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To cure or not to cure: consequences of immunological
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Abstract

Recent clinical findings in Chronic Myeloid Leukemia (CML) patients suggest that the number
and function of immune effector cells are modulated by Tyrosine Kinase Inhibitors (TKI) treatment.
There is further evidence that the success or failure of treatment cessation at least partly depends on the
patient’s immunological constitution. Here, we propose a general ODE model to functionally describe
the interactions between immune effector cells with leukemic cells during the TKI treatment of CML.
In total, we consider 20 different sub-models, which assume different functional interactions between
immune effector and leukemic cells. We show that quantitative criteria, which are purely based on the
quality of model fitting, are not able to identify optimal models. On the other hand, the application
of qualitative criteria based on a dynamical system framework allowed us to identify nine of those
models as more suitable than the others to describe clinically observed patterns and, thereby, to derive
conclusion about the underlying mechanisms. Additionally, including aspects of early CML onset, we
can demonstrate that certain critical parameters, such as the strength of immune response or leukemia
proliferation rate, need to change during CML growth prior to diagnosis, leading to bifurcations that
alter the attractor landscape. Finally, we show that the crucial parameters determining the outcome
of treatment cessation are not identifiable with tumor load data only, thereby highlighting the need to
measure immune cell number and function to properly derive mathematical models with predictive
power.
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1 Introduction

Chronic Myeloid Leukemia (CML) 1s a hematological cancer characterized by the clonal expansion
of myeloid cells in the bone marrow [Hoffbrand et al., 2001]. In the majority of cases, CML results
from a single genetic alteration in hematopoietic stem cells, namely a translocation that involves the
BCR gene in chromosome 22 and ABL1 gene in chromosome 9 [Chereda and Melo, 2015]. The
resulting BCR-ABLI1 fusion gene is continuously activated, thereby triggering a cascade of proteins
that deregulate the cell cycle and accelerate cell division. Due to their unregulated growth and their
limited differentiation, leukemic cells accumulate in bone marrow and outcompete the normal blood
cells [Hehlmann et al., 2007].

In the last decades, the treatment of CML was revolutionized by the advent of targeted therapy
with Tyrosine Kinase Inhibitors (TKIs), a family of drugs which targets the BCR-ABL1 fusion protein
and thereby preferentially affects mutated cells [Druker et al., 2006, Hochhaus et al., 2017]. Normal
cells remain largely unaffected leading to less side effects and better disease control than standard
cytotoxic chemotherapy. Thus, CML treatment with TKIs was one of the first successful examples
of targeted therapy, and a formerly lethal cancer was turned into a controllable disease in which
patients have close-to-normal life expectancy [Jabbour and Kantarjian, 2016, Bower et al., 2016].
Although the therapy with TKIs achieved high long-term survival rates, only few patients with very
good treatment response qualify for treatment cessation studies, which reproducibly report treatment
free remission (TFR) in only 50 - 60 % of cases [Mahon et al., 2010, Rousselot et al., 2014, Rea et al.,
2017b, Saussele et al., 2018]. For all other patients, permanent disease control requires continuing
and a potentially life-long therapy. Ongoing efforts seek to understand the processes accounting for
residual disease control and for defining criteria for safe treatment discontinuation [Saussele et al.,
2016].

Multiple studies pointed towards a critical role of the immune system as an important player in the
control of residual disease after TKI stop [Ilander et al., 2017, Hughes et al., 2017, Rea et al., 2017a,
Sopper et al., 2016, Schiitz et al., 2017, Kumagai et al., 2018]. It has been speculated that, once the
treatment has removed CML load below a certain threshold, the immune cells are further able to limit
the growth of the residual tumor, leading to sustainable treatment-free remission, or, in some cases,
even to the complete eradication of leukemic cells [Hughes and Yong, 2017]. However, there are few
clinical measurable indicators for quantifying such immune control and the mechanisms underlying
these interactions are still controversial [Hughes and Yong, 2017]. Specially the lack of quantitative
information on interactions of the immune system with CML cells makes it difficult to derive robust
criteria for conceptual model approaches and for the prediction of TKI cessation scenarios.

