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Abstract. 23 

Pediatric diarrheal disease remains the 2nd most common cause of preventable illness 24 

and death among children under the age of five, especially in Low and Middle-Income Countries 25 

(LMICs). However, there is limited information regarding the role of food in pathogen 26 

transmission due to measuring infant food contaminations in LMICs.  For this study, we 27 

examined the frequency of enteric pathogen occurrence and co-occurrence in 127 weaning infant 28 

foods in Kisumu, Kenya using a multi-pathogen rt-PCR diagnostic tool, and assessed household 29 

food hygiene risk factors for contamination. Bacterial, viral, and protozoa enteric pathogen DNA 30 

and RNA were detected in 62% of the infant weaning food samples collected, with 37% of foods 31 

containing more than one pathogen type. Multivariable generalized linear mixed model analysis 32 

indicated type of infant food best explained the presence and diversity of enteric pathogens in 33 

infant food, while most household food hygiene risk factors considered in this study were not 34 

significantly associated with pathogen contamination. Specifically, cow’s milk was significantly 35 

more likely to contain a pathogen (adjusted Risk Ratio=14.4; 95% Confidence Interval (CI) 1.78-36 

116.1) and contained 2.35 more types of pathogens (adjusted Risk Ratio=2.35; 95% CI 1.67-37 

3.29) than porridge. Our study demonstrates that infants in this low-income urban setting are 38 

frequently exposed to diarrhoeagenic pathogens in food and suggests that interventions are 39 

needed to prevent foodborne transmission of pathogens to infants. 40 

 41 

Importance. 42 

 Food is acknowledged as an important pathway for enteric pathogen infection in young 43 

children. Yet, information on enteric pathogen contamination in food in low-and-middle income 44 

settings is lacking, especially with respect to weaning foods given to young infants. This study 45 
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assessed which food-related risk factors were associated with increased presence of and diversity 46 

in twenty-seven types of enteric pathogens in a variety of foods provided to infants between 47 

three and nine months of age in a low-income neighborhood of Kisumu, Kenya. Feeding infants 48 

cow milk emerged as the most important risk factor for food contamination by one or more 49 

enteric pathogens. The results indicate public health interventions should focus on improving 50 

cow milk safety to prevent foodborne pathogen transmission to infants. However, more research 51 

is needed to determine whether infant milk contamination was caused by caregiver hygiene 52 

practices versus food contamination passed from upstream sources. 53 

  54 

Introduction. 55 

Even though pediatric diarrheal diseases are declining worldwide, they remain the 2nd 56 

most common cause of preventable illness and death among children under the age of five [(1)]; 57 

responsible for approximately 800 million illnesses and 800,000 deaths in 2010. Approximately 58 

90% of this disease burden is concentrated in children under the age of 5 in low- and middle-59 

income countries (LMICs) [(2, 3)]. Diarrheal infections are caused by a diverse range of enteric 60 

pathogens that infect children as early as birth [(4)]. Children infected with enteric pathogens can 61 

potentially suffer long-term adverse effects to their physical and cognitive development and 62 

future socio-economic status [(5, 6)].  63 

There is increasing recognition that consumption of pathogen-contaminated food is an 64 

important exposure pathway for diarrheal disease in children in LMICs [(7, 8)]. An estimated 65 

582 million cases of illness, death, or disability adjusted life years are attributed to contaminated 66 

food each year globally, with young children and Africans bearing most of the foodborne disease 67 

burden [(2)]. The risk of diarrheal disease typically increases as infants transition from exclusive 68 
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breastfeeding to consumption of weaning foods and water due to both decreases in passive 69 

protection from maternal breastmilk and more exposure to contaminated food [(9, 10)]. Many 70 

caregivers worldwide struggle to exclusively breastfeed up to six months of age, resulting in 71 

infants being provided weaning food instead of breast milk before 6 months of age [(11-13)]. 72 

Thus, premature transition from exclusive breast feeding to weaning foods may be especially 73 

important as one of the earliest causes of enteric infection [(14)]. Little is known about how often 74 

infants in LMICs are exposed to pathogens via food, and which risk factors should be targeted to 75 

reduce food-related exposure of children to enteric pathogens. In addition, infants’ diets become 76 

more diversified as they develop, and each of these additional food types may pose different 77 

exposure risks for different enteric pathogens [(15)].  More evidence is needed to understand 78 

which risk factors should be targeted to reduce food-related exposure of children to enteric 79 

pathogens in LMIC settings [(16)]. 80 

While foodborne transmission of enteric pathogens into the food supply chain is 81 

rigorously monitored in high-income countries (HICs) via regulatory authorities [(17)], food 82 

safety is frequently not monitored and regulated well in LMICs [(7)]. Many common infant 83 

weaning foods, like cow’s milk, are sourced from outside the household. Unsanitary and 84 

unregulated farm and market practices can result in contamination of milk by human or animal 85 

feces, well before entry to the household [(18)]. Reliance on unsanitary water to prepare weaning 86 

foods is common in LMICs [(10)]. In addition to sub-optimal water and market food supplies, 87 

insufficient hand washing and sterilization of food preparation areas, improper cooking 88 

temperature of infant food, storage of perishable foods at ambient temperatures, and storage of 89 

