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Abstract

This paper examines the problem of diffeomorphic image mapping in the presence of
differing image intensity profiles and missing data. Our motivation comes from the
problem of aligning 3D brain MRI with 100 micron isotropic resolution, to histology
sections with 1 micron in plane resolution. Multiple stains, as well as damaged, folded,
or missing tissue are common in this situation. We overcome these challenges by
introducing two new concepts. Cross modality image matching is achieved by jointly
estimating polynomial transformations of the atlas intensity, together with pose and
deformation parameters. Missing data is accommodated via a multiple atlas selection
procedure where several atlases may be of homogeneous intensity and correspond to
“background” or “artifact”. The two concepts are combined within an Expectation
Maximization algorithm, where atlas selection posteriors and deformation parameters
are updated iteratively, and polynomial coefficients are computed in closed form. We
show results for 3D reconstruction of digital pathology and MRI in standard atlas
coordinates. In conjunction with convolutional neural networks, we quantify the 3D
density distribution of tauopathy throughout the medial temporal lobe of an
Alzheimer’s disease postmortem specimen.

Author summary

Our work in Alzheimer’s disease (AD) is attempting to connect histopathology at
autopsy and longitudinal clinical magnetic resonance imaging (MRI), combining the
strengths of each modality in a common coordinate system. We are bridging this gap by
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using post mortem high resolution MRI to reconstruct digital pathology in 3D. This
image registration problem is challenging because it combines images from different
modalities in the presence of missing tissue and artifacts. We overcome this challenge by
developing a new registration technique that simultaneously classifies each pixel as
“good data” / “missing tissue” / “artifact”, learns a contrast transformation between
modalities, and computes deformation parameters. We name this technique
“(D)eformable (R)egistration and (I)ntensity (T)ransformation with (M)issing (D)ata”,
pronounced as “Dr. It, M.D.”. In conjunction with convolutional neural networks, we
use this technique to map the three dimensional distribution of tau tangles in the
medial temporal lobe of an AD postmortem specimen.

Introduction 1

High throughput neuroinformatics is emerging in neuroscience [1, 2]. Atlas based image 2

analysis plays a key role, as it enables information encoded by millions of independent 3

voxel measurements to be reconstructed in ontologies of the roughly 100 evolutionarily 4

stable structures. At the 1 millimeter scale there are many atlases, including Tailarach 5

coordinates [3], Montreal Neurological Institute (MNI) [4], and Mori’s diffusion tensor 6

imaging (DTI) white matter atlases [5], which define the locations of neuroanatomical 7

structures as well as important structural and functional properties such as volume, 8

shape, blood oxygen-level dependent (BOLD) signals, etc. At micron and meso-scales 9

there are several atlases including Mori’s and Allen brain atlas [6, 7] with their 10

associated region and cell-types. 11

High-throughput image analysis relies on some form of dense brain mapping. At the 12

millimeter scale there have been several approaches to computational anatomy with 13

deformable templates [8–13], atlas estimation [14,15], and applications in white 14

matter [16] or even cardiac imaging [17,18] . Many of these algorithms have been 15

extended to micron scales, such as for CLARITY [19–21]. However, most of these 16

datasets and the methods used to analyze them are based on high quality clinical 17

images. At the frontier of neuroscience are images that are less controlled. In this work 18

we focus on digital pathology, where micron thick tissue slices are prone to damage and 19

subsets which are completely missing, and where a host of stains can result in a 20

multitude of different image intensities. To bring digital pathology to the era of high 21

throughput neuroinformatics, brain mapping algorithms need to be expanded to handle 22

missing data and multiple modalities with perhaps radically different contrast profiles. 23

The community has developed a host of techniques for addressing these situations 24

partially. Image masking allows algorithms to ignore missing or unreliable data, and 25

similarity functions such as normalized cross correlation [22,23] or mutual 26

information [24] allow mapping between different image contrasts to an extent. These 27

tools are available in standard software packages such as the Insight Toolkit (ITK) [25]. 28