Mathematical models provide an elegant means to study different modes of CML-immune interac-
tions and their functional consequences. Especially the well-defined phenotype and the accessibility
of kinetic data on treatment responses made CML a showcase example for the application of mathe-
matical modelling approaches [Michor et al., 2005, Roeder et al., 2006, Dingli et al., 2010, Komarova
and Wodarz, 2009, Stein et al., 2011]. Several models provided better understanding of the treat-
ment dynamics by dissecting the mechanisms underlying the observed treatment response in CML
patients. Some considered the role of the immune system on tumor progression [Kim et al., 2008,
Wodarz, 2010, Clapp et al., 2015, Besse et al., 2018], but different hypothesis on the interactions
between the leukemic and immune cells were assumed. For instance, a functional form describing an
immune recruitment with a saturation for large numbers of tumor cells was mechanistically derived
in [Kuznetsov et al., 1994], and a functional form describing an optimal immune window for both the
immune response and recruitment were proposed in [Clapp et al., 2015]. For comprehensive reviews
on models for interaction between tumor and immune response, see [Eftimie et al., 2011] and [Clapp
and Levy, 2015].

Using and integrating the knowledge gained from these previous works, we consider the most
frequent and plausible assumptions occurring in those different models, and compile them in a sys-
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tematic dynamical analysis of a generalized CML-immune model. Based on the current clinical
presentation of CML under TKI treatment, we define several criteria that a suitable model should
satisty. Technically, we consider a general model framework based on ordinary differential equations
(ODEs), to qualitatively describe the immune control of residual leukemic cells prior, during and after
TKI therapy. The general model encompasses a set 20 different sub-models, each of which considers
different, possible assumptions on the two main CML-immune interactions: (i) the targeting of CML
cells by immune cells and (ii) the stimulation or inhibition of immune cells due to the presence of
CML cells (referred to as recruitment). We analyze each sub-model in detail and qualitatively com-
pare the features of each sub-model with available data from TKI cessation studies [Mahon et al.,
2010, Rousselot et al., 2014].

Our approach allows comparing the consequences of combining different model assumptions
about the immunological control of CML cells by the immune system as well as opposing effects
of the leukemia on the immune system. We investigate, from a dynamical systems point of view, the
possible routes from CML onset until diagnosis and then treatment and treatment-cessation outcomes.
This model analysis provides insights into the mechanisms involved in the immunological control of
CML after TKI cessation.

2 Mathematical Model

We apply an ODE model to describe the dynamics of CML progression and its interactions with the
immune system. This model extends a recently published model in the context of dose reduction
[Fassoni et al., 2018] by including a compartment of immune effector cells. The model considers
quiescent and proliferating leukemic stem cells (LSCs) as well as immune cells, denoted by X, Y and
Z, respectively. For reasons of simplicity, the immune cell population is considered as a population
that comprises all immune effector cells responsible for the immune response; such as NK cells or
CD8+ T cells. A scheme of the model is depicted in Figure 1. The model is formally written as the
following ODEs system:

X _ X+ Y
aT pPxy prxr,
day Y
—— = pxyX—pyx¥ +pyY|1—— | —mgZF(Y)
ar Ty
(1
—eTK[(l — u(t — tc))Y,
adz
—-— = —dzZ ZG(Y).
g = Pz—dzZ+mg (Y)

The model assumes that quiescent LSCs do not proliferate and enter the proliferating compart-
ment with activation rate pyy. Proliferating LSCs have a turnover rate py modulated by a logistic
growth with carrying capacity 7y. They enter the quiescent compartment with inactivation rate pyyx.
Parameter ergy in describes the effect of TKI on proliferating leukemic cells, which is applied from
treatment start at time r = O until treatment cessation at time ¢ = #¢c. The function u(r —t¢) is the
unit-step function, u(t —tc) =0if t < tc and u(t —tc) = 1 if t > tc. Immune cells are produced at a
constant rate pz and are degraded at a natural rate dz. In the absence of leukemic cells, immune cells
reach the steady state pz/dz.

