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Abstract. 38 

Background: Imputation has become a standard approach in genome-wide association studies 39 

(GWAS) to infer in silico untyped markers. Although feasibility for common variants imputation 40 

is well established, we aimed to assess rare and ultra-rare variants’ imputation in an admixed 41 

Caribbean Hispanic population (CH). 42 

 43 

Methods: We evaluated imputation accuracy in CH (N=1,000), focusing on rare (0.1% ≤minor 44 

allele frequency (MAF) ≤ 1%) and ultra-rare (MAF < 0.1%) variants. We used two reference 45 

panels, the Haplotype Reference Consortium (HRC; N=27,165) and 1000 Genome Project 46 

(1000G phase 3; N=2,504) and multiple phasing (SHAPEIT, Eagle2) and imputation algorithms 47 

(IMPUTE2, MACH-Admix).  To assess imputation quality, we reported:  a) high-quality variant 48 

counts according to imputation tools’ internal indexes (e.g. IMPUTE2 “Info”≥80%). b) 49 

Wilcoxon Signed-Rank Test comparing imputation quality for genotyped variants that were 50 

masked and imputed; c) Cohen’s kappa coefficient to test agreement between imputed and 51 

whole-exome sequencing (WES) variants; d) imputation of G206A mutation in the PSEN1 52 

(ultra-rare in the general population an more frequent in CH) followed by confirmation 53 

genotyping. We also tested ancestry proportion (European, African and Native American) 54 

against WES-imputation mismatches in a Poisson regression fashion.  55 

 56 

Results: SHAPEIT2 retrieved higher percentage of imputed high-quality variants than Eagle2 57 

(rare: 51.02% vs. 48.60%; ultra-rare 0.66% vs 0.65%, Wilcoxon p-value < 0.001). SHAPEIT-58 

IMPUTE2 employing HRC outperformed 1000G (64.50% vs. 59.17%; 1.69% vs 0.75% for high-59 

quality rare and ultra-rare variants, respectively; Wilcoxon p-value < 0.001). SHAPEIT-60 

IMPUTE2 outperformed MaCH-Admix. Compared to 1000G, HRC-imputation retrieved a 61 
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higher number of high-quality rare and ultra-rare variants, despite showing lower agreement 62 

between imputed and WES variants (e.g. rare: 98.86% for HRC vs. 99.02% for 1000G). High 63 

Kappa (K = 0.99) was observed for both reference panels. Twelve G206A mutation carriers were 64 

imputed and all validated by confirmation genotyping. African ancestry was associated with 65 

higher imputation errors for uncommon and rare variants (p-value < 1e-05). 66 

 67 

Conclusion: Reference panels with larger numbers of haplotypes can improve imputation quality 68 

for rare and ultra-rare variants in admixed populations such as CH. Ethnic composition is an 69 

important predictor of imputation accuracy, with higher African ancestry associated with poorer 70 

imputation accuracy.  71 

 72 

 73 

Keywords: Rare variants, Imputation, Admixed population, GWAS, 1000G   74 
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Introduction 75 

Genome-wide association studies (GWASs) are a major tool to identify common variants 76 

associated with complex diseases.  GWAS can include 550K to over 2M Single Nucleotide 77 

Polymorphisms (SNPs) (Ha et al., 2014) to cover the human genome evenly.  Although GWAS 78 

has shown to be a robust method to identify disease loci of interest, they rarely point to a causal 79 

coding variant. In fact, microarray SNP chips for GWAS are optimally designed to uncover 80 

common variants, often associated with small effect sizes mostly located in intronic and 81 

intergenic regions. The focus of genetic investigations has since shifted toward rarer alleles with 82 

larger effect sizes (Gibson, 2012).  With the changing paradigm, imputation of rare variants has 83 

become an important topic to enhance the genome coverage in GWAS. Imputation is a process 84 

of inferring untyped SNP markers in the discovery population by using densely typed SNPs in 85 

external reference panel(s). These ‘in silico’ markers increase the coverage of association tests 86 

while conducting genome-wide association analysis. In addition, large number of SNPs facilitate 87 

meta-analysis when merging data from different study cohorts.  88 

The quality of imputation essentially depends on two parameters:  available reference datasets 89 

and algorithms that employ those reference datasets.  Previous studies have shown that 90 

imputation quality depends on how well reference panels reflect the study population.  To 91 

respond to the needs, the 1000 Genome project (1000G), now in its third phase release, has 92 

proven to be one of the most frequently used reference panels (Genomes Project et al., 2015).  93 

