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Abstract 
 

A spatially and temporally heterogeneous environment may lead to unexpected population dynamics, 

and knowledge still is needed on which of the local environment properties favour population 

maintenance at larger scale. As regards pathogen vectors, such as tsetse flies transmitting human and 

animal African trypanosomosis, such a knowledge is crucial for proposing relevant management 

strategy. We developed an original mechanistic spatio-temporal model of tsetse fly population 

dynamics, accounting for combined effects of spatial complexity, density-dependence, and 

temperature on the age-structured population, and parametrized with field and laboratory data. We 

confirmed the strong impact of temperature and adult mortality on tsetse populations. We showed 

that patches with the lowest mean temperatures and lowest variations act as refuges when adult 

mortality is homogeneously increased. Our results highlighted the importance of baseline data 

collection to characterize the targeted ecosystem before any control measure is implemented to 

maximize its efficiency. 
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1. Introduction 1 

Environmental spatial heterogeneity is a key driver of population dynamics (Tilman & Kareiva 1997; 2 

Vinatier et al. 2011), inducing movements from source to sink patches possibly enhancing population 3 

persistence in unsuitable patches (Holt 1985; Pulliam 1988). In addition, environmental suitability 4 

varies over time both at local scale, due to microclimate variations as related to vegetation growth 5 

(Keppel et al. 2017), and at large scale, due to a seasonal occurrence of unfavourable periods. 6 

Confounding the role of spatial and temporal environmental heterogeneity potentially gives rise to 7 

erroneous predictions of ecological processes (Clark 2005). However, relating such a complex time- 8 

and space-varying habitat with population dynamics still is a challenge in ecology (Sutherland et al. 9 

2013; Crone 2016; Griffith et al. 2016). Therefore, illustrative examples about the complex interplay 10 

between spatio-temporal environmental variability and population dynamics are welcome to feed 11 

theory and assess which patch properties (co)contribute to define sources and sinks in heterogeneous 12 

environments.  13 

This is particularly true when it comes to controlling infectious diseases, given that vector-borne 14 

disease dynamics is largely determined by those of vector populations (Hartemink et al. 2015). First, 15 

spatial heterogeneity is expected to favour vector persistence thanks to the rescue effect, especially if 16 

control is not area-wide, i.e. targeting an entire insect pest population within a circumscribed area 17 

(Reichard 2002; Hendrichs et al. 2007). Second, such populations and associated pathogens face 18 

seasonal variations of habitat suitability (Charron et al. 2013). Environmental suitability varying in 19 

space and time could induce unexpected population dynamics, potentially impairing its management, 20 

whereas control strategies are nonetheless often elaborated without considering local environmental 21 

specificities. 22 

Tsetse flies (Glossina spp.) are vectors of African trypanosomes, widely recognized as a major 23 

pathological constraint for efficient livestock species and agricultural development in sub-Saharan 24 

Africa (Alsan 2015). Trypanosoma spp. parasites both cause Human African Trypanosomosis and 25 

African Animal Trypanosomosis. Widely distributed, they occur in 38 countries and infest 10 million 26 
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km2 (Vreysen et al. 2013), with over 60 million people continuously exposed to the risk of infection 27 

of this neurological, potentially lethal disease, mainly in remote rural areas with limited access to 28 

health services. Besides, farms in tsetse-infested areas suffer a 20% to 40% loss in livestock 29 

productivity, adding up to an estimated $4500 million loss annually for producers and consumers in 30 

sub-Saharan Africa (Budd 1999). Among the 31 species and subspecies known of tsetse flies, a third 31 

is of economic (agricultural and veterinary) and sanitary importance (Solano et al. 2010a). Efforts to 32 

manage the vector and the disease in Africa are on-going for decades but largely fail to create 33 

sustainable tsetse free areas, resulting in only a reduction of less than 2% of tsetse distribution 34 

(Allsopp 2001; Bouyer et al. 2013a). Although tsetse flies turned out to be extremely complex species, 35 

their very low rate of reproduction would make them a relevant target to eradicate, making crucial to 36 

better apprehend their spatio-temporal population dynamics (Peck & Bouyer 2012). 37 

Mathematical models have proved to be relevant tools in ecology, to better understand the dynamics 38 

of populations (Hasting 2012) and to predict such dynamics under modified conditions (Evans et al. 39 

2012). Process-based models incorporate at minimal costs sparse and heterogeneous knowledge from 40 

various areas, species, and fields of expertise. Simulations are complementary to field observations 41 

and experiments (Restif et al. 2012), enabling the fast acquisition of quantitative predictions which 42 

can in turn emphasize the need for further biological investigations. Moreover, the range of 43 

behaviours of complex systems can be scanned using mechanistic models, and scenarios are tested 44 

easily (Cailly et al. 2012). Provided hypotheses and limits are clearly stated (Getz et al. 2018), models 45 

can guide decision-making (Sutherland & Freckleton 2012). 46 

As regards tsetse biology and population dynamics, entomologists quickly realized how useful 47 

models could be (Rogers 1988, 1990; and more recently: Vale & Torr 2005; Lin et al. 2015), and 48 

encouraged their use when designing management decisions (Hargrove 2003; Childs 2011; Meyer et 49 

al. 2018). However, most models have failed to predict the persistence of target populations leading 50 

to misleading guidelines for control programs (Peck & Bouyer 2012; Bouyer et al. 2013b). Most of 51 