The interactions between leukemic and immune cells are described as follows. The immune
effector response, i.e., the targeting of proliferating LSCs by immune cells, is described by mgZF (Y).
Here, mg is the maximum rate at which one immune cell kills the leukemic cells, in units of (leukemic
cells)/(immune cell xtime). The function F(Y) is a non-dimensional quantity ranging between 0 and

3


https://doi.org/10.1101/494575
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/494575; this version posted December 13, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

py(1—Y/Ty)
n eTKI(]- - u(t - tC))
_p_’{y_’ ; — Proliferation/production
— —
Pyx “ = = = Activation
Quiescent Proliferating
LSCs LSCs ! <«— — Deactivation
o—— Immune effector response
‘I
Pz d, *—mnmnen Immune recruitment
—l —_ - >
<---- Natural degradation
Immune effector cells
(NK cells / CD8+ T cells)

Figure 1: Schematic model representation with three cell types: quiescent (X, green) and prolifer-
ating (Y, red, turnover with rate py(1 —Y /Ty)) leukemic stem cells, and immune effector cells (Z,
blue, generated with rate pz, decaying with rate dz). The model assumes (i) mechanisms of activa-
tion/deactivation of quiescent/proliferating LSCs with rates pyy and pyx; (i) a cytotoxic effect of
TKI on proliferating LSCs with intensity erk;, applied from time r = 0 until the cessation time ¢ = 7¢;
(iii) an immune response (targeting) on proliferating LSCs with intensity mgZF (Y) (per capita rate
mg, modulated by F(Y)); and (iv) an immune recruitment due to the encounter of immune effector
with proliferating LSCs, with intensity mgZG(Y) (per capita rate mg, modulated by G(Y)).
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1, and describes the modulation of the targeting of LSCs by the immune cells, as a function of the
number of proliferating LSCs. The different choices for F(Y) are discussed below.

Conversely, the effect of LSCs on the stimulation and/or the inhibition of immune cells (summa-
rized as recruitment) is described by the term mgrZG(Y). Following the mechanistic model derived
by Kuznetsov et al. [1994], we assume that a stimulation occurs when one immune cell encounters
leukemic cells and release signaling molecules to recruit more immune cells, while the inhibition
occurs due to the releasing of anti-immune signals by LSCs. Parameter mg represents the maximum
recruitment rate at which one immune cell stimulates other immune cells, in units of 1/time. Alter-
natively, mg can be understood in units of (immune cells)/(immune cell X time), thereby depicting the
per capita recruitment by each immune cell. The function G(Y') is a non-dimensional quantity rang-
ing between 0 and 1, and represents the modulation of the immune recruitment, as a function of the
number of proliferating LSCs.

Our model assume that leukemic stem cells do not directly target or compete with immune cells.
However, the model considers an implicit competition mechanism between normal and leukemic
cells, by assuming that the sum of normal and leukemic cells is constant. Under this assumption each
new leukemic cell replaces a normal cell (see [Fassoni et al., 2018] for more details).

Finally, we assume that the quiescent leukemic cells are predominantly found in the bone marrow
niches and are largely protected from the immune cells. For this reason, we also assume that the
contribution of inactive leukemic cells to the stimulation of immune cells is negligible.

2.1 Modeling the immune response against leukemic cells

We consider four different functional responses for the function F(Y) modulating the targeting of
leukemic cells by immune cells: A) a linear response, described by the law mass-action (or Holling
type 1); B) a response with saturation effect, described by the Holling type II functional response; C)
a response with saturation and learning effects, described by the Holling type III functional response;
and D) a response with an optimal immune window, recently suggested by Clapp and colleagues
[Clapp et al., 2015]. Each of these choices represents different underlying biological mechanisms as
shown in Figure 2.