food in containers open to flies [(7, 19, 20)] can introduce additional microbial contamination in 90 

the household.  91 
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This study aimed (1) to describe the frequency and diversity in enteric pathogen 92 

contamination of infant weaning foods in low-income, neighborhoods of Kisumu, Kenya, and (2) 93 

to identity the leading environmental conditions and behaviors that contribute to pathogen 94 

presence and absence and higher pathogen diversity. The methodologies described and applied in 95 

this paper could be used in future research on foodborne illnesses in LMICs. Furthermore, our 96 

findings could be used to inform public health and healthcare professionals as a basis for 97 

prevention of pediatric diarrheal diseases in LMICs.  98 

 99 

Results. 100 

Demographics of Caregivers/Infants and Household Hygiene Conditions. 101 

A total of 127 households (caregivers/infant dyads) participated in this study. Seventy-102 

seven households were enrolled in January following the initial census and recruitment of all 103 

children between 3 and 9 months of age, and another 30 and 20 households were enrolled in 104 

March and May, respectively (Table 2). The study population was comprised of 45% male and 105 

54% female infants born between March 2016 to December 2016. Most infants of caregivers 106 

were over 6 months old (76%). Among the caregivers who provided the study samples, 83% 107 

were married. Half of caregivers (50%) had only a primary education, whereas 21 % had some 108 

secondary education and 30% completed secondary education. Almost half (47%) of the 109 

caregivers who reported their employment status were unemployed (Table 2). There was 110 

variability in number of households enrolled across the four CHV catchment areas due to 111 

differences in number of eligible infants for recruitment, inability to locate the caregivers after 112 

census, refusals to participate, ability to verify infant’s age, or refusal to provide food samples 113 

after consent and participation in the survey. 114 
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The most common infant food types were porridge and cow’s milk, followed by tea, and 115 

“other” food (example: flour bread, mashed potatoes, or beans) (Table 3). Food type did not vary 116 

for infants < 6 months of age versus those older than 6 months (chi-square, p=0.12) when food 117 

types were categorized as milk, porridge, and non-milk/porridge (tea, water, flour bread, mashed 118 

potatoes, or beans were grouped due to low frequencies per category). Most of the households 119 

did not have a handwashing station in their food preparation and/or feeding area.  Flies were 120 

observed in one third of household food preparation and feeding areas, and animal feces were 121 

observed in 8% of household food preparation and feeding areas. Non-permeable floors in food 122 

preparation and feeding areas were most common.  123 

 124 

Pathogen Distribution and Diversity in Infant Weaning Foods. 125 

Assessment of the quality of DNA and RNA extracted from infant food is reported in 126 

Supplemental Table S2. DNA and RNA of 13 different types of bacterial, viral, and protozoa 127 

enteric pathogens was detected in 79 of the 127 (62%) infant weaning food samples collected 128 

over the three-month span (Table 4). The most commonly detected pathogens were Aeromonas 129 

(20%), Enterohemorrhagic E. coli 0157 (EHEC) (17%), Enteropathogenic E. coli (EPEC) 130 

(17%), Enterotoxigenic E. coli (ETEC) (13%), Adenovirus 40/41 (12%), and non-parvum/non-131 

hominus Cryptosporidium spp. (10%), with 8 other pathogens occurring in less than 10% of 132 

overall infant weaning food samples (Table 4). Infant food samples collected during March have 133 

higher raw contamination rate than food collected during January and May (90%, 52%, and 60%, 134 

respectively). ETEC and non-parvum or hominus Cryptosporidium spp were detected frequently 135 

in January. In March, detection frequencies for Adenovirus 40/41, EPEC, EHEC 0157, STEC, 136 

EIEC/Shigella spp., and C. difficile were highest. Aeromonas were detected frequently in May.  137 
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A median of 1 pathogen per sample (standard deviation of 1.58; range of 0 to 9 pathogen) was 138 

detected, with 37% of foods being co-contaminated by more than 1 pathogen type.  139 

 140 

Risk Factors for Enteric Pathogens presence in Infant Weaning Food. 141 

Food type, the infant sharing eating containers with other family members, and feces in 142 

preparation area were associated at p<0.3 with presence of any pathogen in the bivariate analysis, 143 

and were included in the multivariable analysis (Table 5). Sharing an eating container did not 144 

improve model fit and was removed. In the final multivariable model, cow milk was significantly 145 

more likely to contain an enteric pathogen when compared with porridge, but non-milk/porridge 146 

foods were not statistically different from porridge. Pathogens were detected twice as often in 147 

milk (95%, n=19/20) as porridge (56%, n=45/81) and non-milk/porridge foods (56%, n=15/26). 148 

Observation of feces in preparation area was statistically associated with a lower risk of pathogen 149 

presence compared to feces not being observed.  150 

Food type, handwashing station in preparation area, sharing eating containers with family 151 

members, and owning animals were associated with higher pathogen diversity at p<0.3 in 152 

bivariate analysis and were considered in the multivariable model (Table 6). Food type was the 153 

only variable retained in the final model for explaining pathogen diversity. Pathogen diversity 154 

was 2.35 times higher in milk than in porridge, whereas non-milk/porridge foods trended 155 

towards lower levels of diversity. 156 

 157 

Discussion. 158 

Estimates of the importance of food as an enteric infection pathway for young children in 159 