Using these composite reference panels, a number of studies (Pei et al., 2010; Howie et al., 2012; 94 

Verma et al., 2014; Liu et al., 2015) have compared imputation accuracy using different 95 

imputation tools and algorithms, although the results are equivocal. Few studies (Browning and 96 

Browning, 2009; Zheng et al., 2012; Zheng et al., 2015) assessed the impact of reference panel 97 
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size and input data’s features - such as density of SNPs - to impute rare variants, suggesting 98 

larger size of reference panels work better. Surakka and colleagues (Surakka et al., 2016) 99 

assessed accuracy of imputed SNPs by evaluating rate of false polymorphisms in a Finnish 100 

population using global reference panels – Haplotype Reference Consortium (HRC) release 1, 101 

1000G phase 1 and a local reference panel.  They concluded that higher false positive rate was 102 

observed in imputation from global reference panels compared to imputation performed using a 103 

local panel. Other studies (Huang et al., 2015; Das et al., 2016) found imputation accuracy 104 

increases with higher number of haplotypes, specifically for variants with MAF ≤ 0.5%. For 105 

Hispanic populations, Nelson and colleagues (Nelson et al., 2016) compared imputation 106 

performances with 1000G phase 1 (N=1,092) vs. 1000G phase 3 (N=2,504), concluding that 107 

phase 3 improved accuracy for variants with MAF <1% by . Further, Nagy and colleagues (Nagy 108 

et al., 2017) showed that HRC reference panel provides new insight for novel variants 109 

particularly for rare variants in a family-based Scottish study cohort. Aforementioned studies 110 

highlighted the need of a larger sized reference panel to improve imputation quality. Herzig and 111 

colleagues (Herzig et al., 2018) assessed tools for haplotype phasing and their impact on 112 

imputation in a population isolate of Campora in southern Italy, and showed that SHAPEIT2, 113 

SHAPEIT3 and EAGLE2 were highly accurate in phasing; MINIMAC3, IMPUTE4 and 114 

IMPUTE2 were found to be reliable for imputation. Roshyara and colleagues (Roshyara et al., 115 

2014) compared MaCH-Admix, IMPUTE2, MACH, MACH-Minimac in different ethnicities by 116 

evaluating accuracy of correctly imputed SNPs; MaCH-Minimac outperformed SHAPEIT-117 

IMPUTE2 in subsamples of different ethnic groups. These studies demonstrated how employed 118 

imputation algorithm determines quality of inferred SNPs. 119 

 120 
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However, no study to our knowledge has evaluated reference panels in tandem with different 121 

imputation algorithms to assess imputation quality of inferred SNPs based on MAF in a three-122 

way admixed population. Based on these findings, we assessed imputation quality, focusing on 123 

rare and ultra-rare variants, in a large dataset of Caribbean Hispanics (CH) leveraging available 124 

GWAS and sequencing data available for our cohort.  125 

 126 

 127 

  128 
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Methods 129 

We will refer SNPs with MAF between 1-5% as “uncommon,” 0.1-1% as “rare,” and ≤0.1% as 130 

“ultra-rare”.  We considered SNPs with IMPUTE-Info metric ≥0.40 as “good-quality” and ≥0.80 131 

as “high-quality”. 132 

 133 

GWAS samples and genotyping.  We selected randomly 1,000 Caribbean Hispanics as part of an 134 

original genotyped cohort of 3,138 individuals: genotyped data can be downloaded at dbGaP 135 

Study Accession: phs000496.v1.p1. 719 individuals were derived from Estudio Familiar 136 

Investigar Genetica de Alzheimer (EFIGA), a study of familial LOAD; and 281 individuals from 137 

the multiethnic longitudinal cohort, Washington Heights, Inwood, Columbia Aging Project 138 

(WHICAP). The information on study design, recruitment and GWAS methods for the EFIGA 139 

and WHICAP study was previously described in Tosto, G., et al (Tosto et al., 2015).  140 

 141 

GWAS quality control (QC).  Genotyped data underwent quality control using PLINK (v1.90b4.9 142 

64-bit) (Purcell et al., 2007). Briefly, we excluded SNPs with missing rate ≥5% followed by 143 

exclusion of SNPs with MAF ≤ 1%. We then removed SNPs with P-value < 1e-6 for Hardy-144 

Weinberg Equilibrium. Samples with missing call rate ≥5% were excluded from analysis.  145 

 146 

Global Ancestry estimation and selection of “true Hispanics”.  Prior to imputation, we estimated 147 

global ancestry using the ADMIXTURE (v.1.3.0) software (Alexander et al., 2009; Zhou et al., 148 