2.1.1 Law of mass action - Linear response

The law of mass action states that the removal of leukemic cells is linear with respect the number of
LSCs (Figure 2, first row), i.e., v

=&

Here, the coefficient Ck represents the level of LSCs at which the immune attack reaches its maximum
value, i.e., F(Cg) = 1. This functional expression for the modulation of the immune attack implies
that more leukemic cells lead to a higher efficiency of the targeting of a single immune cell.

F(Y) = F(Y)

2.1.2 Holling type II - Saturation effect

The Holling type II functional response is a modification of the law of mass action. It assumes that the
killing of leukemic cells is linear for low densities but, after a threshold described by the parameter
Ck, there is a saturation of the capacity of immune cells (Figure 2, second row). The expression for
F(Y) in this case is

Y
N Cx+Y’
Ck corresponds to the number of LSCs at which the immune response reaches half of its capacity,
i.e., F(Ckx)=1/2. F(Y) saturates at 1 for high values of Y.

F(Y) = Fa(Y)
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Figure 2: Schematic representation of the different functional responses describing the immune re-
sponse and immune recruitment: the law of mass action, describing a linear response (first row); the
Holling type II functional response, describing a saturation effect (second row); the Holling type III
functional response, describing saturation and learning effects (third row); the functional response
suggested by Clapp et al. [2015], describing an optimal immune window (fourth row); and a negative

Holling type III functional response, describing a suppression of immune recruitment for high tumor
load (fifth row).
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2.1.3 Holling type III - Saturation and learning effects

The Holling type III functional response is similar to the Holling type II. The difference occurs for
low densities, when the targeting of leukemic cells is very small (Figure 2, third row). In ecology, this
functional response is used to describe learning effects in the predator ability, or also a mechanism
of prey switching [Holling, 1959]. In our context, this choice indicates that, in the very beginning
of leukemic growth, the immune system does not recognize the leukemic cells as a threat and does
not target these cells. As the number of leukemic clones increases, there is an improvement of the
immune response, representing effects such as acquired immunogenicity. The formal expression in
this case is

YZ
CCL4y?
Again, the parameter Ck corresponds to the level of LSCs at which the response reach half of its
maximum value, i.e., F(Cg) = 1/2, and defines the threshold separating the learning and saturation
effect.

F(Y)=Fc(Y)

2.1.4 Immune window

This functional response has been used in a recent model study on CML [Clapp et al., 2015] and
reflects the assumption that, although the immune response increases as the leukemic cell number
increases, there is an inhibition of the immune system for a large population of leukemic cells (Figure
2, fourth row). As a result, we have a “window” for the number of leukemic cell at which the immune
system works more efficiently. The expression for this term is

2CkY
K

The parameter Cx controls the position where the maximum of F(Y') occurs. The factor 2Ck in the
numerator is included for notational reasons, in order to keep F(Y) a non-dimensional quantity and
to assure that the maximum is F(Ck) = 1.

2.2 Modeling the recruitment of immune cells

Once an immune cell encounters and targets leukemic cells, it also promotes further immune cells to
be activated and attack the tumor. The function G(Y) modulates the maximum number mg of new
immune cells recruited per time, per each immune cell in contact with y leukemic cells. To describe
the possible mechanisms behind this recruitment, we consider the same structures as for the functions
F(Y) above, and an additional response shape based on recent biological evidence pointing to the
suppression of immune effector cell number by CML cells [Hughes et al., 2017] (see Figure 2).

2.2.1 Law of mass action

The first possibility is to choose a linear recruitment

Y
GY)=Gi(Y)=—,
Cr
which means that the immune recruitment is proportional to the number of leukemic cells targeted by
one immune cell (Figure 2, first row).
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2.2.2 Holling type II - Saturation effect

Choosing a Holling type II functional response,

- CR—i—Y’

we have a saturation of the signaling capacity of immune cells (Figure 2, second row). This model for
recruitment was derived by Kuznetsov et al. [1994] with reasonable assumptions on the mechanisms
of release of signaling molecules by immune cells. The behavior described by this functional response
reflects the assumption that there is a limited number of receptors on the surface of immune cells
which sense the presence of leukemic cells, or there is a limited number of proteins in the signaling
cascade which propagates the input signals inside each cell until the recruitment signaling is released
in the extra-cellular medium.