However, modern image mapping techniques such as multi atlas [26] or Bayesian 29

segmentation [27] require not just similarity functions, but a complete generative model 30

that describes the likelihood of each observed image voxel. 31

In this work we develop a generative probabilistic model that accounts for differences 32

in contrast and missing or censored data. We use the random orbit model of 33

Computational Anatomy [9,28] in which the space of histological images is an orbit of 34

exemplar templates under smooth coordinate transformation, as well as transformation 35

of contrast. The models for coordinate transformations are taken from 36

diffeomorphometry [29,30]. We wish to accommodate differing contrasts associated to 37

different histological staining such tau, amyloid, myelin, and a variety of contrasts such 38

as Nissl and fluorescence at the meso- and micro-scale. To achieve this, we model the 39

space of contrasts manifest in the orbit of observed images as polynomial functions of 40
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the template. In the case of first order polynomials, this gives affine models which we 41

show reduce to the normalized cross-correlation cost function. Application of higher 42

order polynomials can describe non-monotone transformations which swap the order of 43

intensities. We name this mapping framework, “(D)eformable (R)egistration and 44

(I)ntensity (T)ransformation”, pronounced as “Dr. It”. 45

To accommodate effects such as folded or missing tissue, we include additional 46

homogeneous atlases, and model each pixel in an observed image as a realization of one 47

transformed atlas from this family. Pixels corresponding to missing tissue, data deletion, 48

or global censoring are interpreted predominantly via the “background only” atlas. 49

Pixels corresponding to anomalous intensities are interpreted predominantly via the 50

“artifact” atlas. The unknown atlas label at each pixel is interpreted as missing data, 51

and its conditional mean is estimated using the Expectation Maximization 52

algorithm [31]. The conditional mean is interpreted as the posterior probability of a 53

particular atlas in the multi atlas random orbit model. We name the version of our 54

algorithm that includes missing data “(D)eformable (R)egistration and (I)ntensity 55

(T)ransformation with (M)issing (D)ata”, pronounced as “Dr. It, M.D.”. 56

In this paper, our framework is studied using simulated examples, and those from 57

digital pathology and MRI. We apply these techniques to an important application in 58

Alzheimer’s disease (AD), computing the 3D density of tau neurofibrillary tangles, a key 59

pathologic feature of AD. Tangles are detected from histology images using 60

convolutional neural networks, registered to ex vivo MRI, and mapped to the standard 61

coordinates of the Mai Paxinos Voss atlas [32]. 62

Methods 63

The contrast transformation problem 64

Our generative model for the space of observables or target images builds upon the 65

deformable templates of [28,33]. Observed images are transformations of collections of 66

exemplars or atlas images I : X ⊂ R3 → RN , which may be single valued (N = 1) such 67

as a T1 MRI, or multi-valued such as red green blue (RGB, N = 3). The atlases 68

experience two kinds of transformations: deformations on the background space 69

ϕ : X → X, and transformations of the image intensity F : RN → RM . The mapping F 70

depends on imaging instrumentation and tissue properties. Considering N 6= M can 71

accommodate mappings between many different modalities. 72

We define the deformations of coordinates as diffeomorphisms, ϕ ∈ Diff , generated 73

using flows as in [9], ϕ = φ1, φ̇t = vt ◦ φt, t ∈ [0, 1], φ0 = id, vt the Eulerian vector fields 74

of the flow. The mapping of image intensity is defined parametrically, Fθ : RN → RM , 75

θ ∈ Θ unknown in some parameter set. In this work we consider F as polynomials with 76

Θ the set of coefficients. 77

The random imaging model takes the observable images J(x), x ∈ X as a
conditionally Gaussian random field having mean given by the transformed template,
and white noise variance σ2:

J(·) = Fθ(I ◦ ϕ−1(·)) + noise(·) .

The log-likelihood, as a function of the unknown parameters is

`(J ;ϕ, θ) =
1

2σ2
‖J − Fθ(I ◦ ϕ−1)‖2L2

. (1)

While the dimension of θ is finite, that of the diffeomorphism is infinite. We 78

therefore use penalized methods, introducing a Sobolev norm on the vector fields ‖vt‖2V 79

as a running penalty. We force v ∈ V to be a reproducing kernel Hilbert space with 80
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kernel K defined through the differential operator A : v ∈ V 7→ Av ∈ V ∗, V ∗ the 81

dual-space of smooth vector fields V . Then the norm written as generalized function 82

integration becomes 83

‖v‖2V =

∫
X

Av · vdx .