these programs were not implemented following area-wide principles (Klassen 2005) and their failure 52 
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could be imputed to population resurgence in non-eradicated patches or re-invasion of the targeted 53 

zone by neighbouring populations (Meyer et al. 2016; Lord et al. 2017). However, it is still unclear 54 

what the relevant patch properties are and how they combine to define sources and sinks in a hostile 55 

environment created by eradication efforts. To address such an issue, the spatial complexity of the 56 

environment has to be accounted for. While omitted in most models until recently, it has been shown 57 

to considerably influence predictions once incorporated (Peck 2012; Barclay & Vreysen 2013; Lord 58 

et al. 2017). Indeed, population dynamics is expected to vary locally among patches of variable 59 

suitability, possibly affecting population dynamics at large metapopulation scale. To better assess 60 

how large scale tsetse fly population dynamics are affected by local dynamics, there is a need for an 61 

integrated spatio-temporal model thoroughly evaluated against field and experimental data, and fed 62 

by environmental data to account for landscape heterogeneity. 63 

To assess if spatial and temporal environmental heterogeneity drives tsetse fly population dynamics 64 

at large scale, we developed an original mechanistic spatio-temporal model of tsetse fly population 65 

dynamics and incorporated environmental heterogeneity through a data-driven approach. The model 66 

was applied to Glossina palpalis gambiensis in the Niayes (Senegal), a region with an ongoing 67 

eradication project (Dicko et al. 2014). In this area, less than 4% of the habitat is suitable (Bouyer et 68 

al. 2010), and tsetse flies harbour a metapopulation structure (Solano et al. 2010b). This knowledge 69 

was incorporated in the model, accounting for combined effects of spatial complexity, density-70 

dependence, and temperature on the age-structured population. 71 

2. Material and methods 72 

Key knowledge on tsetse biology 73 

Meteorological variables influence the abundance and spatial distribution of arthropod disease 74 

vectors (Hay et al. 1996). For tsetse flies, effect magnitude depends on species (Rogers & Randolph 75 

1991; Rogers et al. 1996; Hargrove 2001), but average temperature is the most influent 76 
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meteorological variable on life cycle (Hargrove 2004). However, its influence compared to or 77 

combined with demographic processes is barely known. 78 

The tsetse fly is adenotrophic viviparous: the egg hatches in the female and the larva is nourished by 79 

dedicated organs until larviposition. A temperature decrease lengthens the time between 80 

larvipositions (Harley 1968). Similarly, the colder it gets in breeding sites, the longer the pupa 81 

development (Glasgow 1963; Phelps & Burrows 1969a,b). After pupa emergence, the newly emerged 82 

fly (teneral) takes its first blood meal to strengthen its musculature and reproduce. The first oocyte 83 

maturation into pupa takes around 18 days, making the first larviposition longer than subsequent ones 84 

(10 days) depending on species and temperature (Hargrove 2004). 85 

Extreme temperatures, cold or warm, increase fly mortality (Hargrove 2001). Mortality, related to 86 

predation and feeding success, is density-dependent (Rogers & Randolph 1984) and age-dependent 87 

(Hargrove 1990), with remarkably high losses in tenerals partly due to starvation risk (Phelps & 88 

Clarke 1974; Hargrove 2004). Learning capacities of older flies make them return on their first host, 89 

increasing their hunting efficiency with age (Bouyer et al. 2007). 90 

Tsetse flies are classified into three groups of different behaviours and distributions: forest (subgenus 91 

Fusca), savannah (subgenus Morsitans), and riverine flies (subgenus Palpalis). Most of previous 92 

model concerned Glossina pallidipes and G. morsitans, both of the savannah group. We focused on 93 

G. p. gambiensis, a riverine fly living in forest galleries and riparian thickets (Bouyer et al. 2005). 94 

Due to habitat characteristics, this species is known to mostly disperse in one dimension (along 95 

rivers). However, climate changes induce the disappearance of rivers and associated vegetation as 96 

evidenced in our study area (Niayes, Senegal, Fig. 1). G. p. gambiensis adapted to patchy vegetation 97 

mainly associated to human watering activities (Bouyer et al. 2010), dispersing in two dimensions. 98 

Furthermore, isolated populations in fragmented habitats are preferential targets for area-wide 99 

integrated pest management programs (Hendrichs et al. 2007; Bouyer et al. 2015). Hence, our case 100 

study is of broad relevance for better understanding and predicting tsetse fly spatio-temporal 101 
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population dynamics in rapidly changing ecosystems that are gradually becoming the norm (Guerrini 102 

et al. 2008). 103 

Data on tsetse biology 104 

Variations in mortality and fecundity with temperature were measured for the studied strain under 105 

experimental conditions (Pagabeleguem et al. 2016). We used data on the first larval period (time 106 

between emergence and first pupa production) and on subsequent inter-larval periods (time between 107 

reproductive cycles). As the colony was maintained at 24°C with only temperatures above 24°C tested 108 

to assess the maximum critical temperature for flies, most data used to estimate female mortality were 109 

obtained at 24°C and none at a lower temperature. In addition, the effect of temperature on G. p. 110 

gambiensis pupal duration was measured under experimental conditions (Centre International de 111 

Recherche-Développement sur l’Elevage en zones Subhumides, CIRDES, Bobo-Dioulasso, Burkina 112 