2.2.3 Holling type III — Saturation and learning effects

The choice of a Holling type III function for the recruitment,

Y2

G =G = &~

is a modification of the Holling type II, reflecting the assumption that the immune cells do not release
almost any signal when a low numbers of leukemic cells are present and interactions are rare (Figure
2, third row). This choice reflects a type of adaptive response, in the sense that the immune system
does not considers a low number of leukemic cells as an ‘emergency’ and does not trigger further
activation unless the number of leukemic cells reaches a certain level.

2.24 Immune window
The fourth possible function describing immune recruitment is given by

2CRY

G =Galt) = 51

In the context of recruitment, the window obtained from this function reflects the assumption that a
high number of leukemic cells contributes to the inhibition of immune recruitment (Figure 2, fourth
row).

2.2.5 Immune suppression

The last function used to describe modulation of the number of immune cells by the tumor load
reflects recent biological findings pointing towards the immunosuppressive role of CML cells, exerted
by different markers on the surface of CML cells which suppress the number of immune cells as the
disease progresses [Hughes et al., 2017] (Figure 2, fifth row). This modulation can be described by

Y2

G =G50 =~ 45

This choice assumes that the normal immune recruitment in the absence of CML cells, described
by the natural influx pz, is suppressed for increasing numbers of CML cells, resulting in a smaller
net recruitment pz —mgZG(Y). The parameter Cg controls the level of tumor load at which the
suppression on the recruitment reaches half of its maximum absolute value, i.e., G5s(Cg) = —1/2.
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Figure 3: Fitting sub-models to patient data. Plots of the simulated BCR-ABL1/ABLI ratio, Lyop(t),
for each of the 20 sub-models (different colors), fitted the observed patient data (gray dots).

3 Results

3.1 Quantitative criteria of ‘“‘data fitting”’ are not sufficient for model selection

Combining all possible choices for immune response F(Y) and immune recruitment G(Y), we obtain
20 different sub-models. It is our primary objective to identify which of these models better represent
the disease and treatment dynamics of CML. As a first criteria for model selection, we consider the
ability of each model to fit individual patient time courses.

The tumor load in TKI-treated CML patients is usually monitored by the ratio BCR-ABL1/ABL1
in the peripheral blood, which measures BCR-ABLI1 transcript levels by real time - PCR analysis.
The relative easiness and robustness of these measurements makes CML a well monitored disease and
suitable for quantitative modeling. To compare our model simulations with patient data, we assume
that the ratio BCR-ABL1/ABL]1 in the peripheral blood is equivalent to the percentage of proliferating
LSCs in the stem-cell compartment. Thus, the modeled BCR-ABL1/ABLI ratio, Ly;op(t), which will
be compared with the observed patient data, is given by

Y (1)

LMOD(Z) = 100% .
Ty

In order to illustrate the ability of each sub-model to optimally describe patient data, we took
the time-course of one representative patient of the IRIS trial as an example, and applied parameter
estimation methods to identify, for each of the 20 sub-models, the particular parameter values for
which the model simulation Ly;op(t) reproduces the observed data (Figure 3). The choice of param-
eter values and the fitting strategy are presented in Appendix B. We conclude that, with respect to
the quantitative criteria of data fitting, none of the 20 sub-models can be excluded, nor can they be
classified as more or less suitable.


https://doi.org/10.1101/494575
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/494575; this version posted December 13, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

3.2 Qualitative criteria for model selection and a mathematical framework for
model analysis

The above results imply that quantitative model fits are not sufficient to distinguish models with
respect to their ability to explain time course data as all models perform sufficiently well (as in Figure
3). Instead we suggest including additional qualitative criteria to distinguish models based on their
ability to account for general dynamic phenomena of disease patterning. Such dynamic phenomena
are most obvious under system perturbations, such as changes in the treatment schedule, and are
imprinted into the phase portrait of each sub-model. A complete mathematical analysis of each sub-
model is beyond the scope of this work, but it is our objective to investigate which of these models
are suited to reflect the different phenomena observed in CML patients after treatment cessation. The
results of this qualitative analysis will provide insights on the mechanisms underlying CML dynamics.
The qualitative criteria are formalized as follows.