The penalized likelihood becomes for ϕ =
∫ 1

0
vt ◦ φtdt+ id, and σ2

R a regularization
parameter:

E(ϕ, θ) =
1

2σ2
R

∫ 1

0

∫
X

Avt · vtdxdt+
1

2σ2
‖J − Fθ(I ◦ ϕ−1)‖2L2

. (2)

To calculate the penalized maximum likelihood estimators we assume the mapping Fθ 84

differentiable with d
dθFθ an M ×B vector, B being the number of basis functions in our 85

polynomial. 86

Theorem 1. Minimizers of he penalized likelihood of (2) satisfy

Avt =
1

σ2
D
(
Fθ(I ◦ ϕ−1

t )
)T

(J(ϕ−1
1t )− Fθ(I ◦ ϕ−1

t ))|Dϕ−1
1t | (3a)∫

X

JT (x)
d

dθ
Fθ(I ◦ ϕ−1

1 (x))dx =

∫
X

Fθ(I ◦ ϕ−1
1 (x))T

d

dθ
Fθ(I ◦ ϕ−1

1 (x))dx (3b)

The first equation (3a) is the necessary condition for the stationary solution with
respect to the deformation controlled by the vector field, the original LDDMM equation
of Beg [34], where ϕ1t = ϕt ◦ϕ−1

1 is a mapping from time 1 to time t. The equation (3a)
is computed by application of the chain rule. Define for notational convenience
Ĩ
.
= I ◦ ϕ−1. First the derivative of E with respect to Fθ(Ĩ), second Fθ(Ĩ) with respect

to Ĩ, and third Ĩ with respect to the deformation field. The first and second steps are
combined as

∂E

∂Ĩ
=

1

σ2
(Fθ(Ĩ)− J)TDFθ(Ĩ) (4)

The third step is discussed in [34]. This equation can be solved using a standard 87

gradient descent approach. The equation (3b) is the necessary condition with respect to 88

the contrast or photometric parameters. Here we consider Fθ as a linear combination of 89

B polynomial basis functions, and so (3b) is a linear system solved exactly at each 90

iteration of gradient descent. 91

Minimizing over both θ and transformation parameters means the result of
registration will be independent of the family of transformations indexed by θ.
Alternatively, we can consider minimizing over θ first, leading to an invariant cost
function

Costinvariant to Fθ∀θ∈Θ(I) = min
θ

1

2σ2
‖Fθ(I)− J‖2L2

Corollary (Unknown Affine Transformations Correspond to Normalized Cross 92

Correlation Squared). When F is an affine map from R→ R, our registration results 93

will be invariant to affine transformations of our atlas, and (3b) can be solved 94

analytically. For N = M = 1 and a, b ∈ R, Fa,b(t) = at+ b, minimizing 95

1
2σ2 ‖aI ◦ ϕ−1 + b− J‖2L2

is equivalent to maximizing the normalized cross correlation 96

squared of I ◦ ϕ−1 with J . 97

Proof. For any fixed ϕ, optimal values of a, b can be found via a standard linear least 98

squares estimation result, which gives a = Cov(Ĩ , J)/Var(Ĩ) and b = J̄ − a ¯̃I where ·̄ 99
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corresponds to the expected value and expectation is taken by averaging over all voxels 100

in the images. 101

Plugging these into our L2 cost gives

1

2σ2

∫
X

∣∣∣∣∣Cov(Ĩ , J)

Var(Ĩ)
Ĩ(x) + J̄ − Cov(Ĩ , J)

Var(Ĩ)

¯̃I − J(x)

∣∣∣∣∣
2

dx

= − 1

σ2
|X|Cov2(Ĩ , J)

Var(Ĩ)
+

1

2σ2
|X|Var(J)

= − 1

σ2
|X|Var(J) NCC2(Ĩ , J) +

1

2σ2
|X|Var(J)

Up to constants that do not depend on the deformation, minimizing sum of square error 102

with an unknown affine intensity transformation is equivalent to maximizing normalized 103

cross correlation (NCC) squared. 104

105

The Missing Data Problem 106

We approach the problem of missing or censored data using the Expectation
Maximization algorithm [31]. We discretize our problem by associating to the images
the lattice of sites {∆xi, i = 1, . . . , S} which are a disjoint partition (voxels)
X = ∪Si=1∆xi. Each atlas type A ∈ A = {a1, a2, . . . , } includes a deformation given by

ϕA =
∫ 1

0
vAt ◦ φAt dt+ id, so the discrete values can be written as

ĨAi =

∫
∆xi

IA ◦ ϕ−1
A (y)dy .

