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Abstract 

Antibacterial agents are an important tool in the prevention of bacterial infections. 

Inorganic materials are attractive due to their high stability under a variety of 

conditions compared to organic antibacterial agents. Herein tungsten oxide nanodots 

(WO3-X), synthesized by a simple one-pot synthetic approach, was found to exhibit 

efficient antibacterial capabilities. The analyses with colony-forming units (CFU) 

showed excellent antibacterial activity of WO3-X against both gram-negative E. coli 

(Escherichia coli) and gram-positive S. aureus (Staphylococcus aureus) strains. The 

scanning electron microscopy (SEM) and transmission electron microscopy (TEM) 

images revealed clear damage to the bacterial cell membranes, which was further 

confirmed by molecular dynamics simulations. Additionally, exposure to simulated 

sunlight was found to further increase germicidal activity of WO3-X nanodots – a 

30-minute exposure to sunlight (combining 50 μg/mL WO3-X nanodots) showed a 70% 

decrease in E. coli viability compared to without exposure. Electron spin resonance 

spectroscopy (ESR) was used to elucidate the underlying mechanism of this 

photocatalytic activity through the generation of hydroxyl radical species. Cell 

counting kit-8 (CCK-8) and the live/dead assay were further employed to evaluate the 
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cytotoxicity of WO3-X nanodots on eukaryotic cells, which demonstrated their general 

biocompatibility. In all, our results suggest WO3-X nanodots have considerable 

potential in antibacterial applications, while also being biocompatible at large. 

 

 

Introduction 

Bacterial infections are a significant threat to a modern healthy population. 

Currently, close to 48 million cases of pathogenic diseases occur annually and 

approximately 88,000 people die from bacterial infection in the United States alone 

every year.1-2 Perhaps more troublesome, the abuse and overuse of antibiotics in 

recent decades have made them less effective against bacterial infections. This is 

specifically true for multidrug resistant bacteria aptly named “superbugs”. In the past 

few years, multidrug-resistance genes NDM-1 and MCR-1 were found in the plasmids 

of superbugs, which could rapidly transfer to other strains.3-4 Thus, new antibiotics 

that can effectively overcome the significant health threat of superbugs are urgently 

needed.  

In the past few years, inorganic nanomaterials have drawn significant attention 

due to their distinctive properties of small size, large surface area, and high reactivity. 

Inorganic nanomaterials have been widely used in biomedical applications such as 

biocatalysis,5-6 cell imaging,7-9 drug delivery,9-10 tumor diagnosis and treatment.11-12 

Moreover, inorganic nanomaterials have also been applied for antibacterial agents.13-18 

Compared to organic materials, inorganic antibiotics are stable under harsh conditions 

such as high temperature and pressure.19-21 Due to high stability, inorganic materials 

have attracted higher levels of interest for bacterial control compared to organic 

antibiotics.22-23 A number of studies have demonstrated that some metal nanomaterials, 

such as Ag13, 24-26 and Cu15, 27-28, have strong germicidal activity. Unfortunately, sliver 

nanoparticles were found to be significantly toxic to mammalian cells due to the 

release of Ag+ ions and their interactions with thiol groups of proteins in mammalian 

cells.29-30 Additionally, copper nanoparticles were also found to cause serious injury to 

the kidney, liver, and spleen of exposed mice through oral gavage.31 Thus, significant 
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biotoxicity has limited the widespread application of these metal nanoparticles.  

Alternatively, metal oxide nanoparticles (such as TiO2 and ZnO) have been found 

to be more suitable for commercial bactericide agents because of their lower cost and 

less toxicity.32-33 In addition to antibacterial activity, many metal oxide materials 

exhibit photocatalytic properties.34-36 Under the stimulation of light, separation of 

charge could be induced within metal oxide materials resulting in the generation of 

electrons and holes. Due to the strong oxidative ability of holes, hydroxyl radicals 

(·OH) can be produced by the reaction of holes with water. Furthermore, electrons can 

reduce O2 generating super oxide anion (O2−•), another reactive oxygen species.37-38 

Biologically, ·OH and O2−• can cause peroxidation of the germ membrane lipids, 

strand breakage of DNA, inactivation of proteins, and eventually germ death.39-41  

ZnO nanoparticles have been widely explored as a model metal oxide 

nanomaterial for its excellent bacterial-killing ability with or without irradiation.42-46 

Unfortunately these materials have been found to be quite toxic. Chen and coworkers 

have elucidated that ZnO nanoparticles could activate endoplasmatic reticulum stress 

response and even induce apoptosis.47 Other in vivo studies have found ZnO 

nanoparticles can cause liver injury and induce hepatocyte apoptosis through 

oxidative stress and endoplasmatic reticulum stress.48 Therefore, more effort is needed 

in developing an effective antibacterial agent that not only has strong bactericidal 

ability, but is also biocompatible. 