In different clinical trials to evaluate treatment cessation, about 40-50% of the eligible patients
relapsed while the other 50-60% of patients remained in sustained remission [Saussele et al., 2016].
Among the later, some patients did not exhibit any detectable level of BCR-ABLI1, suggesting that
the disease might have been completely eradicated, while other patients exhibit very low, although
detectable levels of BCR-ABLI, even many years after cessation. This proportion was around 30%
in the A-STIM study [Rousselot et al., 2014]. It has been hypothesized that the immune system might
play a major role in controlling or even eradicating these residual leukemic cell levels [Hughes and
Yong, 2017].

From the dynamical systems point of view, such an immunological control suggests the existence
of two or even three different attractors, corresponding to different CML levels: the “disease steady
state” (corresponding to CML growth prior to diagnosis or to relapse), the “remission steady state”
(corresponding to a sustained molecular remission) and potentially even a “disease-free steady state”
(corresponding to cure or extremely low, thus undetectable, disease levels). In this context, the dis-
ease is diagnosed in the attracting region (or basin of attraction) of the disease steady state, while
TKI treatment is depicted as a temporary force moving the system trajectories towards the attracting
regions of the other steady states. If the treatment indeed succeeds to lead the system to one of these
attracting regions (molecular remission or cure), the system will be maintained in such remission/cure
region after treatment cessation. Otherwise, the system remains in the disease region and results in a
relapse. From the clinical point of view, “cure” and “undetectable disease” might be the same state,
due to incapability of measuring low disease levels accurately.

To analyze the ability of each model to qualitatively describe CML dynamics, we study the be-
havior and phase portrait (stability of steady states, basins of attraction and separatrices) of all sub-
models defined by equation (1) without treatment. The treatment-free system (i.e. erg; =0 ort > 1¢)
is denoted as the “permanent system’ and describes the dynamics after treatment cessation. We will
investigate which of the 20 sub-models present structurally different phase portraits that correspond to
different clinically relevant scenarios for CML dynamics after TKI stopping. To describe these phase
portraits and their corresponding clinical scenarios, we formally introduce the three types of steady
states:

1. The “disease steady state” is a nontrivial stable equilibrium point for the permanent system,
denoted as Ey = (Xy,Yn,Zy), where Yy corresponds to a high level of proliferating LSCs (H
for high), near to their carrying capacity, i.e., 0 < Yy ~ Ty.

2. The “remission steady state” is another nontrivial stable equilibrium point for the permanent
system, denoted as E; = (Xz,Y;,Z;), where the number of proliferating LSCs is low (L for
low), and corresponds to detectable BCR-ABL1 levels above background Y7, ~ 10737y < Yy.

3. The “cure steady state” is the trivial equilibrium of the permanent system, given by Ej =
(0,0,Zp), and corresponds to the extinction of CML cells and the presence of immune cells
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at the normal level Zy = pz/dz. In some situations, there is a third nontrivial steady state
Ep = (Xp,Yp,Zp) which is stable (together with E and E;, while Ej is unstable) and corre-
sponds to a very low number of proliferating LSCs, with BCR-ABLI1 levels below the detection
limit, i.e., Yp ~ 10Ty < Y. We assume that it represents an undetectable residual level of
BCR-ABLI by current RT-PCR analysis, and will denote Ep as the “deep remission steady
state” (D for deep) describing a “functional cure”.

When a positive nontrivial steady state is a saddle, it will be denoted by Ejg; the invariant manifolds
of these saddle-points will determine the separatrix between the basins of attraction.