Faso, 2009). One hundred and twenty 20-day old pupae were hold in climate controlled rooms until 113 

emergence. The experiment was replicated three times for each temperature tested (Table S1). 114 

Dispersing abilities of G. p. gambiensis were assessed from release-recapture data of marked sterile 115 

males (Oct. 2010 to Dec. 2012; Pagabeleguem 2012). Flies were mass-reared in CIRDES Burkina 116 

Faso and shipped as irradiated pupae to Senegal (Pagabeleguem et al. 2015). Flies were released twice 117 

a month in four locations (Parc de Hann in Dakar, Diacksaw Peul, Pout, and Kayar; Fig. 1). Two 118 

release points were selected per location (in suitable vs. unsuitable habitats). Released flies were 119 

trapped using Vavoua traps (Laveissière & Grébaut 1990) up to 2kms from release points. Distance 120 

between traps varied between 100m and 300m. Traps were set in the morning before 9:00 and 121 

collected in the afternoon after 16:00, every 3 days. The monitoring of a release stopped when less 122 

than 2 marked males were recaptured. 123 

In another study, natural abortion rate was monitored in Hann, Diacksaw, Sebikotane, and Pout (Fig. 124 

1). Ten traps per site were deployed monthly from March 2008 to February 2009, and then every 125 

three months until September 2010 (Hann, Diacksaw) or December 2011 (Pout, Sebikotane). Flies 126 

were collected at least once a day. Fresh flies were dissected to estimate their ovarian sequence. This 127 
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female dataset was used to calculate the population age structure, to be compared to simulation results 128 

for partial validation. 129 

Environmental data 130 

The spatio-temporal heterogeneity of the environment was realistically represented using an original 131 

data-driven approach. The environmental carrying capacity and the local daily temperatures were 132 

incorporated in the model. 133 

The carrying capacity was defined as the maximum sustainable number of individuals for a given 134 

area and was estimated as (Eq. 1): 135 

𝑘 =
𝑆𝐼×𝐴𝐷𝑇

𝜎
 (Eq. 1) 136 

with SI the suitability index, estimated with a species distribution model (Dicko et al. 2014) based on 137 

the maximum entropy (Maxent) (Supporting Information 2.1), σ the trap efficiency, i.e. the 138 

probability that a trap catches a fly within 1km² within a day (Barclay and Hargrove 2005), and ADT 139 

the apparent density of flies per trap per day (Dicko et al. 2015). All available data from catches 140 

obtained between 2007 and 2010 in the Niayes before the start of the eradication campaign were used 141 

to estimate local carrying capacities (Supporting Information 2.1). 142 

Air temperatures measured in weather stations are not those experienced by flies in resting places. 143 

Indeed, flies prefer microenvironments that are 2-6°C lower than the ambient temperature (Hargrove 144 

& Coates 1990). In addition, temperature largely varies from the centre of a gallery forest towards its 145 

edges (Bouyer 2006). Therefore, micro-climate and approximated local temperatures truly perceived 146 

by tsetse flies were explicitly modelled using input data from weather stations transformed using a 147 

spatio-temporal geostatistical model (Kilibarda et al. 2014). Available temperature data recorded in 148 

selected suitable patches were used to correct the bias present in moderate resolution imaging 149 

spectroradiometer (MODIS) Land-Surface Temperature (macro-climate; Supporting Information 150 

2.2). High resolution macro-climate data were available only for 2011. Approximated temperatures 151 
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were used as model inputs in a zone known as suitable for tsetse to check if the simulated population 152 

persisted as expected. 153 

 

Figure 1. Local and general tsetse fly population dynamics applied to the Niayes in Senegal. (a) 

within-cell model diagram of tsetse fly populations dynamics (time unit is a day). All transitions 

between stages except P to T triggers the birth of a new pupa P1. Transitions occur at a development 

rate δS for stage S according to temperature θt,c at time t in cell c, giving rise daily to a minimum jump 

of 𝑙 states from each state i of stage S, with (1-q)St,c,i individuals going from state 𝑆𝑡,𝑐,𝑖 to state 

𝑆𝑡+1,𝑐,𝑖+𝑙 and 𝑝𝑆𝑡+1,𝑐,𝑖 individuals going to 𝑆𝑡+1,𝑐,𝑖+𝑙+1. If 𝑖 + 𝑙 > nS (respectively 𝑖 + 𝑙 + 1 > nS), then 

concerned individuals go to the next stage. Stage S ∈ {P, T, Fx, M}, parity x ∈ {1, 2, 3, 4+}. (b) Map 

of Senegal identifying areas providing field data and localizing the 30x30 simulated area, highlighting 

the spatial heterogeneity in local carrying capacities kc (inbox, scale in number of individuals). 