2011). We conducted supervised admixture analyses using three reference populations: African 149 

Yoruba (YRI) and non-Hispanic white of European Ancestry (CEU) from the HAPMAP project 150 

as representative of African and European ancestral populations; and eight Surui, 21 Maya, 14 151 

Karitiana, 14 Pima and seven Colombian individuals from the Human Genome Diversity Project 152 
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(HGDP) were used to represent native American ancestry (Li et al., 2008). We used ~80,000 153 

autosomal SNPs that were: I) genotyped in all three datasets (Caribbean Hispanics, 1000G and 154 

HGDP); II) common (i.e. MAF >5 %); and III) in linkage equilibrium. Supervised admixture 155 

analyses with the three reference populations (YRI, CEU, and Native Americans) revealed that 156 

European lineage accounted for most of the ancestral origins (59%), followed by African (33%) 157 

and native American ancestry (8%). We then selected only individuals with at least 1% of all 158 

three ancestral populations. 159 

 160 

Reference panels.  HRC reference panel contained over 39M SNPs from 27,165 individuals who 161 

participated in 17 different studies (Table 1).  The data were downloaded from the Wellcome 162 

Trust Sanger Institute (WTSI).  163 

1000G phase 3 reference panel contained over 81M SNPs from 2,504 individuals 164 

(https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.tgz).  It includes 26 ethnic groups, with 165 

most variants rare, approximately 64 million had MAF <0.5%; approximately 12 million had a 166 

MAF between 0.5% and 5%; and approximately 8 million have MAF >5%. In order to perform 167 

imputation with MaCH-Admix, 1000G Phase 3 pre-formatted data were downloaded from 168 

ftp://yunlianon:anon@rc-ns-169 

ftp.its.unc.edu/ALL.phase3_v5.shapeit2_mvncall_integrated.noSingleton.tgz that contained over 170 

47M SNPs.  171 

The subsequent analyses were restricted to autosomal chromosomes, only. 172 

 173 

Phasing and Imputation Procedures.  We compared SHAPEIT2 (Delaneau et al., 2013) and Eagle2 174 

(Loh et al., 2016) by phasing and then imputing (see next section) a single chromosome 175 
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(Chromosome 21), using both reference panels.  We refer to SHAPEIT2 as SHAPEIT when used 176 

in tandem with IMPUTE2 for the remainder of paper. 177 

 178 

Imputation was carried out using two bioinformatics tools: IMPUTE2 (Howie et al., 2009) and 179 

MaCH-Admix (Liu et al., 2013). For both, imputation quality ranged from 0 to 1, with 0 180 

indicating complete uncertainty in imputed genotypes, and 1 indicating no uncertainty in 181 

imputed genotypes. 182 

IMPUTE2 (version 2.3.2).  IMPUTE2 uses an MCMC algorithm to integrate over the space of 183 

possible phase reconstructions for genotypes data. We conducted imputation in non-overlapping 184 

1MB chunk regions; chunk coordinates were specified using the “–int” option. Other options 185 

were used with default parameters (Supplementary section 1). Briefly, we used a default 186 

250KB buffer region to avoid quality deterioration on the ends of chunk region. “-Ne” value as 187 

2000 suggested for robust imputation which scales linkage disequilibrium and recombination 188 

error rate.  MaCH-Admix. We used MaCH-Admix because it uses a method based on IBS 189 

matching in a piecewise manner. The method breaks genomic region under investigation into 190 

small pieces and finds reference haplotypes that best represent every small piece, for each target 191 

individual separately. MaCH-Admix imputes in three steps: phasing, estimation of model 192 

parameter that includes error rare and recombination rate and lastly, haplotype-based imputation. 193 

MaCH-Admix (version Beta 2.0.185) was run on default parameters of 30 rounds, 100 states (--194 

autoFlip flag). Details can be found in supplementary file (section 1). We initially compared 195 

performance between MaCH-Admix and IMPUTE2 using the 1000G reference panel for 196 

Chromosome 21 only. We then proceeded to impute all remaining chromosomes with the tool 197 

that performed better. 198 
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 199 