Based on the above notation, we define six structurally different phase portraits, which a sub-
model may exhibit. Each phase portrait corresponds to a unique clinically relevant scenario, which is
expected to occur in the clinical situation. The scenarios are:

L.

IL.

I1I.

Iv.

Scenario I - The phase portrait of the permanent system presents only two steady states: the
disease steady state Ep is globally stable for positive solutions, and the cure steady state Ey is
unstable. In this case, any solution of the permanent system with a nonzero initial number of
proliferating LSCs (Y (0) > 0) will be attracted by the disease steady state Ep. Therefore, a
relapse is always expected after treatment cessation, because (mathematically) there is always
a residual leukemic population after any treatment (Figure 4A).

Scenario II - The disease steady state E and the cure steady state E are the stable steady states
in the permanent system. In this case, the treatment may result in a complete cure or a relapse
after treatment cessation, depending on the duration of the treatment and the configuration of
the basins of attraction of Ey and Ey (Figure 4B).

Scenario III - the disease steady state Ey and the remission steady state Ey, are the stable steady
states in the permanent system. In this case, remission or relapse after treatment cessation (but
not a complete cure) can be described by the model, depending on the duration of the treatment
and the configuration of the basins of attraction of Ey and Ef (Figure 4C).

Scenario IV - The permanent system exhibits three stable steady states: the disease steady state
Ep, the remission steady state E7 and the cure steady state Ey. In this case, treatment can lead
to all possible outcomes , i.e., relapse, remission and cure, depending on the duration of the
treatment and the configuration of the basins of attraction of Ey, Er and Eq (Figure 4D).

Scenario V: in this scenario, the cure steady state Ey is unstable, while other three nontrivial
steady states are stable, i.e., the deep-remission steady state Ep, the remission steady state Ey,
and the disease steady state Ep are stable. Clinically, this scenario might be indistinguishable
from scenario IV, because this additional deep-remission steady state Ep can be interpreted as
equivalent to the cure steady state Ey due to the very low number of CML cells (Figure 4E).

. Scenario @ - For completeness, we define an additional scenario where the cure steady state E

is globally stable in the permanent system. This scenario corresponds to a healthy individual,
where CML onset is impossible (Figure 4F).

With this nomenclature, the roman numerals in each scenario corresponds to the total number of
positive nontrivial steady states (see Figure 4, e. g. scenario V corresponds to 5 nontrivial positive
steady states: Ey, Er, Ep and two saddle-points Eg). We analyzed each of the 20 sub-models to
identify scenarios that can potentially be obtained from each sub-model. The proofs and methods
used here are described in Appendix A. The results of this analysis are presented in the following
subsection.
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Figure 4: Possible clinically relevant scenarios (phase portraits). Representations of the three-
dimensional phase space (X,Y,Z) for the permanent system (equation (1) with e7g; = 0), restricted to
the two-dimensional plane X = (pyX/pxY)Y. Stable steady states are represented by solid circles (o)
while saddle steady states are represented by crossed circles (). The separatrix between the basins
of attraction are represented by dashed lines. There is one basin of attraction in scenarios I and 0, two
basins of attraction in scenarios II and III, and three basins of attraction in scenarios IV and V. Due
to the huge difference in values of Y for the different steady states, and due to the impossibility to
represent the value Y = 0 with the log-scale, the horizontal axis Y is set to a nonlinear scale via the

transformation Y — /Y.
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Table 1: Scenarios (phase portraits) exhibited by each sub-model. Each combination of F(Y) = F;(Y),
i€ {A,B,C,D} and G(Y) = G;(Y), j € {1,2,3,4,5}, results in a structurally different sub-model of
the permanent system described by system (1) with e7x; = 0. This table presents the scenarios exhib-
ited by each of the 20 sub-models, meaning that, for each submodel (F;, G,) it is possible to choose
different parameter combinations leading to the different indicated scenarios. See the description
of each scenario in Figure 4. Sub-models selected according to the first criterion (section 3.3) are
marked by orange and green colors, which distinguishes them into two-basins (orange) and three-
basins (green) models (see section 3.4). The results in this table were obtained by using analytic and
numerical methods presented in Appendix A.