A mechanistic spatio-temporal model of tsetse fly population dynamics 154 

A mechanistic and deterministic compartmental model was developed to predict the spatio-temporal 155 

tsetse fly population dynamics accounting for environmental heterogeneity and including density-156 

dependence. Individuals were categorized into pupae (P), without differentiating males and females, 157 
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tenerals (T, immature nulliparous females), and parous females with four stages (F1, F2, F3, F4+; Fig. 158 

1a) in agreement with ovarian dissection which provides accurate information about the first four 159 

parities (Hargrove & Ackley 2015). Adult males (M) were not considered limiting for breeding. They 160 

could mate from the age of 6 days, regardless of temperature, after which they were only subject to 161 

mortality. They played a role in density-dependent processes. The environment was modelled using 162 

a grid (cell resolution: 250m x 250m; study area: 30 x 30 cells; Fig. 1b). The model was developed 163 

in Python as a discrete-time model with a one-day time step (Supporting Information 6). 164 

 165 

Within-cell dynamics - The population size of life stage S at time t in cell c decreased with mortality, 166 

following a negative exponential model of instantaneous rate 𝜇𝑆,𝑡,𝑐 (Eq. 2). Considering the lack of 167 

data on pupa mortality, we used a constant rate (Eq. 3) of 0.01 day-1 (Childs 2011). For adults, the 168 

log of mortality rates increased linearly with temperature after 24°C (Hargrove 2004). Below this 169 

threshold, and for the range of temperatures observed in the field, the literature and the lack of data 170 

suggested a constant mortality rate (Eq. 4). Age-dependence was featured by setting teneral mortality 171 

to twice that of mature females (Eq. 5). Density-dependence occurred when the adult population 172 

exceeded the cell carrying capacity (Eq. 6-7, Hargrove 2004). 173 

𝑆𝑡+𝛥𝑡,𝑐 = 𝑆𝑡,𝑐𝑒
−𝜇𝑆,𝑡,𝑐𝛥𝑡, with stage S ∈ {P, T, Fx, M}, parity x ∈ {1, 2, 3, 4+}, ∆t = 1 (Eq. 2) 174 

𝜇𝑃 = 𝑚𝑃 (Eq. 3) 175 

𝜇𝑋,𝑡,𝑐 = {
µ𝑋,𝑡,𝑐(𝜃𝑡,𝑐 = 24°𝐶), 𝑖𝑓𝜃𝑡,𝑐 ≤ 24°𝐶

µ𝑋,𝑡,𝑐(𝜃𝑡,𝑐), 𝑖𝑓𝜃𝑡,𝑐 > 24°𝐶
, X ∈ {T, F, M} (Eq. 4) 176 

µ𝑇,𝑡,𝑐 = 2µ𝐹,𝑡,𝑐 (Eq. 5) 177 

µ𝑋,𝑡,𝑐 = 𝛽𝑡,𝑐𝑒
𝑚1,𝑋𝜃𝑡,𝑐+𝑚2,𝑋, X ∈ {F, M} (Eq. 6) 178 

𝛽𝑡,𝑐 = {
1, 𝑖𝑓

𝐴𝑡,𝑐

𝑘𝑐
≤ 1

𝐴𝑡,𝑐

𝑘𝑐
, 𝑖𝑓

𝐴𝑡,𝑐

𝑘𝑐
> 1

, with 𝐴𝑡,𝑐 = 𝑇𝑡,𝑐 + ∑ 𝐹𝑖,𝑡,𝑐
4
𝑖=1 +𝑀𝑡,𝑐 (Eq. 7) 179 
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In addition, individuals evolved within and between stages as a function of temperature. Pupa 180 

development function 𝛿𝑃,𝑡,𝑐 was fitted on data. For adults and tenerals, consistency of experimental 181 

data on the target species was checked against published equations (Hargrove 2004; Eq. 8; Fig. 2): 182 

𝛿𝑋,𝑡,𝑐 = 𝑑1,𝑋(𝜃𝑡,𝑐 − 24) + 𝑑2,𝑋, X ∈ {T, F} (Eq. 8) 183 

Each stage was discretized into 𝑛𝑆 states, 𝑛𝑆 being the longest duration in stage S obtained with its 184 

development rate 𝛿𝑆 calculated at the minimum temperature of the year 𝑚𝑖𝑛(𝜃𝑡,𝑐) (Fig. 1a). For 185 

higher temperatures, individuals made a leap forward in the development vector, the interval being 186 

determined by the integer part 𝑙 of ∆ (Eq. 9, Fig. 1a). 187 

∆𝑆,𝑡,𝑐= 𝛿𝑆,𝑡,𝑐(𝜃𝑡,𝑐)𝑛𝑆 (Eq. 9) 188 

To avoid discretization artefacts, individuals were proportionally divided into two successive states 189 

according to the decimal part q of ∆ (Fig. 1a). Individuals who reached state 𝑛𝑆 evolved to the next 190 

stage, a pupa being produced if teneral or adult females were concerned. After the fourth parity, 191 

females looped back to the start of F4+. 192 

 193 

Between-cell dynamics - An original dispersal pattern was designed favouring suitable over hostile 194 

habitats to align with species behaviour. The proportion 𝑝𝑡,𝑐 of flies leaving cell 𝑐 at time t was 195 

controlled by a sigmoidal density-dependent dispersal rate (Lloyds-Smith, 2010), adapted for 196 

individuals competing to access resources (Rogers & Randolph 1984) (Eq. 10):  197 