LMICs are limited by the absence of primary data on food outbreaks and frequency of food 160 
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contamination by enteric pathogens, especially with respect to weaning foods provided to infants 161 

[(17)]. This study demonstrated that infants as young as three months of age in informal 162 

settlements of Kisumu ingest food contaminated by a variety of different types of enteric 163 

pathogens. Our qPCR-based enteric pathogen detection frequency of 62% is similar to what has 164 

been reported for frequency of fecal indicator bacteria in infant food in similar high disease 165 

burden settings, such as Bangladesh (40% - 58%), Indonesia (45%), South Africa (70%), India 166 

(56%), and Peru (48%) [(2, 23-27)]. We expand upon these studies to show that a substantial 167 

number of infants ingest food contaminated by multiple types of enteric pathogens. Studies vary 168 

in their conclusions as to which pathogens cause the most foodborne enteric disease in LMICs, 169 

e.g. Norovirus, Campylobacter spp., S. enterica, ETEC, EPEC, Giardia lamblia, and Shigella 170 

spp. are all attributed with a substantial amount of foodborne illness or death [(2, 28)]. The 171 

etiology of foodborne disease may vary year to year, or month to month as suggested by our 172 

study, which has implications for ranking the priority foodborne pathogens in settings where 173 

outbreak or food monitoring information is limited. Many types of pathogens were detected in 174 

food during our 5-month study in Kisumu, with Aeromonas being the most common pathogen, 175 

followed by EHEC O157, ETEC and EPEC, and human adenovirus 40/41. Aeromonas is 176 

extremely common in the environment, including foods, but is not considered a priority 177 

foodborne pathogen [(29)]. However, EHEC O157 is notorious as a deadly cause of foodborne 178 

epidemics, and the emergence of so many O157-positive food samples in March alone suggests 179 

there may have been a foodborne outbreak. March is the onset of the rainy season in Kisumu. 180 

The increased detection of multiple during this month may reflect an influence of seasonality on 181 

foodborne transmission risks in Kenya. This foodborne danger would have been missed had we 182 

sampled in a narrower timeframe. 183 
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We demonstrated that the risk of pathogen exposure for an infant can vary by type of 184 

weaning food, which has important implications for designing interventions. Cow’s milk was 185 

significantly more likely to be contaminated by one or multiple types of enteric pathogens 186 

compared to other common infant foods, such as porridge.  For many urban and rural Kenya, raw 187 

milk is more affordable and accessible than pasteurized milk [(30)]. However, raw milk can be 188 

easily contaminated during production at farms by animal urine and feces, dirt, flies, adulteration 189 

with untreated water, and improperly cleaned containers [(31)]. In addition, the packaging, 190 

storage, distribution, and marketing of milk are not rigorously regulated and monitored in Kenya, 191 

leading to additional points where unhygienic conditions can introduce contamination [(32)]. 192 

Urban populations often encounter milk adulterated by water [(33, 34)]. Therefore, 193 

pasteurization of milk at the point of sale or during food preparation in the household may be 194 

critical for rendering milk safe to drink.  195 

After sale, household food preparation, feeding, and storage conditions can contribute to 196 

new sources of infant food contamination [(19)] . In Kenya, milk is often consumed in liquid 197 

form, as well as is added to a variety of infant foods. Depending upon how the milk is provided 198 

to the infant, it may or may not receive proper treatment to eliminate microbial pathogens. If 199 

caregivers perceive milk to be safe due to prior pasteurization, they may not treat it further. If 200 

milk is added to infant foods, it may be reheated as a part of the cooking process or can be added 201 

to food after the preparation process without reheating. Milk is an optimal growth medium for 202 

bacteria and may be particularly sensitive to cross-contamination from unclean surface, hands, 203 

and flies or uncovered and unclean containers. Public health interventions targeting safety of 204 

milk products may be particularly effective for reducing foodborne diarrheal diseases in infants 205 

in LMICs. 206 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 11, 2018. ; https://doi.org/10.1101/493213doi: bioRxiv preprint 

https://doi.org/10.1101/493213
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 10 of 37 

 

Household water, sanitation, and hygiene (WASH) interventions have been suggested as 207 

keys in combating enteric pathogen transmission and infections [(16, 35, 36)]. While we found 208 

some domestic food hygiene risk factors were associated with enteric pathogen presence and 209 

diversity in bivariate analysis, most of these associations reduced in magnitude and did not 210 

improve model fit after adjustment for food type. Counterintuitively, observation of feces in the 211 

food preparation area – a rare situation to begin with - was associated with a lower likelihood of 212 

pathogen presence after model selection, rather than higher child food contamination as expected 213 