The observable random field Ji, i = 1, . . . , S, is conditionally Gaussian with constant 107

variances σ2
A and mean fields ĨAi determined by the atlas type A. In practice, we choose 108

Ia1 as our atlas image, and Iai for i 6= 1 to be constant images. Since they are constant, 109

we need not optimize over the deformations vait for i > 0. 110

Associate to the measured incomplete-data Y = {Ji, i = 1, 2, . . . , S} the
complete-data X = {(Ji, Ai), i = 1, . . . , S}, an augmentation with labels determining the
atlas types Ai ∈ A = {a1, a2, . . . , }. Model Ji as a Gaussian random variable with mean
ĨAii and variance σ2

Ai
. The complete-data penalized log-likelihood becomes:

log f(X; v) =
∑
a∈A
− 1

2σ2

∫ 1

0

‖vat ‖2V dt−
1

2σ2
a

S∑
i=1

δa(Ai)|Ji − Ĩai |2 .

The Kronecker-delta δa(·) is 1 when the argument is a, and zero otherwise. The 111

Expectation step (E-step) replaces these functions with their expected value, a posterior 112

probability πi(a) at each voxel. 113
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Theorem 2. The Expectation Maximization algorithm performs:

va,old ← va,new, with ϕ̇a,oldt = va,oldt ◦ ϕa,oldt , t ∈ [0, 1], ϕa0 = id

Ĩa,old = Ia ◦ ϕold−1, a ∈ A,
E-step: E

(
logf(X; v)|Y, va,old

)
πnewi (a) =

1√
2πσ2

a

exp(− 1
2σ2
a
|Ji − Ĩa,oldi |2)∑

a′∈A
1√

2πσ2
a′

exp(− 1
2σ2
a′
|Ji − Ĩa

′,old
i |2)

, a ∈ A ;

M-Step: arg maxE
(
log f(X; v)|Y, vold

)
va,new = arg max

va
− 1

2σ2

∫ 1

0

‖vat ‖2V dt−
1

2σ2
a

∑
i

πnewi (a)|Ji − Ĩa,oldi |2 .

Iterations va,new with ϕa,new =
∫ 1

0
va,new ◦ φa,newdt+ id increase in incomplete-data 114

log-likelihood. 115

The M step updates vt which is just weighted LDDMM with a weighted L2 cost.
Equation (3b) is updated to include the posterior weights (derived for example in [35]),
and (3a) is updated as weighted least squares, giving

Avt =
1

σ2
D
(
Fθ(I ◦ ϕ−1

t )
)T

(J(ϕ−1
1t )− Fθ(I ◦ ϕ−1

t ))|Dϕ−1
1t |πϕ−1

1t (·)(a) (5a)∫
X

J · d
dθ
Fθ(I ◦ ϕ−1

1 )π·(a)dx =

∫
X

Fθ(I ◦ ϕ−1
1 ) · d

dθ
Fθ(I ◦ ϕ−1

1 )π·(a)dx (5b)

In (5a) and (5b), π·(a) are considered functions of space rather than voxel indices. 116

Post mortem imaging 117

Preparation and scanning of brain tissue was performed by the neuropathological team 118

at the Johns Hopkins Brain Resource Center (BRC) and the laboratory of Dr. Susumu 119

Mori. The specimen was a 1290 gram brain from a 93 year old male, with a clinical 120

diagnosis of Alzheimer’s disease dementia. The autopsy diagnoses included: Alzheimer’s 121

disease neuropathologic change, high level (A3,B3, C2) [36]; CERAD neuritic plaque 122

score B [37]; neurofibrillary Braak stage VI/VI [38]; subacute infarcts frontal, temporal, 123

and basal ganglia; old infarct of pons; with clinical-pathological comment: “Mixed 124

dementia , AD and vascular. The AD component appears to predominate”. The fixed 125

brain tissue was divided into six coronal blocks of the temporal lobe that contain the 126

entorhinal cortex, the hippocampus, and the amygdala. The orientation of the blocks 127

correspond as closely as possible to the coordinate system of the Mai Atlas. Each block 128

of brain tissue was scanned with a high field 11.7T MRI scanner. 129

The nuclear magnetic resonance (NMR) sequence was based on a 3D multiple echo 130

sequence [39,40] with four echoes acquired for each excitation. The diffusion-weighted 131

images were acquired with a field of view of typically 40× 30× 16 mm and an imaging 132

matrix of 160× 120× 64, which was zero-filled to 320× 240× 128 after the spectral 133