𝑝𝑡,𝑐 =
1

1+𝑒
−𝑔(

𝐴𝑡,𝑐
𝑘𝑐

−1)
 (Eq. 10) 198 

with kc the carrying capacity in cell c, At,c the number of adults in cell c at time t, and g a shape 199 

parameter set to 10 meaning that 𝑝𝑡,𝑐 {

≈ 0, 𝑖𝑓𝐴𝑡,𝑐 < 0.5𝑘𝑐
≈ 1, 𝑖𝑓𝐴𝑡,𝑐 > 1.5𝑘𝑐
0.5, 𝑖𝑓𝐴𝑡,𝑐 = 𝑘𝑐

 (Fig. S1).  200 

The spatial distribution of dispersing flies from cell c to neighbouring cells 𝑃𝑟𝑜𝑏𝑐→𝑖∈{𝑣} was set by 201 

the relative attractiveness of neighbouring cells 𝑎𝑡,𝑖∈{𝑣} (Eq. 11-12). This attractiveness was designed 202 

to favour the emptiest cells (𝐴𝑡,𝑖 ≪ 𝑘𝑖) and cells of greatest ki if equal At,i. An extended Moore 203 
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neighbourhood of range 𝑟 was used: flies dispersed from a cell to its (2𝑟 + 1)² neighbours (v), 204 

including the cell itself and diagonals. Parameter 𝑟 is the maximum distance reached daily, in number 205 

of cells, rather than the effective distance covered per fly per day, as the trajectory is not linear. It was 206 

calibrated on data by looking at the average 
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑚)

𝑡𝑖𝑚𝑒(𝑑𝑎𝑦𝑠)
 between release and capture of marked flies 207 

(Fig. S2). 208 

𝑎𝑡,𝑖∈{𝑣} =

(1−𝑒

−𝑘𝑖
𝐴𝑡,𝑖)𝑘𝑖

𝑚𝑎𝑥(𝑘𝑖∈{𝑣})
 (Eq. 11) 209 

𝑃𝑟𝑜𝑏𝑐→𝑖∈{𝑣} =
𝑎𝑖

∑ 𝑎𝑗𝑗∈𝑣
 (Eq. 12) 210 

Model analysis 211 

The reference scenario was examined (parameter values provided in Table S2). The individual and 212 

joint effects of input variations on aggregated output variance (Table S3) were evaluated through a 213 

global sensitivity analysis. Population size and age structure were outputs of interest. As traps do not 214 

capture tenerals and old females as efficiently as females of intermediate parities (Sanders 1962), 215 

predicted age structure was compared with field data for 
𝐹𝑖=1,2,3

𝐹1+𝐹2+𝐹3
.  216 

A 3-year burn-in period was simulated starting with T0,c=M0,c=0.5kc (A0,c=kc), using reference 217 

parameter values. Then, parameter values of each of the tested scenarios were applied for three more 218 

years. Carrying capacities were spatially heterogeneous (Fig. 1b) but assumed constant over time. 219 

Perceived temperatures, estimated daily per cell for a year, were repeated between years. 220 

A variance-based global sensitivity analysis was performed using the Fourier Amplitude Sensitivity 221 

Testing (FAST) method (Saltelli et al. 2008). Mortality and development functions of each life stage 222 

were tuned with weighting coefficients. A common weight was applied to all adult mortalities (T, M, 223 

F1:4+) to preserve model hypotheses. A weighting coefficient also was applied to carrying capacities, 224 

thus regulating density-dependence magnitude. As the dispersal rate should remain in the range [0-225 

1], the shape parameter g was varied (Fig. S1). Parameters varied by ± 5% of their reference value. 226 
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The same range, when applied to temperature, changed the annual mean by more than 2°C, which 227 

was far greater than what was observed. Therefore, a variation of ±0.3°C was used, corresponding to 228 

the average deviation from the daily mean in the area (Fig. S4). First order and interaction sensitivity 229 

indices were calculated per parameter (Saltelli et al. 2008). 230 

Evaluation of control strategies 231 

A control strategy was mimicked by increasing adult mortality (from +2.5% to +100%) 232 

homogeneously in space, and assessed with respect to the female population (T+F1:4+) over time 233 

(every year for 5 years) and space. At the end of simulations, two ratios were computed : 234 

𝑇𝑡𝑚𝑎𝑥,𝑐+𝐹1:4+,𝑡𝑚𝑎𝑥,𝑐

∑ 𝑇𝑡𝑚𝑎𝑥,𝑐𝑐 +𝐹1:4+,𝑡𝑚𝑎𝑥,𝑐
 highlighted cells contributing the most to the female population in the area, while 235 

(𝑇𝑡𝑚𝑎𝑥,𝑐+𝐹1:4+,𝑡𝑚𝑎𝑥,𝑐)𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜
(𝑇𝑡𝑚𝑎𝑥,𝑐+𝐹1:4+,𝑡𝑚𝑎𝑥,𝑐)𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

 quantified the local impact of increased mortality compared to natural 236 

levels. The correlation between environmental variables and the spatial structure of the remaining 237 

population was assessed. 238 

3. Results 239 

New insights from biological data 240 

New equations were calibrated for temperature-dependent processes of the life cycle of tsetse flies 241 

combining published and new observed data (Fig. 2). The log-linear function for adult mortality 242 

(Table S2) differed from published ones for other species (Fig. 2a). Up to 24°C, female mortality rate 243 

was 0.013 day-1, then it grew exponentially to reach 0.023 day-1 at 32°C. Male mortality was higher 244 

than female one (Table S2, Fig. S3). 245 

Pupa emergence clearly followed a logistic equation when fitted on observed data, providing a new 246 

pattern compared to Hargrove’s equation (2004) (Fig 2b, Eq. 15, Table S4). 247 

𝛿𝑃,𝑡,𝑐 = (𝑑1,𝑃 +
𝑑2,𝑃−𝑑1,𝑃

1+𝑒

𝑑3,𝑃−𝜃𝑡,𝑐
𝑑4,𝑃

)