[(19)]. This association may be caused by unmeasured confounding factors or reactivity of some 214 

caregivers who were aware of the purpose of our visit. Timing household visits to coincide with 215 

food availability is logistically challenging unless caregivers store food for infants for prolonged 216 

periods of time. Thus, if food was not present during our first visit, we had to work carefully 217 

with households to time our follow-up visits to coincide with when they would have food for the 218 

child. Some caregivers may have reacted to the presence of feces in their preparation area before 219 

our visit and contaminated the infant’s food in the process of removing it. The inability to 220 

determine causality is a limitation of our cross-sectional design. The lack of association between 221 

other well-known risk factors of bacterial contamination in infant food could be caused by lack 222 

of statistical power to detect smaller effect sizes, although does not detract from the dominant 223 

role of food type in explaining pathogen detection. Analysis with a larger sample size are 224 

underway to improve knowledge about foodborne pathogen transmission in Kisumu.   225 

One of the strengths of our study is that we examined food for pathogens, rather than 226 

bacterial indicators, using rigorous microbiological protocols to ensure quality of data was 227 

preserved from field labs in Kisumu to molecular labs in Iowa. Fecal indicators, which are 228 

typically used as a proxy for determining risk from fecal pathogens, are nonspecific and often do 229 
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not correlate well with viral, bacterial, and protozoan pathogens [(37)]. Addressing the need for 230 

information on infant food contamination in LMICs required finding an effective microbial 231 

testing method that enabled quantitative and target-specific measuring of a broad array of the 232 

most common types of diarrhea pathogens in infant food. Even though qPCR is frequently 233 

applied for the quantitative detection of pathogen presence in foodborne outbreak analysis [(38-234 

40)], it has not been widely applied in food samples in LMICs. Our methods are novel in their 235 

ability to detect a wide array of pathogens simultaneously.  The qPCR approach is also a 236 

limitation, since qPCR-determined concentrations may detect non-infectious organisms that 237 

cannot cause disease. We are not certain what fraction of the PCR-detected pathogens are viable, 238 

viable-but-non-recoverable, or dead microbial organisms. However, the distinct variability in 239 

contamination patterns in infant food and the consistency with cow’s milk came up as a risk 240 

factor for pathogen presence suggests qPCR was a valid approach for identifying infant food risk 241 

factors. 242 

Several challenges had to be overcome for measuring and analyzing infant weaning food 243 

contamination in this study, challenges which apply to many LMIC settings. First, multi-target 244 

enteric pathogen detection capability is limited in LMICs due to limited laboratory facilities, 245 

requiring samples to be sent to specialized labs for precise analysis. We minimized sample 246 

degradation risks by using a ZymoBIOMICS™ DNA/RNA extraction kit that allowed us to 247 

preserve samples at ambient temperature for storage, transport, and extraction [(41)]. This makes 248 

the method more desirable for use in laboratory-limited LMICs or any field-based scenario, as 249 

samples can be shipped to an equipped laboratory for processing with ease. The high rates of 250 

recovery of MS2 virus spiked in to samples before storage and transport confirmed that we 251 

experienced no loss in nucleic acid using this process. Second, the wide variety of physical and 252 
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chemical properties of different food types makes optimization of microbial food testing 253 

protocols complex, especially if the goal is to measure multiple types of pathogens [(42)]. In 254 

addition, the presence of inhibitors can impact qPCR performance [(43)]. We pre-piloted all 255 

protocols to confirm that protocols for DNA and RNA recovery of spiked pathogens was not 256 

affected by food type, then rigorously evaluated each sample for signs of inhibition prior to 257 

qPCR analysis. Low inhibition rates and low variability in MS2 Ct values across all food types 258 

showed that Zymo extraction kit can produce high-quality nucleic acids free of inhibition from 259 

foods [(44-46)]. Third, pathogens may be present in food at concentrations that are lower than 260 

the methodological limit of detection, which results in misclassification of some pathogen-261 

positive samples as uncontaminated. Pre-amplification increased the concentration of starting 262 

content before conducting the quantitative measurement step of PCR.  263 

  264 

Conclusion. 265 

Foodborne disease transmission of enteric pathogens may contribute substantially to the 266 

global diarrheal disease burden, yet receives limited attention. Our evidence highlights a need for 267 

more interventions targeting safe preparation and storage of infant foods, particularly high-risk 268 

foods such as milk. The ongoing Safe Start study in Kisumu is evaluating whether behavior 269 

improvements in caregiver food preparation, feeding, and storage behaviors can reduce 270 

enterococcus contamination in infant food and enteric pathogen infections in infants during 271 

weaning. Alongside interventions aiming to improve food hygiene practices of caregivers, 272 

interventions targeting hygienic milk handling and storage at the point of sale and among 273 

manufacturers may be needed to address upstream risks. The intersecting Market to Mouth study 274 

will contribute more information about the role of locally sold milk sources on pathogen 275 
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contamination of infant food and the ability of the Safe Start intervention to mitigate enteric 276 

pathogen contamination passed via the food system.  277 

 278 

Materials and Methods. 279 

Study Setting/Ethical Consideration. 280 

 This exposure assessment study was conducted as part of formative research aimed at 281 

developing and testing an infant hygiene intervention to inform the development and evaluation 282 

of an infant weaning food hygiene intervention in Kisumu, Kenya. Kisumu is a city in the 283 

western region of Kenya, with a projected population of approximately 490,000 people by 2017 284 

(Kisumu county integrated development plan 2013-2017). The study site includes four villages 285 

of a low-income peri-urban neighborhood in Kisumu. This infant weaning food hygiene 286 

intervention will be evaluated as part of the Safe Start study, a cluster-randomized controlled 287 

trial (Clinical Trials identifier: NCT03468114) involving Great Lakes University of Kisumu, 288 