Imputation Performance Metrics.  IMPUTE2 uses “Info” parameter to report imputation quality 200 

that measures relative statistical information about SNP allele frequency from imputed data. It 201 

reflects the information in imputed genotypes relative to the information if only the allele 202 

frequency were known. “Info” metric is used to filter poorly imputed SNPs from IMPUTE2 and 203 

is reported for all imputed SNPs. In addition, IMPUTE2 uses an internal metric known as R2, 204 

reported for genotyped SNPs only: it measures squared correlation between genotyped SNPs and 205 

the same SNPs that have been first masked internally and then imputed. MaCH-Admix uses Rsq 206 

to report imputation quality. The R2 metric is also known as variance ratio, calculated as 207 

proportion of empirically observed variance (based on the imputation) to the expected binomial 208 

variance p(1−p), where p is the minor allele frequency. A threshold of 0.30 is recommended to 209 

filter out poorly imputed SNPs. 210 

Despite quality measures from IMPUTE2 and MaCH-Admix being highly correlated (Marchini 211 

and Howie, 2010), we calculated a r2hat score to generate a single common metric to assess 212 

imputation quality across the software (Hancock et al., 2012) (v109, 213 

http://www.unc.edu/~yunmli/tgz/r2_hat.v109.tgz).  214 

We compared performance of MaCH-Admix and SHAPEIT-IMPUTE2 by: a) Reporting raw 215 

SNP counts based on quality (MaCH-Admix “Rsq” and IMPUTE2 “Info”); b) Comparing r2hat 216 

for overlapping imputed SNPs from both tools; c) Conducting a Wilcoxon Signed-Rank Test (R 217 

v3.4.2) on r2hat value of overlapping SNPs. 218 

 219 

We compared performance of Eagle2 and SHAPEIT2 phasing tools in tandem with IMPUTE2 as 220 

imputation tools across reference panels by: a) Comparing their respective IMPUTE2 R2: b) 221 
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Conducting a Wilcoxon Signed-Rank Test on R2 value; c) Reporting raw counts of imputed 222 

SNPs based on IMPUTE2 “Info” metric and stratified by MAF bins (e.g. common, rare, ultra-223 

rare).  224 

In all comparisons, the MAFs are estimated from imputed data according to the reference panel 225 

employed. We retained monomorphic SNPs in our analyses for several reasons. A monomorphic 226 

SNP in one study might not be monomorphic in other cohorts. This has profound affects, for 227 

example, when performing meta-analysis across different studies. In addition, monomorphic 228 

SNPs provide information about MAF across studies. Without the information it is difficult to 229 

tell, for instance, if a SNP is monomorphic or failed quality control in that study.  230 

 231 

Agreement between Imputed and Sequence data.  To further test the quality of imputation -232 

without relying on software’s internal metrics (i.e. “Info” and R2) -   we calculated genotyped 233 

concordance between imputed and WES data using the VCF-compare tool (v0.1.14-12-234 

gcdb80b8)  (Danecek et al., 2011). First, we converted posterior probabilities obtained from 235 

imputation into genotype data using the PLINK software (v1.90b4.9) by applying a threshold of 236 

0.9 (supplementary section 1), such that SNPs that failed on this criterion were left uncalled. 237 

For example, an imputed SNP with P(G=0,1,2)= (0.01,0.9,0.09) would be called as a '1' 238 

(heterozygous), whereas an imputed SNP with P(G=0,1,2) = (0.2, 0.6, 0.2) would be left 239 

uncalled. We restricted the comparison to overlapping SNPs between HRC, 1000G reference 240 

panels and whole-exome sequencing (WES) data for Chromosome 14 only, on SNPs with 0% 241 

missingness (plink --missing flag) in WES data. We also assessed variants’ agreement according 242 

to different MAF bins for “high-quality” (“Info” ≥0.8) SNPs. The output resulted in number of 243 

variant “mismatches”, i.e. the count of allele not matching between imputed and sequenced 244 
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variants per individual.  To measure interrater reliability we computed Cohen’s kappa coefficient 245 

(McHugh, 2012) for both the reference panels against WES data.  Kappa coefficient ≤ 0 246 

indicates no agreement, 0.01–0.20 as none to slight, 0.21–0.40 as fair, 0.41– 0.60 as moderate, 247 

0.61–0.80 as substantial, and 0.81–1.00 as almost perfect agreement.  248 

 249 

Effects of Ancestry on Imputation Quality.  To assess how ancestry affected imputation quality, 250 

we conducted a Poisson regression using R. We used percentage of global ancestry (European 251 

(CEU), Native (NAT) and African (YRI) as predictors, and total number of mismatches as the 252 

outcome; analyses were restricted to “high-quality” SNPs, only.  253 

 254 

Imputation of G206A Mutation in PSEN1.  To evaluate imputation performance of a specific rare 255 

variant, we examined a founder mutation, p.Gly206Ala (G206A - rs63750082) in the PSEN1 256 

gene (PSEN1-G206A) (Athan et al., 2001; Lee et al., 2015). The PSEN1-G206A mutation is a 257 

rare variant observed primarily in Puerto Ricans with familial early onset Alzheimer’s disease 258 

