermore, majority 

of studies link genetic analysis to histological grade7, which does not capture disease biology 

for atypical meningiomas providing a 50-50 chance of recurrence. Epigenetic studies using 

conventional clustering have analyzed heterogeneity of meningiomas through all grades8 

proposing new benign, intermediate and malignant methylation subclasses.  “Intermediate” 

meningiomas are quoted a 20% chance of disease-free survival, more accurate than histology 
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(50%).  Our study focuses on the most heterogenous group, atypical meningiomas. We were 

able to separate subgroups with greater homogeneity compared to these preceding studies 

with 0% and 72,8% recurrence rates for grade 1-like and grade 3-like subgroups respectively. 

These findings also demonstrate the conceptual advantages of system-based approaches like 

co-expression networks over conventional techniques like differential gene expression 

and/or clustering. Our study has limitations: we analyze a single cohort, only a subset of 

samples have recurrence and follow-up times documented, on the other hand we provide a 

meta-analysis of 6 independent case-series which minimizes bias and counts towards the 

robustness of the findings. 

Our findings help resolve the heterogeneity of atypical meningiomas by deconvolving into 

subgroups which are more homogenous then proposed prior studies. These homogenous 

subgroups may help predict clinical course, thus allowing for customized follow-up planning 

to manage resource intense investigations such serial imaging while optimizing patient care.  

Our results could also help guide recruitment protocols for future and ongoing clinical trials, 

which are currently limited by the uncertainty of clinical outcomes in atypical meningiomas24. 

The approach in this study lend to the utility of complex molecular signatures in augmenting 

histological diagnosis and resolving other heterogeneous and challenging diseases. 

 

Materials and methods 

Data collection and pre-processing 

     This study used open-source data from the repository Gene Expression Omnibus (GEO)26. Six 

studies with primary meningioma transcriptomics were included in the analysis, all of which 

had WHO grade annotated (Supplementary Table 1). These publicly available gene expression 

datasets were accessed Gene Expression Omnibus (GEO) under id’s: GSE10534, GSE77259, 

GSE54934, GSE43290 GSE16581 and GSE74385.  For each study, the microarray data was 

backgrounded corrected, quantile normalized, and log-2 transformed using the Affy27 and 
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Limma28 R packages for Affymetrix and Illumina platforms, respectively. After removing genes 

that were not common across these studies, the 6 studies were merged, scaled to a global 

mean and standard deviation of 0 and 1, respectively29, and batch-corrected using ComBat, a 

well-established empirical Bayes approach30. The resultant data matrix was used during all 

subsequent analysis. 

Differential gene expression analysis 

     Differential gene expression analysis was used to compare grades 1 and 3 meningiomas. In 

log2-transformed space, the fold change (FC) was computed by subtracting the mean 

expressions of each gene in grade 1 tumors from the corresponding mean expressions in 

grade 3 tumors. Genes with absolute log2-transformed FC ≥ 1.5 and p ≤ 0.0001 were 

considered significant. 

Co-expression networks and module detection 

     We used the well-established “Weighted Gene Correlation Network Analysis” (WGCNA) to 

detect “modules” of strongly co-expressed genes13. Per these previously described techniques, 

we first computed an “adjacency matrix” using soft-thresholded Pearson correlation between 

each gene pair. This was converted into a biologically-inspired topological overlap map (TOM), 

wherein pairwise gene similarities are derived from comparing their connectivity profiles31. 

Hierarchical clustering converted the TOM into a dendrogram, and a subsequent “dynamic” tree-

cut32 served to identify gene modules. These modules were annotated with the Database for 

Annotation, Visualization and Integrated Discovery (DAVID)33, an open-source bioinformatics 

resource. Additionally, representative module “meta-genes” for each sample were computed as 

the first principal component of their constituent genes’ expression values. The utility of this 

approach was verified in our dataset by demonstrating that higher principle components 

capture a very small proportion of the overall variance (Supplementary Figure 1A) and showing 

that neither study batch nor sex cluster along the first principle component (Supplementary 

Figure 1B and 1C). This eliminates the possibility of batch effect or sex being drivers of our 
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“meta-gene” values and confounding results. Differences in the expression levels of these “meta-

gene” between grades was tested with a Mann-Whitney test, with a p≤0.05 considered 

significant. 

Feature selection and clustering 

     In order to better understand the heterogeneity of grade 2 meningiomas, we began by 

identifying genetic features able to best distinguish grades 1 and 3. Fuzzy C-means (FCM) 

clustering was applied to the set of all patients in our study and the resultant separation of 

grades 1 and 3 was established with a sigmoidal cost function that is balanced for differences 

in the prevalence of both grades: 

� � 1
��

� � 1
1 �  	����� ��.	
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In the above equation, N1 and N3 are the number of grade 1 and grade 3 tumors, respectively; 

S1 and S3 are the sets of grade 1 and grade 3 tumors, respectively; Pk is the FCM clustering-

derived probability of patient k being in the grade 3-enriched cluster; and � is a tunable 

hyperparameter. We used a two centroid model wherein cluster polarity was established by 

comparing the ratio of grade 3 to grade 1 tumours at both ends of the probability distribution 

(hard-thresholding at 80% probabilities).  