Previously, we have synthesized ultrasmall WO3-X nanodots and explored their 

broad potential application for tumor theranostics and treatment.49 It was found that 

the antibacterial activity of WO3-X nanodots was a result of membrane stress along 

with their photocatalytic properties, which provided a significant enhancement on 

their strong bactericidal activity. Both the scanning electron microscopy (SEM) and 

transmission electron microscopy (TEM) images clearly revealed damages to the 

bacterial cell membranes, which was further confirmed by our molecular dynamics 

(MD) simulations. Meanwhile, WO3-X nanodots were found to be benign to 

eukaryotic cells. Our findings thus show that WO3-X nanodots have significant 
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potential as an effective, but biologically safe, antibacterial agent.  

 

 

Results and Discussion 

Synthesis and characterization of WO3-X 

As shown in our previous study49, water-dispersible WO3-X nanodots were 

synthesized by a simple one-pot reaction within 2h (Figure 1). TEM was used to 

study the morphology and size of WO3-X. As shown in Figure 1a, the WO3-X nanodots 

were found to be uniform and ultra-small (1.1±0.3nm). Previous studies have 

demonstrated that smaller particles were more effective in killing germs as compared 

to larger particles. It has been proposed that smaller nanoparticles may penetrate the 

cell walls of bacteria and interact with membranes more easily.42, 50  

UV-vis spectrum of the WO3-X nanodots exhibited a strong absorption band 

across the near-infrared range (NIR), making them an ideal probe for photothermal 

therapy and photoacoustic imaging of tumors. Our previous study focused on the 

application of WO3-X nanodots for cancer theranostics.49 Additionally, we have 

previously used X-ray diffraction (XPS) and X-ray photoelectron spectroscopy (XRD) 

to analyze the structure of WO3-X. We found the nanodots were oxygen deficient and 

their crystalline structure were similar to the nonstoichimetric monoclinic WO2.72.
49 

 

Antibacterial activity 

To evaluate the antibacterial activity of WO3-X nanodots, a standard colony 

counting assay was employed. As demonstrated in Figure 2, after 2h of treatment 

with less than 50 μg/mL of WO3-X, slight germicidal activity to E. coli was detected. 

The viability of E. coli cells were 95.7% and 84.6% corresponding to 25μg/mL and 50

μg/mL treatment concentration respectively. Whereas for the treatment concentration 

up to 100μg/mL, cell viability decreased to 19.7%, which illustrated that WO3-X could 

kill bacteria in a concentration-dependent manner. Moreover, with the increase of 
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exposure time, the antibacterial activity of WO3-X also increased significantly. 

Viability of E. coli decreased to 44.0%, 37.0% and 0%, when treated with 25, 50 and 

100μg/mL WO3-X for 6h. A similar trend was also found in S. aureus. However, 

compared to E. coli, S. aureus was more sensitive to WO3-X. It was found that 25, 50 

and 100μg/mL WO3-X could kill 11.1%, 48.8% and 88.9% S. aureus when treated for 

2 h and loss of viability increased to 81.3%, 90.0%, 100%, respectively, when treated 

for 6h. Previous studies attributed different sensitivity to antibacterial agents between 

Gram-positive and Gram-negative bacterial strains to their differences in the structure 

of cell walls and membranes.51-52 Gram-negative bacteria possess an outer membrane 

which is not present in gram-positive bacteria. An additional membrane may induce 

the resistance of gram-negative bacteria to WO3-X by providing another physical layer.  