(EOAD), but it is rare in Puerto Ricans and other populations with late-onset Alzheimer’s 259 

disease (LOAD) (Arnold et al., 2013). The mutation was present in the 1000G phase 3 reference 260 

panel with an allele frequency of 0.001, but was absent in the HRC reference panel.  To verify 261 

whether individuals who were found to carry the PSEN1-G206A mutation based on 1000G-262 

imputation, they were genotyped using the KASP genotyping technology by LGC genomics 263 

(https://www.lgcgroup.com), which uses allele-specific PCR for SNP calling. Agreement 264 

between imputed and genotype data for the PSEN1-G206A mutation was then assessed. We also 265 

tested the effect on imputation quality based on different IMPUTE2-parameters settings, more 266 

specifically by modifying the chunk size (i.e. 1MB vs. 5 MB).  267 
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Results 268 

 269 

Comparison of Phasing Tools: Eagle2 vs. SHAPEIT2.  To select the optimal tool for phasing, we 270 

compared SHAPEIT2 with Eagle2 using Chromosome 21 with 13,066 genotyped SNPs by 271 

performing subsequent imputation with IMPUTE2 on phased outputs, and using both reference 272 

panels. We found SHAPEIT2 better than Eagle2 when evaluated based on mean R2 and “Info” 273 

metric using either the reference panels. For instance, using the 1000G, we observed higher 274 

mean R2 for data phased with SHAPEIT2 as compared to Eagle2 (0.92 vs. 0.91; Wilcoxon p-275 

value < 0.001). Similarly, when HRC panel was employed, mean R2 of 0.89 was observed for 276 

SHAPEIT2 against 0.85 for Eagle2 (Wilcoxon signed-rank test p-value < 0.001).   277 

SNP count comparison details can be found in Supplementary Table 1-2. Regardless of the 278 

reference panel employed, we observed higher percentage of “high-quality” rare and ultra-rare 279 

SNPs for SHAPEIT-IMPUTE2 than Eagle2-IMPUTE2. For instance, 1000G-imputation 280 

retrieved 51.02% of “high-quality” rare SNPs using SHAPEIT-IMPUTE2 vs. 48.38% with 281 

Eagle2-IMPUTE2. Detailed comparisons for different MAF bins and quality threshold can be 282 

found in Supplementary Section 2. Nevertheless, we found Eagle2 faster than SHAPEIT2 when 283 

computation times were compared; for instance, with HRC Eagle2 was ~6 times faster than 284 

SHAPEIT2 (Supplementary Table 3). We therefore imputed the remaining chromosomes on 285 

phased output from SHAPEIT2. Comparison of phasing tools by assessing switch error rate was 286 

beyond the scope of this paper due to limited resources, for e.g., availability of phased reference 287 

panel for an admixed population. 288 

 289 
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MaCH-Admix vs. IMPUTE2.  We found that SHAPEIT-IMPUTE2 performed better than MaCH-290 

Admix. For Chromosome 21, we imputed 1,104,648 and 646,594  SNPs for SHAPEIT-291 

IMPUTE2 and MaCH-Admix, respectively; 549,091 SNPs were overlapping. For SHAPEIT-292 

IMPUTE2 we observed 446,591  bi-allelic SNPs with “Info” ≥ 0.40, in contrast with 598,943 293 

SNPs with Rsq ≥ 0.30 from MaCH-Admix (Supplementary Table 4). SNP counts for different 294 

MAF bins based on platform-specific quality index can be found in Supplementary Table 295 

5.When the two outputs were compared in terms of r2hat, SHAPEIT-IMPUTE2 showed a 296 

higheraverage r2hat of 0.62 against 0.36 from MaCH-Admix (Wilcoxon signed-rank test p-value 297 

< 0.001). Also, MaCH-Admix was 109 times slower than IMPUTE2. (Supplementary Table 6), 298 

thus, comparison between different panels using MaCH-Admix were excluded due to limited 299 

resources. For the remaining of this manuscript, we focused on imputation employing SHAPEIT-300 