data were apodized by a 10 percent trapezoidal function. The pixel size was native 250 134

micron isotropic. Eight diffusion-weighted images were acquired with different diffusion 135

gradient directions, with b-values in the 1,200 - 1,700 s/mm2 range. For 136

diffusion-weighted images, a repetition time of 0.9 s, an echo time of 37 ms, and two 137

signal averages were used, for a total imaging time of 24 hours. 138

The MRI scanning procedure resulted in several distinct images which must be 139

themselves aligned after imaging. For this we developed an interactive tool for 140
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visualizing and transforming each imaged block to match with the others, and for 141

rigidly positioning the aligned blocks in the Mai Atlas coordinate system. Shown in Fig. 142

1 left is an example of our images and their alignment. The aligned blocks were labeled 143

by a neuroanatomist for relevant medial temporal lobe structures (entorhinal cortex, 144

subiculum, Cornu Ammonis (CA) fields, compartments of dentate gyrus, alveus). These 145

labels are shown as a surface reconstruction in Fig 1 right. The superimposed lines 146

correspond to the rostral-caudal pages of the Mai-Paxinos-Voss atlas (z axis), with their 147

1cm grid lines along the x-y axes of each page. Our entorhinal cortex definition (orange) 148

includes the medial bank of the collateral sulcus. This sulcal region [41], also referred to 149

as the trans entorhinal cortex, corresponds to the earliest location of AD pathology 150

accumulation visible at autopsy [42]. Atrophy in this region has been detected at the 151

population level in subjects with mild cognitive impairment [43] before other changes 152

are visible [44]. 153

Fig 1. High-field MTL volume from MR. Left: MR images of tissue blocks
aligned in 3D. Right: surface rendering of manual segmentations with Mai Atlas
coordinate system superimposed.

After the tissue blocks underwent high field imaging, they were sectioned for 154

histological examination. The tissue was sectioned sectioned at 200µm intervals: 20 155

slices of 10-µm thickness and 5 slices of 40-µm thickness. The thin-sliced sections are 156

prepared with stains focused on AD pathology: Nissl, silver (Hirano method), Luxol fast 157

blue (LFB) for myelin, and immunostained for Aβ (mab 6E10) and tau (PHF1). 158

Several examples of our tau, amyloid, and myelin stained sections are shown in the 159

result section, Fig. 4 to 9. For future analysis, these stains are complemented by 160

additional stains to examine the tissue for related comorbidities and other 161

neurodegenerative disorders, such as lewy body disease and frontotemporal dementia, 162

including: immunostains for α-synuclein, ubiquitin, TDP-43, GFAP (astrocytes), Iba1 163

and CD68 (microglia), collagen IV (blood vessels) and reelin (entorhinal cortex layer II 164

neuronal protein) 13. The thick-sliced sections will be used for quantitative cell and 165

neuron counts and density studies of dendritic and synaptic markers. 166

Image mapping experiments 167

Below we present several 2D experiments to demonstrate the applicability and verify 168

the validity of our method. In each case, rigid and deformable registration is performed 169

simultaneously using gradient descent, and deformable registration is implemented using 170

LDDMM (3a) or weighted LDDMM (5a). For registration purposes, histology images 171

are downsampled by averaging over a 32x32 window 172

Our final example is to demonstrate an important application in a 3D histology 173

pipeline, quantifying the 3D distribution of tau tangles in Alzheimer’s disease. Here we 174
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work with a sequence of transformations between 3D post mortem MRI and 2D 175

histology slices. 176

1. 3D deformation 177

2. 3D rigid positioning 178

3. Estimation of slice spacing (z axis scale) 179

4. Estimation of pixel size (x, y axis uniform scale) 180

5. 2D rigid motion (for each slice and stain) 181

6. Cubic intensity transformation (for each slice and stain) 182

Rigid, scale, and deformation parameters are all jointly optimized using gradient 183

descent. Deformable registration uses a relatively small gradient descent step size allow 184

linear transformations to be close to optimal at all times. 185

This pipeline quantifies the distribution of tau tangles in each 2D slice using a 186

convolutional neural network in tensorflow [45]. Input data is 56x56 regions of interest. 187

The network uses 3 convolution layers with a 5x5 kernels, max pool downsampling by a 188

factor of 2x2, followed by a fully connected layer and a cross entropy loss function. The 189

center pixel of each region is classified as belonging to one of 3 classes “tau tangles”, 190