 

Bacterial morphology changes 

To further investigate the antibacterial effect of WO3-X, SEM was used to 

investigate the morphology changes caused by WO3-X. As depicted in Figure 3, both 

E. coli and S. aureus cells were well defined and fully intact with the WO3-X absent. 

Conversely, after incubation with 100μg/mL WO3-X for 2h, a significant amount of 

WO3-X adhered onto the surface of the bacterial cells. Thus, the bacterial cells were 

found to deform significantly. SEM revealed the surface of E. coli cells became 

coarse and potholed. Correspondingly, most S. aureus cells were found to collapse 

suggesting loss of their cytoplasm. Previous studies found that numerous 

nanomaterials could kill bacteria due to direct interaction with the membrane leading 

to physical disruption.43, 53-55  

Moreover, TEM imaging was also employed to observe the mechanism by which 

WO3-X impaired bacteria. Morphologies of normal E. coli cells (control) were shown 

as regular and integrated, with uniform cytoplasm (Figure 4; left). However, 

significant damage of the E. coli membranes were observed after the incubation of 

100μg/mL WO3-X for 2h (Figure 4; right). The location of WO3-X nanodots on the E. 
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coli membrane surface were marked with red arrows (Figure 4; right). These 

additional TEM images clearly demonstrate the severe injury of these bacterial cells, 

with both damage in membrane and effusion of cytoplasm, consistent with the 

findings from the SEM imaging. 

The above antibacterial assays, along with SEM and TEM images suggest that 

WO3-X might interact with the membrane of bacterium directly and disturb the 

function of membrane.  

 

Interaction between WO3-x and bacterial membrane 

Molecular dynamics (MD) simulations were used to probe the interaction 

mechanism between WO3-x and the bacterial membrane (see Figure 5). Figure 5a 

shows the initial conformation of the membrane and nanodots system, and Figure 5b 

shows a representative conformation during the unbiased MD simulations. The 

nanodots reversibly adsorb onto the membrane within 50 ns, leading to accumulation 

of WO3-x near the membrane (Figure 5d). They can either bind directly to the 

membrane or indirectly interact through a layer of bridging water. No permeation into 

the membrane was observed during 150 ns of simulation time. Energy analysis 

(Figure 5c) shows that the binding between membrane and WO3-x is mainly driven by 

Coulomb interactions. Additional “docking” simulations of the membrane and 

nanosheet system shows that the nanosheet can attach to the membrane but does not 

extract lipid molecules during 150 ns of simulations (Figure S3). This is in contrast to 

graphene nanosheets which can robustly extract lipid molecules from the membrane56. 

Taken together, the MD simulations indicate that WO3-x interacts strongly with the 

lipid head groups and adsorb onto the surface of the membrane. The adsorption of 

WO3-x could directly interfere with the functions of membrane and membrane 

proteins or enhance the activity of reactive oxygen species. 

 

Photoinduced antibacterial activity of WO3-X nanodots 

To further explore the antibacterial applications of WO3-X, photoinduced 

antibacterial activity was investigated (Figure 6). Our results showed that simulated 
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sunlight exhibited limited toxicity to E. coli. As a control we found that even after 

being irradiated for 30 min (without WO3-X) survival rate was high (~88%; Figure 

6a-b). However, after the bacteria were combined with WO3-X in the presence of 

simulated sunlight, bacterial survival rate decreased significantly (Figure 6a-b). 

When E. coli was exposed to 50μg/mL WO3-X nanodots and irradiated for 10 min, the 

viability decreased to ~21.2%. When irradiation time increased to 30 min, only 7.1% 

of E. coli cells survived, which was much less than the nonirradiated control (80.8%). 

To investigate the mechanism of photoinduced antibacterial activity of WO3-X, 

photoinduced ROS generation ability was measured. Previously, it was shown that 

ESR spectroscopy was a reliable method for the analysis of ROS generation.57-58 

5-tert-butoxycarbonyl 5-methyl-1-pyrroline N-oxide (BMPO), a spin trap for 

hydroxyl radical and superoxide was also required in this assay. As shown in Figure 

6c, no ESR signal was detected in the control groups (consisted of unirradiated WO3-X 

sample, irradiated WO3-X sample without BMPO and WO3-X absent sample). However, 

characteristic four-line spectrum with the relative intensities of 1:2:2:1 was detected 

after WO3-X was exposed to simulated sunlight, which indicated that hydroxyl radical 

was generated by WO3-X under irradiation. Moreover, signal intensity of the spectrum 

increased with the increase of irradiation time. These results suggest that the 

photo-induced antibacterial activity of WO3-X nanodots can be attributed to 

photoexcited ROS generation. In addition, many studies have reported the 

mechanisms of photocatalytic activity of semiconductors. As a semiconductor, WO3-X 

has a wide band gap and exhibits photocatalytic properties. Numerous studies have 

demonstrated that after semiconductor materials are irradiated with light such that the 

absorbed energy is equivalent to band gap, electrons in valence band will be excited 

to the conduction band resulting in the generation of hole and electron charge 

carriers.35, 38, 44 As a result of the strong oxidative ability of holes, hydroxyl radicals 

may be produced by reacting with water which is another ROS species that may 

contribute to antibacterial activity.   
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Cytotoxicity to mammalian cells (Biocompatibility) 