−1

 (Eq. 15) 248 
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Figure 2. Data (as dots) and predictions (as lines) fitted on new data (if relevant) and from literature 

for temperature-dependent processes of the model: (a) adult female daily mortality rate (in log-scale); 

(b) pupal duration (in days); (c) time to larviposition for tenerals (T, upper curve, triangles) and parous 

females (F, lower curve, squares). Data from Pagabeleguem et al. (2016) is shown in grey (the cross 

in (a) was considered an outlier). New data on G. p. gambiensis (from FAO/IPCL and CIRDES) is 

shown in purple, with the barycentre of mortality rate at 24°C highlighted as a white-filled diamond. 

Purple thick lines are the newly calibrated equations used in the population dynamics model. 

Predictions from Barclay’s equation (2011) is in cyan. Orange lines correspond to predictions from 

Hargrove’s equations (2004), with filled areas in (c) corresponding to prediction intervals. Equations 

for time to larviposition were not modified as only few new data was available, which is consistent 

with Hargrove’s equation. 

Mark-release-recapture data indicated a dispersal range r of one cell, the daily average distance 249 

proved to be less than 250m (Fig. S2). 250 

Finally, the spatial heterogeneity of carrying capacities was high, ranging from 7 to 6548 individuals 251 

(median: 145) per cell. On the contrary, spatial variations of local temperatures were small, the 252 

standard deviation over the grid never exceeding 0.67°C at any time step. 253 

Reference scenario analysis 254 

The reference scenario was closely in line with field observations made before the start of the Niayes’ 255 

control program (Fig. 3). Population dynamics was seasonal (Fig. 3b), and driven by temperature as 256 

expected (Fig. 3a). Female population (T+F1:4+) was stable across years with a growth rate of -0.75% 257 

the last simulation year. As observed (Fig. 3d), females between first and third larviposition 258 

(F1+F2+F3) were distributed on average for 40% in F1, 33% in F2, and the rest in F3 (Fig. 3c). The 259 

spatial variability of age structure was 3 to 4 times lower than its temporal variability. 260 
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Figure 3. Model predictions for the reference scenario: (a) average daily temperatures over three 

years (in °C); (b) total number of individuals per stage (P: pupae, T: tenerals, F: parous females) in 

the grid (56.25 km2) over three years of simulation; (c) female age structure (
𝐹𝑖=1,2,3

𝐹1+𝐹2+𝐹3
) during the last 

year of simulation; (d) observed female age structure (captures and dissection occurred from 2008 to 

2011 in the Niayes; results were averaged by month, all years and locations aggregated; grey filled 

areas are confidence intervals around the mean: 
±1.96×𝑠𝑑𝑚𝑜𝑛𝑡ℎ

√𝑛𝑚𝑜𝑛𝑡ℎ
, with sdmonth the standard deviation and 

nmonth the number of measures, i.e. the number of days in the month for simulations, the number of 

captures for data). 

 

Figure 4. Sensitivity analysis of the model: (a) effect on population size (teneral and adult females) 

of temperature variations (+5% from reference: dash dot, -5%: dashed) compared to ±5% variations 

in carrying capacities (grey filling); (b) results of the FAST sensitivity analysis with contribution to 

population size variance of model parameters (: temperature, µ{T,F,M}: adult mortality, X: 

development of stage X (with X in {F: adult females, T: tenerals, P: pupae}), k: carrying capacities, 

g: the shape parameter in the diffusion process; sensitivity indices for principal effect in grey and for 

first order interactions in black). All parameters were varied by ±5% from their reference value except 

temperature varying by ±0.3°C. 
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Temperature and mortality as key factors driving population size 261 

Model predictions other than age structure (Fig. S5) were highly sensitive to temperature (T) and 262 

adult mortality (µ{T,F,M}) variations, and moderately to teneral (T) and parous (F) female 263 

development variations (Table S4), while parameters related to pupae (µP, P), carrying capacities 264 

(k), and dispersal (g) did not contribute to output variance (Fig. 4, Fig. S6). A 5% variation in 265 

temperature lead to demographic explosion or extinction, substantially outweighing the effect of a 266 

similar variation in carrying capacities (Fig. 4a), reinforcing the need for considering reasonable 267 

temperature variations. Temperature and adult mortality explained 78% of population size variance 268 

(Fig. 4b). Development of tenerals and parous females added up to another 14.5% of explained 269 

variance. Unexpectedly, interactions between parameters were not important. 270 

Efficiency of control measures driven by environmental heterogeneity 271 

Increasing adult mortality at levels comparable to what can be obtained during control programs 272 

(Hargrove 2003) induced a quick population decline (Fig. 5). A 50% augmentation (i.e. a parous 273 

female daily mortality rate of 2.94 day-1 and a life expectancy of 51.5 days at 24°C) resulted in a 274 

90% decrease in the female population (T+F1:4+) in one year (Fig. 5a).  275 

Once reaching low local densities, new patterns emerged related to cell-specific properties. On the 276 

one hand, as expected, the spatial distribution of individuals was clearly linked to carrying 277 

capacities (Fig. 1 vs. Fig. 5b1-3). The greater the adult mortality, the more uneven was the spatial 278 

distribution with a progressive concentration of individuals in cells of highest carrying capacities. 279 