IMPUTE2, only.  301 

 302 

Comparison between HRC and 1000G using SHAPEIT-IMPUTE2.  Using SHAPEIT-IMPUTE2, 303 

we imputed 81,240,392 and 38,532,090 SNPs across all autosomal chromosomes with 1000G 304 

and HRC reference panels, respectively (Table 2).  305 

Overall, we observed slightly higher mean R2 with 1000G than with HRC panel (0.94 vs. 0.92; 306 

Wilcoxon p-value< 0.001). Nevertheless, when the analyses were restricted to only “good-” and 307 

“high-quality” SNPs, HRC consistently performed better: 60.82% of HRC-imputed SNPs were 308 

“good-quality” and 48.87% were “high-quality” (Wilcoxon signed-rank test p-value < 0.001). On 309 

the contrary, 40.32% of 1000G imputed SNPs were “good-quality” and 30.11% were “high-310 

quality”.  311 
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Further, we evaluated performance for uncommon, rare and ultra-rare SNPs. For “good-” and 312 

“high-quality” SNPs, HRC outperformed 1000G. For example, HRC panel produced 62.85% of 313 

“high-quality” rare SNPs, whereas 1000G had 53.83% (Table 3). When average imputation 314 

“Info” quality was evaluated, HRC-imputation again performed better than with 1000G 315 

(Wilcoxon p-value< 0.001) (Figure 1). 316 

 317 

Next, we restricted our analyses to overlapping SNPs across the two reference panels only, based 318 

on their chromosome and position mapping, reference and non-reference alleles. For “good-”and 319 

“high-quality” SNPs, imputation in both panels performed similarly (Table 2). When restricted 320 

to uncommon, rare and ultra-rare SNPs, we observed higher percentage of “good-” and “high-321 

quality” SNPs for HRC panel as compared to 1000G reference panel (Table 3). For example, 322 

7.44% of HRC-imputed ultra-rare SNPs were “good-quality” vs. 4.95% with the 1000G. 1.69% 323 

of HRC-imputed ultra-rare SNPs were “high-quality” vs. 0.75% with the 1000G. Further, 324 

Wilcoxon test on “Info” value of “high-quality” ultra-rare SNPs (2,972) again showed better 325 

performances when HRC was employed vs. 1000G (P-value < 0.001). Complete list of counts 326 

and percentages across reference panels, MAF bins and quality score can be found in Table 3.  327 

 328 

The case of G206A and the effect of chromosomal chunk size on imputation quality.  SNP 329 

rs63750082 is absent from HRC panel therefore no imputation was achieved. Using 1000G 330 

reference panel, 12 individuals were  imputed as G206A carriers. SNP rs63750082 was imputed 331 

with an IMPUTE2 “Info” score of 0.48 using 1MB as chromosomal region parameter. When we 332 

increased the chunk size to 5MB, IMPUTE-Info score drastically improved to 0.94 (Figure 2).  333 

Those patients labeled as mutation-carriers according to imputation were then genotyped: all 12 334 
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were confirmed to be G206A carriers, therefore achieving a perfect imputation prediction (100% 335 

agreement) for that specific SNP. 336 

 337 

Genotype Concordance and Kappa Coefficient.  Out of the 1,000 individuals included in our 338 

study, 262 had whole exome sequencing (WES) data available (Raghavan et al., 2018). We had 339 

14,157 overlapping SNPs in WES, HRC and 1000G reference panels with 0% missingness in 340 

WES data on Chromosome 14; SNPs imputed with each reference panel were compared against 341 

WES data separately. When concordance was evaluated, HRC panel performed slightly poorer, 342 

despite showing higher number of “high-quality” variants as compared to 1000G (Table 4). 343 

Using 1000G, we observed 3,542 rare and 35 ultra-rare “high-quality” SNPs; across 262 344 

samples, we counted 1,245 ((1,245/(3,542*262))*100= 0.13%) and 10 (0.10%) mismatches for 345 

rare and ultra-rare respectively. Using HRC, we retrieved 3,759 rare and 93 ultra-rare “high-346 

quality” variants; we observed 2,439 (0.24%) and 32 (0.13%) mismatches for rare and ultra-rare 347 

variants, respectively. Details about pipeline can be found in supplementary section 3. 348 

Next, we computed Cohen’s kappa coefficient (K) for 14,157 imputed SNPs common in WES 349 

and the two reference panels. For both HRC and 1000G-imputation, we observed Kappa (K) of 350 