Kenya (GLUK), the London School of Hygiene & Tropical Medicine (LSHTM), and the 289 

University of Iowa (UI). The study was approved by the scientific and ethical review committees 290 

at the GLUK (Ref. No. GREC/010/248/2016), LSHTM (Ref. No. 14695), and UI (IRB ID 291 

201804204). 292 

 293 

Study Design. 294 

 A total of eight community health volunteers (CHVs) who served the four neighborhoods 295 

in our study area facilitated the recruitment of participants. First, CHVs conducted a household 296 

census with the research team in December 2016 to generate a list of all infants less than nine 297 

months of age that were living in each CHV’s catchment area. Then, the list of households was 298 
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randomly sorted, and in January CHV’s and enumerators approached each house to verify infant 299 

eligibility, obtain consent to participate in the study, and perform data collection, and food 300 

sampling. CHVs maintained surveillance of their respective catchment area through May 2017 to 301 

identify new infants as they became age-eligible, and to approach their caregivers about 302 

participation in the study. 303 

Eligibility of a household was defined as having an infant between three and nine months 304 

of age, verified by reviewing the infant’s birth identity card, who was being fed supplemental 305 

food in addition to or in replacement of breastfeeding. Exclusion criteria included refusal to 306 

participate, inability to produce infant health card for verification of age, or caregiver reporting 307 

that the infant is exclusively breastfed and does not eat other food or liquid. Upon verification of 308 

eligibility and availability of food for sampling, consent to participate in the study was obtained 309 

from the child’s primary caregiver in the presence of the CHVs. The study was described in the 310 

caregiver’s natural language, and a signed copy of the consent form was left for her records.  311 

 312 

Data and Sample Collection. 313 

 After agreeing to participate in the study, caregivers were interviewed about household 314 

status, their level of education; access to water, sanitation, and hygiene resources; and key infant 315 

weaning food preparation, storage, and feeding practices. Caregivers were then asked to provide 316 

approximately five grams of already-prepared infant food of any type fed to the child that day. 317 

The timing of food preparation for infants varied throughout the day, so the field team scheduled 318 

follow-up visits with households at times when food would be available. Food was placed into a 319 

sterile, labeled WhirlPak bag (Sigma-Aldrich, St. Louis, MO) by the caregivers, using whatever 320 

means (fingers, utensil) that the caregiver normally used for handling the child’s food. Food was 321 
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placed on ice packs in a cooler and was transported to the laboratory for processing within six 322 

hours of collection.  323 

 324 

Nucleic Acid Extraction. 325 

All food samples were processed by following the manufacturer's instructions for the 326 

ZymoBIOMICS™ DNA/RNA extraction mini-kit (Zymo Research, Irvine, CA) for DNA & 327 

RNA parallel purification. A 250 mg food sample was measured into the Zymo-Shield tube, 328 

vortexed until blended, and stored at 4℃. Samples were then transported in a cooler at ambient 329 

temperature to the University of Iowa for the remainder of the extraction. A subset of samples 330 

(n=77) were spiked with 5 µL of 1.8*10
9
 CFU/mL of live bacteriophage MS2 to serve as an 331 

extrinsic process control to assess for RNA degradation as a function of storage and transport 332 

conditions. Once purified DNA/RNA was obtained, it was stored at -80℃ until further analysis. 333 

 334 

Inhibition Screening/Preamplification. 335 

DNA and RNA extracts from the samples (6 µL each) were screened for evidence of 336 

inhibition with the QuantiFast Pathogen PCR +IC Kit and QuantiFast Pathogen qRT-PCR+ IC 337 

kit (Qiagen, Hilden, Germany) on a QuantStudio real-time PCR system (Thermo Fisher, 338 

Waltham, MA). A total of 77 samples were screened for inhibition. Inhibition was defined as 339 

having amplification of the RNA internal control over cycle threshold value (CT value) of 34 in 340 

a sample according to the manufacturer’s protocol. QuantiFast Pathogen qRT-PCR +IC Kit 341 

(Qiagen, Hilden, Germany) was used for pre-amplification PCR. For each sample, a total volume 342 

of 12 µL of DNA and RNA extract (6 µL each) was mixed with a master-mix containing 5 µL of 343 

5x Quantifast Pathogen MM, 0.25 µL of 100x Quantifast Pathogen RT Mix, 0.5 µL of 50x high 344 
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ROX dye solution, 0.15 µL of ultrapure 50 mg/mL BSA, 2.5 µL of 0.2x custom TaqMan pre-345 

amplification primer and probe pool (Appendix 1), 2.5 µL of internal control assay, and 2.0 µL 346 

of internal control RNA. If extracts were determined to be inhibited during the inhibition 347 

screening, the inhibited extracts would undergo 1:10 dilution before mixing with the pre-348 

amplification master-mix. The cycling conditions for the pre-amplification PCR were: holding 349 

stage of 50°C for 20 minutes and 95°C for 5 minutes, followed by 44 cycles of 95°C for 15 350 

seconds and 60°C for 30 seconds [(21)]. Preamplification PCR was completed through an 351 