“other tissue”, or “background”. 2391 training examples were used, with 8.3% positive, 191

and neural network weights were trained using the Adam optimizer [46]. Every pixel in 192

our histology data was classified using a sliding window approach. After mapping this 193

data into the coordinates of the Mai atlas, we report the total area of tau tangles within 194

the entorhinal cortex, subiculum, and CA1-3 for each atlas page. To place these 195

numbers in context, we also report the total area of these structures (which may be 196

affected by missing tissue), and the fraction of this area covered by tau tangles. 197

Results 198

Mapping simulated images with artifact and missing data 199

To demonstrate the method we start with simulated images. Fig 2 shows the atlas (top 200

left panel) and target (top center panel). Contrast is chosen so that the atlas is appears 201

like a T1 MR brain image (darker gray matter and brighter white matter) and the 202

target appears like a T2 MR brain image. The target also contains a bright streak 203

artifact and missing tissue. Specifically, the atlas background has intensity 0, gray 204

matter 1, and white matter 1.25. The target background has intensity 0, gray matter 205

0.9, white matter 0.675, and artifact 5. Both images have additive white Gaussian noise 206

with standard deviation 0.05, and are blurred with a Gaussian kernel with standard 207

deviation 2/3 pixels over a 5x5 pixel window. 208

The bottom left panel of Fig. 2 shows that a cubic intensity transformation (right 209

panel) is sufficient to permute the order of gray and white mater, allowing for accurate 210

matching of the cortical boundary. The bottom center panel shows the posterior 211

probabilities of the three atlases shown as components of an RGB image. The pixels are 212

correctly classified with the atlas image in red, artifact in green, and missing tissue in 213

blue. Note that the background is magenta because “atlas image” and “missing tissue” 214

both describe the image intensity equally well. 215

Figure 3 shows the failed results of existing mapping methods, using a linear 216

contrast transform only (i.e. normalized cross correlation), and a fixed mask (top row) 217

or no mask (bottom row). With a fixed mask, the artifact is still handled appropriately. 218

An inversion of contrast is estimated, which is appropriate within the masked region. 219
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Fig 2. Simulation results Top row: atlas (left) and target (right). Bottom row:
Transformed atlas to target; estimated final weights; estimated non-monotonic
polynomial Fθ.

However, missing tissue is not distinguished from normal background, so the 220

informative “cortex/background” boundary is treated equivalently to the uninformative 221

“cut tissue” boundary, resulting in very poor alignment. With no mask, huge distortions 222

in shape occur as the atlas is squeezed to match the shape of the target with missing 223

tissue, and stretched to follow the bright artifact. 224

Fig 3. Alternative methods Top left shows the results using a fixed binary mask,
with center showing the estimated monotonic intensity transformation. Bottom left
shows the result using no mask, with right showing the estimated intensity
transformation.

Mapping histology with missing data and different stains 225

In Fig. 4 we show results mapping a tau stained section of the medial temporal lobe to 226

an immediately adjacent section stained with LFB. We perform intensity transformation 227
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using a nonmonotonic cubic polynomial, allowing for a swapping of brightness from gray 228

matter (1) → white mater (2) → background (3) in tau, to (2)→ (1)→ (3) in LFB. As 229

a map from R3 → R3, this corresponds to 60 unknown parameters (1 constant, 3 linear, 230

6 quadratic, 10 cubic, for each of 3 dimensions). This example illustrates the intensity 231

transformation component of our algorithm in isolation. 232

Fig 4. Mapping across modality from tau to myelin. A tau stained section
through the hippocampus is mapped to a neighboring myelin stained section using a
cubic polynomial intensity transform.

In Fig. 5 we map a tau stained slice of medial temporal lobe to its neighbor which 233

has significant missing data due to damaged tissue. This illustrates the missing data 234

component of our algorithm in isolation. 235

In Fig. 6 we show results mapping a tau stained section of the medial temporal lobe 236

to an adjacent damaged slice stained with LFB. This illustrates the intensity mapping 237

and missing data components of our algorithm simultaneously. 238

Mapping histology data to Mai atlas coordinates 239

Alignment between 3D post mortem MRI, and each of our three 2D stains are shown in 240