On the other hand, much more surprisingly, the increase in adult mortality had a heterogeneous 280 

impact at the cell level: the local population decrease varied spatially (Fig. 5c2-3) despite a spatially 281 

homogeneous increase in mortality, spatial heterogeneity increasing with the level of induced 282 

mortality (Fig. 5c2 vs. 5c3). 283 
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Figure 5. Impact of increasing adult mortality on population size in time and space. (a) relative 

decrease in female population size compared to the reference scenario while decreasing life 

expectancy at 24°C (corresponds to increases in adult mortality). Thick lines correspond to (1): no 

change, (2): +5% of adult mortality, (3): +60%. Spatial patterns during the last time step was assessed 

for these three scenarios (X from 1 to 3): (bx) cells contributing the most to female population over 

the study area in scenario X (
(𝑇𝑡𝑚𝑎𝑥,𝑐+𝐹1:4+,𝑡𝑚𝑎𝑥,𝑐)𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑋

(∑ 𝑇𝑡𝑚𝑎𝑥,𝑐𝑐 +𝐹1:4+,𝑡𝑚𝑎𝑥,𝑐)𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑋
) are in red; (cx) cells with the highest local 

impact of increased mortality in scenario x compared to the reference scenario 

(
(𝑇𝑡𝑚𝑎𝑥,𝑐+𝐹1:4+,𝑡𝑚𝑎𝑥,𝑐)𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑋
(𝑇𝑡𝑚𝑎𝑥,𝑐+𝐹1:4+,𝑡𝑚𝑎𝑥,𝑐)𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

) are in blue (log10 scale). 

To better understand this latter pattern, three local cell factors related to environmental 284 

heterogeneity were examined: carrying capacity, mean annual temperature, and standard deviation 285 

of annual temperature (Fig. 6). While the carrying capacity had no influence here (Fig. 6a), the local 286 

temperature largely contributed to explain the pattern (Fig. 6b-d). Both a decrease in the mean and 287 

standard deviation of the local annual temperature were associated with a decrease in the local 288 

impact of increasing adult mortality, despite the narrow ranges of variation in the mean (23.7°C to 289 

24.3°C) and standard deviation (1.98°C to 2.37°C). There was no correlation between these two 290 

temperature statistics (Fig. 6c-d). 291 
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Figure 6. Correlation between environmental variables and the local impact of increasing mortality 

by 60% (measured as 
(𝑇𝑡𝑚𝑎𝑥,𝑐+𝐹1:4+,𝑡𝑚𝑎𝑥,𝑐)𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜3
(𝑇𝑡𝑚𝑎𝑥,𝑐+𝐹1:4+,𝑡𝑚𝑎𝑥,𝑐)𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

): (a) local carrying capacity kc; (b) spatial 

representation of the annual standard deviation of local temperatures; (c) annual mean temperature; 

(d) annual standard deviation of temperature. In (a, c, d), the local impact of mortality is on the y-axis 

(log10 scale), the higher being the value, the smaller the impact. Each point corresponds to a cell of 

the simulated grid, point colour denoting in (a-b) for the annual standard deviation of local 

temperature (same colour bar as in (b)), while in (d) to the mean annual temperature of cells (specific 

colour bar). Correlation coefficient r² between axes is shown for (a, c, d). 

4. Discussion 292 

Environmental heterogeneity with respect to carrying capacity and temperature not only drives the 293 

temporal population dynamics of G. p. gambiensis at large scale, but also the spatial distribution of 294 

individuals and unexpectedly renders heterogeneous the impact of a homogeneous increase in adult 295 

mortality. Such a heterogeneous impact can be compensated during eradication campaigns by 296 

homogeneous induced sterility when sterile males are released by air and aggregate in the same sites 297 

than wild males (Vreysen et al. 2011), thus warranting a homogeneous sterile to wild ratio, as was 298 

observed in the eradication campaign against Glossina austeni on Unguja Island of Zanzibar. We 299 
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argue that control strategies should account for environmental heterogeneity to increase the chances 300 

of success, with emphasis on local areas of high suitability characterized by a high carrying capacity 301 

and on local refuges characterized by a cold local temperature within the relevant range for tsetse 302 

(23.7-24.0°C here) and a low local variability of temperature over the year (irrespective of carrying 303 

capacity). Refuges, highlighted in our study area despite a small surface suitable for tsetse, could 304 

jeopardize control efforts by providing areas from which recolonization may occur after control has 305 

stopped. 306 

In addition, temperature effect on population dynamics both at large and small local scales reinforces 307 

the need for investigating further the impact climate change could have on tsetse populations 308 

(Terblanche et al. 2008; Moore et al. 2012). It is unlikely that tsetse flies will cross the Sahara, but 309 

they could migrate to higher altitudes and invade trypanosoma-free zones, particularly in Eastern and 310 