~0.99 for both rare and ultra-rare “high-quality” variants(Table 4). Details about pipeline can be 351 

found in supplementary section 4.  352 

 353 

Effects of Ancestry on Imputation Quality.  We evaluated the effect of individual ancestral 354 

component separately on SNP mismatches for Chromosome 14 on 262 individuals. For both 355 

reference panels we found that higher African ancestry (YRI) was associated with higher number 356 

of mismatches (Supplementary table 7). For instance, with 1000G reference panel, for rare 357 

variants (“Info” ≥0.80), we observed an estimate of 1.46 (P-value<0.001) for YRI component 358 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2019. ; https://doi.org/10.1101/494229doi: bioRxiv preprint 

https://doi.org/10.1101/494229
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 | P a g e  
 

(indicating that for each unit increase in YRI ancestry, it results in 1.46 additional mismatches). 359 

Details on confidence intervals and robust standard errors can be found in supplementary file 360 

(Table 7 and Section 5). We did not observe significant effect of ancestry on “high-quality” 361 

ultra-rare variants in both panels. 362 

  363 
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Discussion 364 

This study examined imputation performances in a cohort Caribbean Hispanics, focusing on 365 

uncommon, rare and ultra-rare variant, by comparing different phasing and imputation tools, as 366 

well as evaluating the effects of different reference panels. Overall, uncommon and rare variants 367 

can be well imputed in this population, characterized by a unique genetic background. Caribbean 368 

Hispanics are admixed with 59% of their genetic component from European, 32% African, and 369 

8% Native American ancestry (Tosto et al., 2015). Due to their genetic makeup and unique 370 

linkage disequilibrium patterns, admixed populations offer unique opportunity in studying 371 

complex diseases. First, disease prevalence varies across ethnic groups (Igartua et al., 2015) and 372 

certain admixed populations show higher incidence rates and prevalence (e.g. Alzheimer’s 373 

disease, diabetes etc.) or lower ones (e.g. multiple sclerosis).  Second, variants that are ethnic-374 

specific may explain a higher prevalence of the disease of interest in admixed groups.   375 

 376 

In the present study, we examined multiple parameters of imputation using the Caribbean 377 

Hispanics population. First, we found that imputation using SHAPEIT-IMPUTE2 phasing 378 

generated better results than Eagle2-IMPUTE2, and SHAPEIT-IMPUTE2 is superior to MaCH-379 

Admix in terms of imputation performances and process time.   380 

Using SHAPEIT-IMPUTE2, 1000G SNPs outnumbered HRC panel because of the higher 381 

number of SNPs included in the reference panel itself. However, when we restricted our analyses 382 

to overlapping “good-” and “high-quality” SNPs (i.e. those variants that most likely would be 383 

included in association analyses), HRC-imputation outperformed 1000G with higher. The 384 

superior performance of HRC over 1000G was confirmed also when we focused on uncommon, 385 
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rare and ultra-rare SNPs only. Our findings confirm data in literature, i.e. reference panels with 386 

higher number haplotypes perform better in different scenarios.   387 

Additional investigations are needed in order to apply our findings to other admixed and non-388 

admixed populations.  389 

 390 

Overall, higher quality of imputation for rare and ultra-rare variants was also confirmed when we 391 

tested results against sequencing data.  Finally, higher YRI global ancestry was found to 392 

significantly impair SNP imputation, suggesting that imputation quality decreases with increased 393 

African ancestry.  394 

 395 

Lastly, SHAPEIT-IMPUTE2 with 1000G reference panel was successful in identifying G206A 396 

mutation carriers.  We also noticed that imputation quality drastically improved when imputation 397 

was conducted using large (5MB) chunk size as compared to small (1MB) chunks. This seems to 398 

contradict previous observation: Zhang et al (Zhang et al., 2011) studied the effect of window 399 

size on imputation in an African-Americans . They concluded that window size of 1MB could be 400 

considered acceptable. Possible explanations for these different results might be the more 401 

complex admixture of CH compare to AA (three-way vs. two-way admixed) and a more 402 

complex LD pattern for the G206A region. Ultimately, we recommend to consider a wider 403 

window size to achieve high-quality imputation in specific variants that fail under default 404 

settings. 405 

 406 

This work has limitations. First, we could carry out the comparison between the two reference 407 

panels restricting the analyses to overlapping variants only, limiting our observation to a subset 408 
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of the variants included in the 1000G panel. This is a result of the HRC composition, which is 409 

composed by several studies and ended up including only a consensus number of variants.  410 

Second, we tested the agreement between imputed and sequenced variants in a smaller subset of 411 

individuals that had both GWAS and WES data available.   412 
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 530 

 Table 1: SNP counts in HRC and 1000G reference panel. 531 

*For Chromosome 1, the number of individuals were 22,691 532 

  533 

Reference Panel Individuals Autosomal variants Bi-allelic SNPs Multi-allelic SNPs 