     Single genes and module “meta-genes” which were significantly different between grade 1 

and grade 3 tumors served as input variables. Backwards elimination and forward selection 

were used for feature selection with model performance measured using the above cost 

function. Hyperparameter (�) values of 1, 5, 10, and 100 tested for all models. Once the 

separation of grades 1 and 3 was optimized, the probability distribution of grade 2 

meningiomas within the same output was investigated. Atypical meningiomas with a 

probability ≥80% of being in the grade 1-enriched cluster were defined as “grade 1-like”, and 
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those with a probability ≥80% of being in the grade 3-enriched cluster were defined as “grade 

3-like”. 

Analysis of grade 2 subtypes 

     We first compared the recurrence rates of “grade 1-like” and “grade 3-like” meningiomas, 

and compared each to the rates of grade 1 and grade 3 tumors (Figure 2B, Supplementary 

Figure 2). Notably, only 114 of the 212 patients in our cohort have annotated recurrence.  To 

investigate the degree of biological overlap between “grade 1-like” and grade 1 meningiomas, 

and similarly between “grade 3-like” and grade 3 meningiomas, we used the correlation 

between their module “meta-gene” expression levels (Figure 3A). In addition, we compared 

the biological separation between the newly described subtypes of atypical meningiomas to 

the separation of grades 1 and 3 by correlating their differential module expression levels 

(Figure 3B). 

Data analysis platforms 

     All computational work relied on the open-source computational platform R34, including 

packages WGCNA13, ppclust35, Affy27, Limma28, and SVA36. 
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Figure legends 

Figure 1: Gene expression signatures associated with meningioma grade. A: Differential gene 

expression between grades 3 and 1 meningiomas reveal 1 upregulated and 11 downregulated 

genes in grade 3 tumours (|log2(fold change)| ≥ 1.5, p<0.0001). B: Dendrogram of genes based 

on the topological overlap map, with the 20 gene modules represented as colors in the bar 

below. Grey represents unclassified genes. C: Plot of median module expression differences 

between grade (m) and grade (n). Only modules with significantly different expression 

between grades 1 and 3 are included (Mann Whitney p<0.05). Red indicates modules which 

are upregulated in grade (m), and darker shades indicate larger effect sizes. Notably, 11/13 
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modules are significantly different between grades 1 and 2 while 2/13 are also significantly 

different between grades 2 and 3. * p < 0.05 (Mann-Whitney). 

 

Figure 2: Optimized soft clustering reveals two subgroups of atypical meningiomas. A: Cost of 

multiple input configurations: ”salmon”(S) and “lightcyan” (LC) modules in blue, ”salmon” 

module alone and optimized differentially expressed genes in grey. Top inset depicts shape of 

sigmoid function with varied alphas. B: Summary graph of fuzzy C-means clustering best 

performing inputs (S + LC). The x-axis represents the probability of being in the grade-3 

enriched cluster and y-axis represents the proportion of patients in each bin of 10%. Line 

graph component represents normalized frequency distribution of each histological grade 

(green = grade 1, black = grade 2, red = grade 3). Top jitter plot represents individual patients. 

Dark green and red bars above represent the 20 and 80% thresholding into grade 1-like and 

grade 3-like subgroups of atypical meningiomas. Recurrence rates are plotted on the right by 

grade (green, black, red) and subgroup (“grade 1-like” and “grade 3-like”). *Chi-square 

p<0.05. 

 

Figure 3: Molecular identity of newly described atypical meningioma subgroups. A: Scatter 

plot of median module expression. Larger circles indicate Mann Whitney p<0.05. Colors 

correspond to previously identified modules in Figure 1B. S=Pearson coefficient, *p<0.05. 

Note the positive correlation between the modules of grade 1 and “grade 1-like” and grade 3 

and “grade 3-like” subtypes. B: Scatter plots of genetic separation between atypical subtypes 

as histological grades. The x-axis represents the difference in median module expression 

between grades 3 and 1, while the y axis represents the difference in median module 

expression between ”grade 3-like” and “grade 1-like”. Large circles represent modules which 

are significantly different in both comparisons and empty circles indicate modules which are 

not significantly different in either. Of the remainder, 5/6 are significantly different between 
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grades 3 and 1 only and 1/6 is significantly different between ”grade 3-like” and “grade 1-

like” (#). 
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