Because of its obvious antibacterial effect, cytotoxicity of WO3-X to eukaryotic 

cells was also investigated. Human bronchial epithelial cell line (Beas-2B) and human 

umbilical vein endothelial cell (HUVEC) were chosen to evaluate cytotoxicity caused 

by WO3-X. Both CCK-8 and live/dead assays were implemented after different 

concentrations of WO3-X were co-incubated with cells for 24h. As indicated in Figure 

7, Beas-2b (7a) and HUVEC (7b) cells were not sensitive to WO3-X. Cell viability was 

still more than 80% even when cells were exposed to 400μg/mL of WO3-X. The results 

of live/dead assay (7c) also demonstrated that WO3-X was non-toxic to Beas-2b and 

HUVEC cells.  

In addition, the cell viability of Beas-2b and HUVEC cells incubated with WO3-X 

in combination of simulated sunlight was also analyzed by CCK-8 assay. After being 

treated with WO3-X nanodots (200μg/mL) for 1 h and then closed with simulated 

sunlight exposure for 30 min, these eukaryotic cells were incubated for 24h to 

examine their cell viability. Different from bacteria, both Beas-2B (Figure 7d) and 

HUVEC (Figure 7e) were not sensitive to the photocatalytic effect of WO3-X. 

Simulated sunlight could not intensify the cytotoxicity of WO3-X, which might result 

from the auto antioxidant system in mammalian cells as compared to bacteria. The 

auto antioxidant system includes many antioxidant enzymes, such as superoxide 

dismutase (SOD), peroxidase (POD), catalase (CAT) and so on59-60. Those enzymes 

could relieve the oxidative stress caused by WO3-X nanodots when exposed to 

simulated sunlight. 

The difference of sensitivity to WO3-X between bacteria and eukaryotic cells may 

be attributed to the difference in their culture environment. Because of their large 

surface area and high surface free energy, nanomaterials may adsorb biomolecules 

(such as fetal bovine serum proteins in complete medium) onto their surfaces and 

form a surface coating structure (the so-called protein ‘corona’).61 Corona surface 

structures may lower the surface free energy of nanomaterials and changes their 

dispersibility.61 In addition, corona has also been proved to change the surface 
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properties of nanomaterials and alter their biological responses.61-62 For example, in 

our previous studies, we have indicated that fetal bovine serum proteins can absorb 

easily onto graphene oxide (GO) nanosheets to form corona, which weakens the 

GO-phospholipids interaction and results in a less destructive action to cell 

membranes due to the unfavorable steric effects of corona on GO surfaces.62-63 

Furthermore, the auto antioxidant system in mammalian cells may help reduce the 

oxidative stresses. 

 

Conclusion 

In summary，WO3-X nanodots were synthesized by a one-pot approach within 2h 

and subsequently tested as an antibacterial agent. The antibacterial activity of WO3-X 

nanodots were investigated against both Gram-negative E. coli and Gram-positive S. 

aureus. It was found that as-produced WO3-X nanodots could kill both E. coli and S. 

aureus in a concentration- and time-dependent manner. Our findings further suggested 

that the antibacterial mechanism of WO3-X may be attributed to bacterial membrane 

disruption. Additionally, we also detected that simulated sunlight could significantly 

increase the antibacterial activity of WO3-X nanodots by inducing the generation of 

reactive oxygen species (ROS). Importantly, WO3-X nanodots were found to be 

nontoxic to eukaryotic cells even combining the simulated sunlight, which suggesting 

far reaching potential as a selective antibacterial agent. 

 

Experimental section 

Synthesis and characterization of WO3-X 

WO3-X was synthesized by a simple and rapid reaction, which was described in 

detail from our previous study.49 Briefly, 80 mL of pentaerythritol tetrakis 

(3-mercaptopropionate)-terminated poly(methacrylic acid) (PTMP-PMAA) solution 

was heated to boil under a nitrogen environment. 20 mL WCl6 was then added and 

reacted for 2h. The mixture was then cooled and centrifuged with an ultrafiltration 

tube to remove residual PTMP-PMAA. WO3-X was characterized with transmission 
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electron microscopy (TEM) and an ultraviolet-visible (UV-vis) spectrophotometer. 