Fig 7. For each stain, we show histology images, intensity transformed MRI, and 241

original aligned MRI. The LFB stain in particular shows significant variation in contrast 242

profiles from slice to slice, which is handled effectively by our method. All intensity 243
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Fig 5. Mapping a tau section with missing tissue. A tau stained section through
the hippocampus is mapped to a neighboring damaged section. The weights shown
correspond to posterior probability that a given pixel corresponds to our atlas image,
with high probability in yellow, probability 0.5 in green, and low probability in blue.

transformations use a cubic polynomial for each of the red, green, and blue channels on 244

each slice, which corresponds to 12 parameters. 245

Example results of our tau detection algorithm are shown in Fig 8. We achieve an 246

accuracy of 0.996 on a test set of 500 examples. Detection results are shown at 3 247

different scales, with individual detections at the micron level, and densities at the 248

millimeter level. 249

Figure 9 shows several sections of the Mai-atlas along the rostral to caudal axis in 250

millimeters. In the same coordinate system, we show our post mortem MRI with 251

manual segmentations superimposed, and our histology stains and estimated tangle 252

density. For visualization of this sparse data in 3D, interpolation was applied between 253

slices. To sample at a fraction p between slices I and J , a symmetric LDDMM 254

transformation was computed (as in ANTs SyN [47]), and a weighted average of images 255

was computed from the flow: (1− p)I ◦ ϕ−1
t + pJ ◦ ϕ−1

1t . 256

Finally, Fig. 10 shows our estimated area covered by tau tangles on each page of the 257

Mai atlas for several structures (entorhinal cortex, subiculum, CA fields). We observe a 258

trend of decreasing tangle concentration in the rostral to caudal direction, which will 259

need to be verified for reproducibility as more specimens become available. 260
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Fig 6. Mapping across modality from tau to myelin with missing tissue A a
tau stained section through the hippocampus is mapped to a neighboring LFB stained
damaged section. The weights shown correspond to posterior probability that a given
pixel corresponds to our atlas image, with high probability in yellow, probability 0.5 in
green, and low probability in blue.

Discussion 261

In this work we proposed a new image mapping method that accommodates contrast 262

differences, missing data, and artifacts. This was achieved by formulating the imaging 263

process as (i) an unknown shape through the action of the diffeomorphism group, (ii) an 264

unknown change in contrast through the action of polynomial maps, (iii) the addition of 265

Gaussian noise. Here (i) describes the object being imaged, and (ii-iii) describe the 266

imaging process, reflecting the distinction made by Shannon between source and 267

channel. This model allows us to formulate multi modality image matching as a 268

penalized likelihood problem, rather than simply the maximization of an ad hoc image 269

similarity function. This statistical model leads naturally to the formulation of an 270

expectation maximization algorithm that handles missing data or artifacts. We applied 271

this algorithm to simulated images, illustrating its effectiveness for accurate mapping 272

and classification of image pixels, and its superiority over alternatives. For 2D histology 273

we demonstrated the effectiveness of each of our two contributions, contrast mapping 274

and tissue classification, in isolation and simultaneously. Finally we applied this 275

technique to the challenge of reconstructing 3D volumes from histology by mapping to 276

January 4, 2019 12/19

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2019. ; https://doi.org/10.1101/494005doi: bioRxiv preprint 

https://doi.org/10.1101/494005
http://creativecommons.org/licenses/by/4.0/


Fig 7. Mapping from MRI to three histology slices Alignment between our 3D
MRI and histology slices at 15 locations with three stains is shown. Top to bottom:
amyloid, MRI intensity mapped to amyloid, aligned MRI, LFB, MRI intensity mapped
to LFB, aligned MRI, Tau, MRI intensity mapped to tau, aligned MRI. .

Fig 8. Tau detection results Tau stained histology sections (top) with the result of
our tangle detection (bottom, red) at 3 different scales, zooming out from single tangles
(left) to the entire medial temporal lobe (right).

post mortem MRI. In conjunction with convolutional neural networks, this allowed us to 277

map out the 3D distribution of tau tangles in the medial temporal lobe. 278

Here we demonstrated that for R→ R affine contrast transformations, our 279

formulation is equivalent to normalized cross correlation. Another popular image 280

similarity term is mutual information, which is invariant to all invertible 281

transformations. Our approach can accommodate these invariances if we allow for 282

arbitrary nonparametric transformations, which can be thought of as high degree 283

polynomials, or as linear combinations of narrow kernel functions. In this limit, a 284

standard result of statistical prediction results in an intensity transformation given by 285

conditional expectation, F (i) = EJ|Ĩ=i[J ]. This transformation results in a cost 286

function with the same set of invariances as mutual information. 287
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Atlas seg. amyloid myelin tau tangles

9.3mm

17.2mm

23.9mm

Fig 9. Mapping MRI sections to Mai-Paxinos sections. High-field atlas section
at 9.30 mm (top row), 17.20 mm (middle row) and 23.90 mm (bottom row) along
caudal-rostral axis of histology sections in Mai-Paxinos coordinates.