1000G Phase 3 2,504 81,706,022 77,818,332 3,887,690 
HRC 27,165* 39,131,600 39,131,600 NA 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2019. ; https://doi.org/10.1101/494229doi: bioRxiv preprint 

https://doi.org/10.1101/494229
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 | P a g e  
 

Table 2: Type of imputed SNPs across reference panels. 534 

   535 

Reference 
Panel Multi-allelic SNPs Bi-allelic SNPs Total SNPs 

 Total SNPs Info* 
≥0.40 (%) 

Info ≥0.80 
(%) Total SNPs Info ≥0.40 

(%) 
Info ≥0.80 

(%) Total SNPs Info ≥0.40 
(%) 

Info ≥0.80 
(%) 

All SNPs 

1000G 3,319,815 2,586,342 
(77.90) 

2,061,295 
(62.09) 77,920,577 31,423,926 

(40.32) 
23,468,086 

(30.11) 81,240,392 31,423,926 
(41.86) 

25,529,381 
(31.42) 

HRC NA NA NA 38,532,090 23,436,980 
(60.82) 

18,833,790 
(48.87) 38,532,090 23,436,980 

(60.82) 
18,833,790 

(48.79) 

SNPs overlapping HRC & 1000G 

1000G NA NA NA 30,090,251 22,631,112 
(75.21) 

18,408,585 
(61.17) 30,090,251 22,631,112 

(75.21)  
18,408,585 

(61.17) 

HRC NA NA NA 30,090,251 22,438,268 
(74.56) 

18,395,036 
(61.13) 30,090,251 22,438,268 

(74.56) 
18,395,036 

(61.13) 
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536 

537 

538 

 Table 3: SNP Counts for all Bi-allelic uncommon, rare and ultra-rare SNPs.  539 
  540 

MAF 
1000G HRC 

Info ≥0 Info ≥0.40 (%) Info ≥0.80 (%) Info ≥0 Info ≥0.40 (%) Info ≥0.80 (%) 

All SNPs 

[1% - 5%] 6,025,281 5,989,223  
(98.90) 

5,441,982  
(90.31) 5,434,996 5,421,257 

(99.84) 5,061,904 (93.13) 

[0.1% - 1%) 20,249,058 16,881,286 
(83.36) 

10,901,789 
(53.83) 11,780,671 10,931,924 

(92.79) 
7,404,808  

(62.85) 

[0 – 0.1%) 44,562,205 1,490,434 
(3.34) 

242,717 
(0.544) 15,055,433 828,256 

(5.50) 
174,673 
(1.16) 

SNPs overlapping HRC & 1000G 

[1% - 5%] 5,624,956 5,604,308 
(99.63) 

5,148,285  
(91.52) 5,396,207 5,385,364  

(99.79) 
5,037,187 

(93.34) 

[0.1% - 1%) 11,875,603 10,442,603 
(87.93) 

 7,027,312 
(59.17) 10,945,899 10,268,136  

(93.80) 
7,060,908 

(64.50) 

[0 – 0.1%) 6,314,479 312,967 
(4.95) 

47,614 
(0.75) 7,519,807 560,043 

(7.44) 
127,423 
(1.69) 
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 541 

Table 4: Comparison for mismatch counts and Kappa (K) for HRC and 1000G using WES data 542 
on Chromosome 14. 543 

*Less value than 262*SNP because imputed with poor posterior probability failed to be 544 
converted from .gen to plink format.  545 

MAF 1000G HRC 
 Info ≥0.80 Info ≥0.80 

 
SNP Total SNPs in 

all persons* 
Mismatch Kap

pa 
(K) 

SNP Total SNPs in 
all persons* 

Mismatch Kappa 
(K) 

[1% - 5%] 
2,354 610,550 7,397 

(1.22%) 
0.99 2,264 587,961 8,963 

(1.52%) 
0.99 

[0.1% - 1%) 
3,542 926,109 1,245 

(0.13%) 
0.99 3,759 982,734 2,439 

(0.24%) 
0.99 

[0 – 0.1%) 
35 9,163 10 

(0.10%) 
0.99 93 24,348 32 

(0.13%) 
0.99 
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Figure 1: Comparison of average Info quality between HRC and 1000G reference panel for all autosomal 546 
chromosomes 547 

  548 
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Figure 2: Comparison of average Info on CHR14: 70-75MB (5MB) vs 73-74MB (1MB) region 549 

 550 
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