The WO3-X solution was casted onto a copper grid and then dried before 

characterization. TEM images were collected by using a FEI Tecnai G20 TEM with 

an acceleration voltage of 200kV. UV-vis absorption spectrum was recorded by a 

PerkinElmer Lambda 750 UV-vis-NIR spectrophotometer. 

 

Bacterial culture and antibacterial activity assay 

E. coli (ATCC25922,) and S. aureus (ATCC25923,) were selected as 

representative gram-negative and gram-positive bacterial models, respectively, for the 

antibacterial assays. Both types of bacterium were grown in LB (Luria-Bertani) 

medium at 37 oC overnight and harvested at the mid-exponential growth phase. Next, 

the bacteria were washed with isotonic saline solution 3 times to rinse away any 

residual medium. Subsequently, bacterial cells were diluted to the concentration of 

106 to 107 colony forming units per milliliter (CFU/mL) with isotonic saline solution. 

To examine the antibacterial activity, 0, 25, 50, 100 μg/mL WO3-X nanodots were 

used to treat both E. coli and S. aureus for 2h and 6h under the condition of 37oC and 

250 rpm shaking. Finally, 100 μL bacterium solution was spread on LB plates and 

after an overnight incubation, colonies were counted to evaluate antibacterial activity 

of WO3-X to both E. coli and S. aureus. 

 

Bacterial morphology detection 

To visualize the morphological changes of E. coli and S. aureus bacterial cells 

after WO3-X treatment, we incubated both types of bacteria with WO3-X at the final 

concentration of 100 μg/mL at 37 oC and 250 rpm shaking for 2h. The bacteria were 

then centrifuged and washed with sterile deionized water 3 times. Next, bacterial cells 

were prefixed with 2.5% glutaraldehyde for 2h and fixed with 1% osmium tetroxide 

for 1h sequentially. Subsequently, dehydration was executed by using a graded series 

of ethanol (30%, 50%, 70%, 80%, 90%, 95% and 100%). Finally, bacterial cells were 

dried in a vacuum oven, sputter-coated with gold and imaged under the field-emission 
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SEM. TEM samples were prepared following the previous study62. Briefly, after being 

incubated with WO3-X nanodots, E.coli cells were fixed with 2.5% glutaraldehyde 

overnight. Then samples were fixed again with OsO4, dehydrated with gradient 

ethanol solution, embedded with resin, and then cut into sections of 70 nm in 

thickness. Finally, sections were loaded onto copper grids and scanned by HT7700 

transmission electron microscopy (Hitachi). 

 

Sunlight induced ROS generation and antibacterial activity analysis 

ESR was used to observe the photocatalytic activity of WO3-X. The spin-trap 

5-tert-butoxycarbonyl 5-methyl-1-pyrroline N-oxide (BMPO) was employed to verify 

the generation of ·OH radical species. 50μL of WO3-X (100μg/mL) was loaded into 

quartz capillary tubes and mixed with BMPO (the final concentration was 25mM). 

The capillary tubes were sealed and inserted into the ESR cavity. Spectra signals were 

recorded when samples were exposed to simulated sunlight (provide by filtered 450 

W Xenon light) for selected times of 0, 1, 3 and 5 minutes.  

To investigate the antibacterial activity of WO3-X after exposure to sunlight, the 

mixtures including E. coli and different concentrations of WO3-X were irradiated 

under a simulated sunlight for 0, 10 and 30 min. After incubation for a total treatment 

time of 2h at 37oC, 100μL mixtures were spread onto LB plates. Next, plates were 

incubated at 37oC overnight. Resultant colonies on the plates were counted to 

calculate survival rate of bacterium. 

 

Cytotoxicity assay 

Beas-2B cells and HUVEC cell lines were used to investigate cytotoxicity of 

WO3-X. Beas-2B and HUVEC cells were cultured with DMEM medium supplied with 

10% fetal bovine serum (FBS) and 1% antibiotic (streptomycin 100μg/mL and 

penicillin 100 U/mL) in an incubator at 37oC and in a 5% CO2 environment. Cells 

were seeded in 96-well plates at the concentration of 5000 cells/well. Following a 24h 

incubation, cells were incubated with fresh medium containing 0, 25, 50, 100, 200, 
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400μg/mL WO3-X. After treatment for 24h, cell counting kit-8 (CCK-8) was added in 

each well. The cells were then incubated for an additional 2h at 37 oC and 5% CO2. 