Eppendorf Thermocycler (Hamburg, Germany). All the completed pre-amplified samples would 352 

undergo a 1:10 dilution with nucleic acid-free water before proceeding to TaqMan quantitative 353 

PCR card analysis. 354 

 355 

TaqMan Array Card Analysis. 356 

 Primers and probes for a total number of 37 gene targets of pathogen of interest in the 357 

TaqMan assays are listed in Supplemental Table S1. The Ag-Path-ID One-Step RT-PCR kit 358 

(Thermo Fisher, Waltham, MA) was used for the TaqMan card analysis. For each sample, 40 µL 359 

of re-amplified DNA/RNA extract (in 1 to 10 dilutions with nucleic acid-free water) was mixed 360 

with 50 µL of 2X RT-buffer, 4 µL of 25X AgPath enzyme, and 6 µL of nucleic acid-free water. 361 

All the TaqMan runs were completed in a ViiA7 instrument (Thermo Fisher, Waltham, MA), 362 

and the cycling conditions were: 45°C for 20 minutes and 95°C for 10 minutes, followed by 45 363 

cycles of 95°C for 15 seconds and 60°C for 1 minute. Amplification of a pathogen-specific gene 364 

target was used to define a sample as positive for the presence of that pathogen; if multiple gene 365 

targets were used to detect different one type of pathogen (norovirus, EAEC, EPEC, ETEC, 366 

STEC) amplification of either gene resulted in a sample being considered positive. Two virulence 367 
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gene indicators were used to detect pathogenic bacteria on the card, so in this manuscript 368 

samples were considered positive for the overall species of bacterial pathogen if either gene was 369 

detected. 370 

 371 

Data Analysis.  372 

 There were two primary outcomes assessed during analysis. First, a binary indicator was 373 

defined based on the presence of one or more target pathogens detected in the sample (any-path). 374 

Second, pathogen diversity was calculated by summing the total number of target pathogens 375 

types detected in the sample (sum-path). Caregiver education level and sampling month were 376 

selected a priori as potential confounders of infant health and caregiver food preparation 377 

practices [(22)] and included in all analyses. Proposed risk factors for food contamination by 378 

enteric pathogens included general household conditions that could lead to the introduction (e.g. 379 

animals near food) or sustained presence (e.g. floor type) of feces with pathogens in the food 380 

preparation and feeding area (Table 1). Due to infrequent (<5%) detection rates for tea, water, 381 

and other foods, these types were combined into one “Other” group for the single and 382 

multivariable analysis to ensure model convergence. 383 

Analyses were completed through SAS software version 9.4 (SAS Institute, Cary, NC).  384 

Separate Generalized linear mixed models (GLMM) were developed for the binary indicator of 385 

any pathogen detection (any-path model) and the pathogen diversity measures (sum-path 386 

models) to assess relationships between environmental and behavioral risk factors and primary 387 

outcomes. For the any-path model, the log link and binomial distribution specifications were 388 

used, and regression results were converted to risk ratios. For the Sum-path models, Poisson, 389 

zero-inflated Poisson, negative binomial, and zero-inflated negative binomial distributions were 390 
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evaluated, and the log link and negative binomial distribution family was ultimately determined 391 

to best fit the distribution of outcome data. Regression results were converted to risk ratios.  392 

Both sets of models followed the same two-stage process. First, bivariate associations 393 

between environmental and behavioral risk factors were determined. Risk factors with p-values 394 

smaller than 0.30 in the bivariate testing were included in the multivariable analysis. We then 395 

followed a backwards selection process. The Akaike information criterion (AIC) score was noted 396 

for the model with all selected-in variables. Then variables were removed individually, and the 397 

AIC score was recorded. Variables retained in the final models were selected based upon the 398 

model with the lowest AIC score, adjusted for educational level of the caregiver and month of 399 

sampling.  400 
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Tables: 573 

Table 1: Variables representing Risk Factors for Food Contamination by Enteric 574 

Pathogens 575 

Variable of Interest Categories 

Food Type Milk 

 Porridge  

 Tea  

 Water 

  Other: Mashed potato, bread, beans 

Container Type Bottle/jug 

 Covered Container 

 Uncovered Container  

  

Fresh food 

Thermos 

Owning Animals Yes 

  No 

Keeping Animal Inside Yes  

  No 

Sharing Eating Containers with family Yes 

  No 
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Food Preparation   

Floor Type in Preparation Area Permeable Floor 

  Non-permeable Floor 

Flies Present in Preparation Area Yes 

  No 

Feces Present in Preparation Area Yes  

  No 

Handwash station in Preparation Area Yes 

  No 

Food Feeding   

Floor Type in Feeding Area Permeable Floor 

  Non-permeable Floor 

Flies Present in Feeding Area Yes 

 No 

Feces Present in Feeding Area Yes  

  No 

Handwash Station in Feeding Area Yes 

  No 

 576 

Table 2. Socio-economic demographic statistics for 127 caregivers and infant dyads in 577 

Kisumu 578 

  Category Number of Samples Percentage 

Infant Gender Male 58 45 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 11, 2018. ; https://doi.org/10.1101/493213doi: bioRxiv preprint 

https://doi.org/10.1101/493213
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 28 of 37 