Fig 10. Tau tangles on each page of Mai atlas for several structures Left
shows the total area of tau tangleps detected within several anatomical structures (ERC:
entorhinal cortex, SUB: subiculum, CA: Cornu Ammonis). Center shows the area of
these structures, and right shows the fraction of this area covered by tau tangles.

A third popular image similarity term, introduced in [47], is local normalized cross 288

correlation. We are currently extending our method to include polynomial contrast 289

transformations where coefficients are smooth functions of space. As in local normalized 290

cross correlation, this will allow accommodation of image nonuniformity due to magnetic 291

field inhomogeneities or coil sensitivity in MRI, or variable illumination optical imagery. 292

Typically image registration has involved the balance between a regularization term 293

and a data attachment term in optimization, which is characterized by a single 294

parameter chosen to reflect the researcher’s priorities. A limitation of our algorithm is 295

that it requires more parameters: a variance for shape change (regularization), and 296

variance of image noise, background noise, and artifact noise. These must be chosen 297

carefully to reflect physical characteristics of our imaging model. Further, as is typical 298

of Expectation Maximization algorithms, optimization in our setting can be slow and 299

sensitive to initialization. The choice of polynomials here to describe intensity changes 300

was for simplicity only, linear combinations of any basis functions can be included in the 301

same formulation. The estimation of polynomial coefficients can be unstable, and future 302
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work will involve investigating alternative bases. 303

Our contribution to AD understanding stems from the need to bridge the gap 304

between 3D imaging such as MRI which can be obtained in living subjects over time, 305

and 2D histopathology which is the technique used to make the diagnosis postmortem. 306

While some authors have successfully registered histology to MRI in well controlled 307

conditions [48], we believe that the generative model proposed here, which 308

accommodates variable contrast and missing data, will be a valuable approach for 309

handling typical data moving forward. We are continuing to acquire post mortem 310

samples, and the single subject results presented here will be augmented over the next 311

several years, enabling a more detailed examination of tau distribution. This work 312

advances the field of brain mapping in two important ways. First it moves away from 313

ad hoc image similarities, and toward statistical models of image formation. While our 314

work used a simple white noise model, this framework has the potential to connect with 315

imaging physics and benefit from known properties of imaging systems, such as their 316

signal transfer and noise performance. Second, this method accommodates mapping 317

between images taking values in arbitrary dimensions, in the presence of missing tissue 318

and artifacts. This allows accurate brain mapping to expand from well controlled 319

clinical imaging, to the massive diversity of neuroscience data. For example, in the 320

mouse community, accurate image mapping between Nissl stained tissue and microscopy 321

with multiple fluorophores is commonly required in the presence of variably dissected or 322

damaged tissue. We are currently applying these techniques to CLARITY [19,20] and 323

iDISCO [49] images in mouse and rat [50], serially sectioned mouse as part of the 324

BRAIN Initiative Cell Census Network [51], and revisiting older datasets where images 325

were excluded due to artifacts or damaged tissue. 326
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29. Miller MI, Trouvé A, Younes L. Diffeomorphometry and geodesic positioning
systems for human anatomy. Technology. 2014;1:36.

30. Miller MI, Arguillère S, Tward DJ, Younes L. Computational anatomy and
diffeomorphometry: A dynamical systems model of neuroanatomy in the soft
condensed matter continuum. Wiley Interdisciplinary Reviews: Systems Biology
and Medicine;0(0):e1425. doi:10.1002/wsbm.1425.

31. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the royal statistical society Series B
(methodological). 1977; p. 1–38.

32. Mai JK, Paxinos G. The Human Nervous System. Academic Press; 2011.

January 4, 2019 17/19

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2019. ; https://doi.org/10.1101/494005doi: bioRxiv preprint 

https://doi.org/10.1101/494005
http://creativecommons.org/licenses/by/4.0/


33. Grenander U. General Pattern Theory. ISBN 978-0198536710. Oxford Science
Publications; 1994.
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