The cytotoxicity of WO3-X was analyzed by measuring spectrophotometrical 

absorbance at 450 nm wavelength by a microplate reader. 

 

Molecular dynamics simulations 

Molecular dynamics simulations were performed to understand the interaction 

between WO3-X and the bacteria cell membrane. The CHARMM36m force field was 

used to model lipids and water. For WO3-x, the partial charge on oxygen was 

determined from quantum mechanics (QM) density functional theory (DFT) 

calculations and Mulliken and Lowdin analyses (Figure S1, Table S1), and then the 

vdW parameters were tuned to reproduce the experimental water contact angle (ca. 0 

degree) and QM equilibrium interaction distance between water and WO3-x (Figure S2, 

Table S2). The bond lengths and angles were taken from the crystal structure. The 

WO3-x nanodot model was constructed by cutting four layers of the W18O49 crystal 

structure and has the stoichiometry of W48O112 (i.e. x=0.67 in the reduced formula 

WO3-x) The bacteria membrane was represented by a lipid bilayer consisting of 342 

POPE molecules. 

   Following similar protocols in our previous studies64-76, four WO3-x nanodots and 

the membrane were placed in a simulation box with dimension 9.9×9.9×12.0 nm3. 

The nanodots were at least 2 nm away from the membrane in the initial structure. 

Multiple 150 ns long MD simulations were performed for the complex system. 

Additional “docking” simulations were also performed in which a WO3-x nanosheet 

was placed perpendicularly to the membrane. The nanosheet with a size of 

4.1×1.2×7.0 nm3 was constructed by cutting four layers of the W18O49 crystal 

structure and removing surface oxygen atoms. The size of the simulation box was 

9.8×9.8×16.8 nm3. The initial separation distance between the nanosheet and the 

membrane was 1 nm. Then the positions of the nanosheet were fixed while the 
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membrane was fully flexible. 
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Figure 1. Characterization of WO3-X nanodots. (a) TEM imaging and size distribution 

(inset) of WO3-X. (b) UV-absorption spectrum of WO3-X nanodots.  
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Figure 2. Antibacterial activity of WO3-X nanodots. (a,c) viability of E. coli and S. 

aureus (b,d) after treated with different concentrations of WO3-X nanodots for 2 and 

6h. 
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Figure 3. Morphological damage of E. coli and S. aureus was detected by SEM 

imaging after treated with 100μg/mL WO3-X for 2h. 
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Figure 4. Membrane impairment of E. coli after the treatment of 100μg/mL WO3-X for 

2h with TEM imaging (left: control; right: with WO3-X). The location of WO3-X 
nanorods on the membrane surfaces were marked by red arrows.  
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Figure 5. Molecular dynamics simulations of bacterial membrane with WO3-x 

nanodots. (a) Starting conformation and (b) representative conformation at 60 ns. W, 

O, N and P atoms are shown in spheres, and the fatty acid tails are shown in sticks. (c) 

evolution of interaction energy between membrane and WO3-x during the 150ns 

simulation. The energy is averaged over 1-ns windows. (d) Density distribution of 

WO3-x along the normal direction to the membrane. The width of the band shows 

statistical error estimated from two independent simulations. The WO3-x nanodots 

reversibly adsorb on the membrane surface due to interaction with phosphate and 

amonium groups on the lipids.  
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Figure 6. Photoinduced Antibacterial activity and photocatalytic activity of WO3-X 

against E. coli. (a,b) Antibacterial activity of WO3-X nanodots under simulated 

sunlight. (c). Photoinduced ROS generation ability of WO3-X nanodots was detected 

by ESR spectra. 
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Figure 7. Cytotoxicity of WO3-X nanodots to eukaryotic Beas-2b and HUVEC cells. 

Cell viability of Beas-2b (a) and HUVEC (b) after treated with different 

concentrations of WO3-X nanodots for 24h was analyzed by CCK-8 and live/dead 

assay (c). Cytotoxicity of WO3-X nanodots to Beas-2b (d) and HUVEC (e) cells 

combining simulated sunlight. 
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