Southern Africa where tsetse distribution is mainly governed by altitude (Solano et al. 2010a). Such 311 

population shifts will impact the density of cattle in either direction, which may in turn impact the 312 

distribution of wild fauna including lions (Carter et al. 2018). Populations previously isolated from 313 

one another could also merge, making developed and adopted control strategies challenging, and 314 

conversely, new isolated populations could appear, all the more as temperature is the first driver of 315 

landscape friction in tsetse (Bouyer et al. 2015). 316 

The mechanistic spatio-temporal model developed to predict G. p. gambiensis population dynamics 317 

and how these evolve when adult mortality is increased is original compared to already published 318 

models. First, it incorporated environmental heterogeneity through a data-driven approach, both 319 

accounting for variable temperatures and carrying capacities in space and time. Using realistic 320 

patterns instead of theoretical ones (Childs 2011), knowledge-driven ones (Barclay & Vreysen 2013), 321 

or aggregated ones assuming a binary occupancy (Lin et al. 2015) evidenced unexpected refuges. The 322 

proposed model can be applied to other areas with available data and a known metapopulation 323 

structure. Second, new field and laboratory data on mortality, development, and dispersal have been 324 

incorporated into the model. Predicted age structure was in very good agreement with field data, and 325 
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was robust in our simulations, barely impacted by parameter variations. Amplitude and duration of 326 

seasons are expected to be major drivers of parity distribution, which could not be assessed here as 327 

temperature data were available for only a year. Our results highlight the need for more biological 328 

studies to better infer mortality variations with temperature, as well as the crucial need for new 329 

methods to thoroughly estimate temperatures as perceived by individuals. Such a complementarity 330 

interplay between models, field observations, and laboratory experiments is fundamental to achieve 331 

trustworthy predictions. 332 

The fact that mortality has a stronger influence on population dynamics than reproduction is 333 

consistent with tsetse flies being specialists with a narrow niche. They are willing to avoid mortality 334 

at all costs (Pagabeleguem et al. 2016), where other species compensate for losses by boosting birth 335 

rates (Southwood et al. 1974). Glossina spp. have evolved towards an optimal utilization of energy 336 

and resources (Cody 1966), which makes them highly adapted to their ecological niche. Therefore, 337 

they are less likely to leave their habitat and expose themselves to other environments, which keeps 338 

the population at or near carrying capacity (Southwood et al. 1974). 339 

Efficient control methods can only be designed by considering a species ecological strategy 340 

(Southwood et al. 1974; Conway 1977). Fast action methods such as chemicals are better suited for 341 

species showing high reproductive rates, short generation times, along with broad food preferences 342 

and good dispersing abilities (Altieri et al. 1983). In contrast, pests reproducing at lower rates and 343 

having longer generation time but good competitive abilities would be more efficiently restrained 344 

with cultural control (e.g. insect pests), host resistance, and sterilization (Altieri et al. 1983). 345 

Nonetheless, such quite extreme characteristics should be considered in conjunction with species 346 

relationships within communities (Ehler & Miller 1978; Altieri et al. 1983). 347 

Traps, targets, and insecticide-treated livestock are control tactics that increase adult mortality, which 348 

can drastically reduce tsetse populations (Kagbadouno et al. 2011; Dicko et al. 2014; Percoma et al. 349 

2018). However, our results indicate also generation time as a contributing factor to population size 350 

variations. Such a factor can be indirectly modified using the sterile insect technique, which impair 351 
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reproduction (Dyck et al. 2005). Obtaining very low tsetse densities is not enough to reach eradication 352 

as was demonstrated recently by the failures of three eradication programs against G. p. gambiensis 353 

in north-western Ghana (Adam et al. 2013), Loos islands in Guinea (Kagbadouno et al. 2011), and 354 

the Mouhoun river in Burkina Faso (Percoma et al. 2018). In addition, in view of unexpected local 355 

refuges where increasing adult mortality is not as effective as in other areas, it becomes necessary to 356 

further assess the effect of combined and spatially targeted control measures to achieve eradication. 357 

Our model provides a relevant tool to evaluate such complex control strategies as it originally 358 

accounts simultaneously for density-dependent processes, spatial and temporal environmental 359 

heterogeneity, and all stages of tsetse lifecycle possibly targeted by control measures. Our framework 360 

could also be useful to identify where to focus stakeholders’ efforts to minimize impact of other 361 

specialist pests, such as the codling moth (Cydia pomonella) affecting apple and pear trees, and the 362 

sheep ked (Melophagus ovinus). Nevertheless, the importance of stochastic events when populations 363 

become very small must not be overlooked and these effects should be included in future 364 

developments. Our approach gives clues on how to trigger a drastic decline of the population. 365 

However, to predict the subsequent population dynamics at low densities and assess final steps of 366 

eradication strategies, a deterministic framework becomes irrelevant as it does not enable quantifying 367 

the probability of population extinction at local and large scales. 368 

Accounting for spatial heterogeneity is essential to better understand and predict tsetse population 369 

dynamics, as habitat fragmentation holds the key to population survival when conditions are globally 370 

hostile. However, parameters driving tsetse fly dispersal abilities did not structure their final 371 

distribution. Landscape ecology must be studied to reveal preferential target zones and identify 372 

patches that will need longitudinal surveillance. Optimal management strategies are therefore valid 373 

for a given species in a given habitat and should not be generalized without baseline data collection 374 

to characterize the ecosystem. 375 

To conclude, environmental carrying capacity largely explains the contribution of local source spots 376 

to tsetse population dynamics at a large scale, but unfavourable conditions progressively lead such 377 
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spots to disappear, refuges then being localized in zones with colder and less variable temperature 378 

where population decrease due to increasing adult mortality is reduced. Targeted areas for control 379 

should be chosen with caution when facing such a heterogeneous habitat. 380 
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