 

  Female 69 54 

Marriage Status 

of Caregiver Married 108 85 

 

Single 17 13 

  Divorced 2 2 

Education 

Level of 

Caregiver Some Primary 27 21 

 

Complete Primary 35 28 

 

Some Secondary 27 21 

  Complete Secondary 38 30 

Occupation Agriculture 1 1 

 

Domestic Service 8 6 

 

Not Employed 60 47 

 

Managerial 9 7 

 

Sales and Service 33 26 

 

Other  6 4 

  Missing 10 8 

Village A 34 27 

 

B 35 28 

 

C 24 19 

  D 34 27 

Infant Age 3-6 Months 30 23 
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  More than 6 Months 97 76 

 579 

Table 3: Food Contamination Risk Factor Statistics for households in Kisumu 580 

 

  

Categories 

Number of 

Samples Percentage 

Food Type Milk  20 16 

 

Porridge 81 64 

 

Non-milk or porridge 

combined 

26 20 

 

- Tea 7 6 

 

- Water  13 10 

  - Other
a
 6 5 

Container Type Bottle/feeding Bottle/Jug 53 42 

 covered 26 20 

 Fresh Food 13 10 

 Thermos 24 19 

 Uncovered 11 9 

Month of sampling Jan 77 59 

 March 30 23 

 May 20 15 

Owning Animals Yes 43 34 

 No 84 66 

Keeping Animals Inside Yes 78 61 
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 No 39 31 

 Missing Data 10 8 

Sharing Eating containers with 

Family Members 

Yes 43 34 

 No 84 66 

Food Preparation Area   

  Floor Type in Preparation Area Permeable Floor 26 21 

  Non-permeable Floor 101 80 

Flies in Preparation Area Yes 40 32 

 

No 77 61 

  Missing Data 10 8 

Animal Feces in Preparation Area Yes  10 8 

 

No 117 92 

Handwashing station in Preparation 

Area 

Yes 

26 21 

  No 101 80 

Feeding Area   

  Floor Type in Feeding Area Permeable Floor 22 17 

  Non-permeable Floor 105 83 

Flies Present in Feeding Area Yes 40 31 

 

No 77 61 

  Missing Data 10 8 

Animal Feces Present in Feeding Yes  10 8 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 11, 2018. ; https://doi.org/10.1101/493213doi: bioRxiv preprint 

https://doi.org/10.1101/493213
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 31 of 37 

 

Area 

  No 117 92 

Handwashing Station in Feeding 

Area 

Yes 

19 15 

  No 108 85 

a
 includes tea, bread, mashed potatoes, and beans. 581 

Table 4: Pathogen Presence by Month. 582 

 

Overall 

(Total=127) 

January (Total=77) March (Total=30) May (n=20) 

Number (Percentage) 

positive 

79 (62) 40 (52) 27 (90) 12 (60) 

Virus 

Adenovirus 40/41 15 (12) 3 (3) 10 (33) 2 (10) 

Adenovirus Hexon 6 (5) 1 (1) 3 (10) 2 (10) 

 Norovirus  9 (7) 4 (5) 3 (10) 2 (10) 

Sapovirus 1 (1) 1 (1) 0 (0) 0 (0.0) 

Bacteria 

    

EAEC 6 (5) 4 (5) 2 (7) 0 (0.0) 

EPEC 21 (17) 3 (4) 15 (50) 3 (15) 

ETEC 17 (13) 13 (17) 3 (10) 1 (5) 

EHEC 0157 21 (17) 0 (0) 21 (70) 0 (0.0) 

STEC 5 (4) 0 (0) 5 (17) 0 (0.0) 

EIEC/Shigella 7 (6) 4 (5) 3 (10) 0 (0.0) 
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Aeromonas 25 (20) 12 (16) 5 (17) 8 (40) 

B. Fragilis 1 (1) 0 (0) 0 (0) 1 (5) 

C. difficile 11 (9) 5 (7) 5 (17) 1 (5) 

Protozoa 

    

Cryptosporidium  spp. 13 (10) 10 (13) 2 (7) 1 (5) 

a
. No detection for Astrovirus, Rotavirus, Salmonella_enterica, H. pylori, Vibrio Cholerae, 583 

Vibrio parahaemolytic, Giardia lamblia, Cryptosporidium hominus, Cryptosporidium parvum, 584 

E. histolytica, A. Lumbricoides, N. americanus, S. Sterocoralis, T. trichiura 585 

 586 

Table 5: Bivariate and multivariable generalized linear mixed models of food 587 

contamination risk factors and enteric pathogen presence in infant weaning foods 588 

  

% 

positive 

within 

category 

(Total N 

in the  

category) 

Bivariate RR (95% 

CI) 

P 

Value 

Multivariable RR (95% 

CI) 

P 

Value 

Food 

Porridge 56 (81) Ref Ref Ref Ref 

Milk 95 (20) 14.4 (1.78-116.1) 0.01 18.0 (1.85-175.6) 0.01 

Non-milk/porridge 58 (26) 0.79 (0.28-2.17) 0.65 1.00 (0.33-1.12) 1 

Container Type 
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Covered 77 (26) 3.36 (0.57-19.9) 0.18     

Thermos 75 (24) 6.51 (1.10-38.6) 0.04     

Bottle/Feeder/Jug 51 (53) 2.50 (0.47-13.4) 0.28     

Uncovered 55 (11) Ref Ref     

Fresh 62 (13) 2.21 (0.32-15.0) 0.42     

Owning Animals 

Yes 62 (84) 1.08 (0.47-2.49) 0.85     

No 63 (43) Ref Ref     

Keeping Animals Inside 

Yes 59 (78) 0.74 (0.30-1.84) 0.51     

No 67 (39) Ref Ref     

Missing 70 (10) None None     

Sharing Containers 

Yes 51 (43) 0.39 (0.16-0.92) 0.03     

No 68 (84) Ref Ref     

Floor Permeability in Preparation Area 

Permeable 73 (26) 1.45 (0.50-4.25) 0.5     

Nonpermeable 59 (101) Ref Ref     

Flies in Preparation Area 

Yes 60 (40) 0.90 (0.36-2.21) 0.81     

No 62 (77) Ref Ref     

Feces in Preparation Area 

Yes 30 (10) 0.21 (0.04-1.00) 0.05 0.14 (0.02-0.90) 0.04 
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No 65 (117) Ref Ref Ref Ref 

Handwash Station in Preparation Area 

Yes 69 (26) 1.58 (0.57-4.42) 0.38     

No 60 (101) Ref Ref     

Floor Permeability in Feeding Area 

Permeable 73 (22) 1.70 (0.55-5.25) 0.36     

Nonpermeable 60 (105) Ref Ref     

Flies in Feeding Area 

Yes 54 (11) 0.90 (0.41-1.98) 0.81     

No 62 (106) Ref Ref     

Missing 70 (10)         

Feces in Feeding Area 

Yes 60 (10) 1.23 (0.31-4.90) 0.76     

No 62 (117) Ref Ref     

Handwash Station in Feeding Area 

Yes 68 (19) 1.70 (0.54-5.28) 0.36     

No 61 (108) Ref Ref     

a
. Risk Ratio (RR); Confidence Interval (CI); Reference (Ref). 589 

 590 

Table 6: Bivariate and multivariable generalized linear mixed models of food 591 

contamination risk factors and enteric pathogen diversity in infant weaning foods. 592 

  Median 

(Range) 

Bivariate RR 

(95% CI) 

P  Multivariable 

RR (95% CI) 

P  
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pathogen 

types 

Food   

Porridge 1 (5) Ref Ref Ref Ref 

Milk 3 (9) 2.35 (1.67-3.29) <0.001 2.35 (1.67-3.29) <0.001 

Non-

milk/porridge 

1 (5) 0.76 (0.50-1.12) 0.21 0.76 (0.50-1.12) 0.21 

Container Type 

Covered 2.5 (9) 1.67 (0.92-3.00) 0.09     

Thermos 1 (5) 1.59 (0.82-3.07) 0.17     

Bottle/Feeder/Jug 1 (4) 1.41 (0.74-2.68) 0.29     

Fresh 1 (3) 0.93 (0.43-2.03) 0.86     

Uncovered 2 (5) Ref Ref     

Owning Animals 

Yes 1 (9) 1.29 (0.94-1.78) 0.12     

No 1 (5) Ref Ref     

Keeping Animals Inside 

Yes 1 (9) 1.09 (0.76-1.57) 0.62     

No 1 (5) Ref Ref     

Missing Missing Missing (Missing)       

Sharing Containers 

Yes 1 (9) 0.66 (0.46-0.96) 0.03     

No 1 (5) Ref Ref     
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Floor Permeability in Preparation Area 

Permeable 2 (5) 0.95 (0.63-1.42) 0.8     

Non-permeable 1 (9) Ref Ref     

Flies in Preparation Area 

Yes 1 (5) 0.93 (0.64-1.35) 0.7     

No 1 (9) Ref Ref     

Missing Missing Missing (Missing)       

Feces in Preparation Area 

Yes 1 (4) 0.68 (0.33-1.41) 0.3     

No 1 (9) Ref Ref     

Handwash Station in Preparation Area 

Yes 1.5 (4) 1.29 (0.88-1.91) 0.19     

No 1 (9) Ref Ref     

Floor Permeability in Feeding Area 

Permeable 2 (5) 0.99 (0.64-1.51) 0.96     

Non-permeable 1 (9) Ref Ref     

Flies in Feeding Area 

Yes 1 (9) 1.13 (0.73-1.75) 0.58     

No 1 (5) Ref Ref     

Missing Missing  Missing (Missing)       

Feces in Feeding Area 

Yes 1 (4) 1.31 (0.70-2.43) 0.39     

No 1 (9) Ref Ref     
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Handwash Station in Feeding Area 

Yes 1 (5) 1.27 (0.80-2.00) 0.32     

No 1 (9) Ref Ref     

a
.Risk Ratio (RR); Confidence Interval (CI); Reference (Ref). 593 

 594 

Supplementary Materials:  595 

Table S1: Taqman Array Card Primer and Probes.  596 

Table S2: MS2 Ct Values Across Food Type. 597 

 598 

 599 

 600 
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