Fy Fp Fc Fp
G 01 0,111 I, 111
G, 0,1 0,111 I, III
Gy 0,1 0,111 I, II1
Gy, 0,111 o0, 1L 1L I, 1V LU,V 0LILILIV,V
Gs 0,1, 11 LI,V 0o1°ILII,IV

3.3 First criterion for model selection: comparison with clinical outcomes af-
ter treatment cessation

We analyzed each sub-model with respect to the question, whether or not it can generate the clinically
relevant scenarios for different parameter combinations. The results are summarized in Table 1.

First, we note that scenario 0 is not a clinically relevant scenario. Although cure is achieved in this
scenario, it is also achieved without treatment, because Ey is globally stable in the permanent system
with erg; = 0. Thus, such scenario cannot represent a CML patient, as is does not describe CML
diagnosis and progression in the absence of treatment.

As can be seen in Table 1, a linear killing effect (i.e., F' = F4) combined with choices G, G2, G3
and G4 does not reproduce scenarios where cure is possible (excluding scenario 0), because such
sub-models reproduce only scenario I and III. On the other hand, the linear killing effect reproduces
scenarios I, IT and III when a suppression mechanism is chosen for the immune recruitment (G = Gs)
and reproduces the expected clinical outcomes (relapse, remission, cure). Therefore, we exclude the
choices F = F4 with G # G5 from the list of potential candidate mechanisms.

When a Holling type II functional response is chosen for the immune response to CML (F = Fp)
only one sub-model fits the criteria (model (Fp,G4)). The other choices reproduce only scenarios
I and II, and do not predict the clinical outcome of molecular remission. Therefore, these choices
(F = Fp with G # Gy) are excluded from the list of potential candidates.

The choice of a learning effect in the immune response to CML (F = F¢) leads to scenarios
where cure is structurally impossible when G = G, G>,G3, because such sub-models exhibit only
scenarios I and III. On the other hand, the choices (Fr,G4) and (F¢,Gs) additionally exhibit scenario
V, which is viewed as a version of scenario IV where the cure-equilibrium is replaced by the deep-
remission-equilibrium Ep. Therefore, by the first criteria, sub-models (F¢, G1), (Fc,G2) and (F¢,G3)
are excluded from the list of potential candidates, while the other remain.

Finally, when the “immune window” response (F = Fp) is chosen, all the possible combinations
for immune recruitment lead to sub-models that reproduce the clinically expected scenarios (relapse,
remission, cure).
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3.4 Second criteria for model selection: the need of bifurcations to describe
clinical situations

Scenarios IV or V correspond to phase portraits in which all clinically relevant situations (i.e. re-
lapse, remission and cure) coexist for particular parameter settings. We refer to those sub-models as
three-basins models, marked by a green color in Table 1. In such a constellation, two patients with
identical model parameters could potentially end up in different “outcomes” if the treatment intensity
or duration “drives” the trajectory into distinct basins of attraction.

In the other side, there are the sub-models which exhibit only scenarios I, IT and III (marked by an
orange color in Table 1) and in which either the remission, the cure, or none of these states is available
for a particular parameter configuration. Here, we would need to use different parameter values to
describe patients with different outcomes (cure or remission). This implies the need for bifurcations
to change the qualitative phase portrait. We refer to these sub-models, which exhibit scenarios I, II
and III only, as two-basins models.

Table I further indicates that all three-basins models also exhibit scenarios II and III. In this re-
spect, they offer more complexity, but cannot rule out the occurrence of bifurcations during treatment.

Therefore, we cannot argue in favor of three-basins or two-basins models. However, we point out
the differences between the sub-models and reflect them in the light of certain biologically relevant
question. Let’s consider the following question: Is every patient who reaches sustained treatment-
free molecular remission a virtually curable patient, if she/he receives a more intensive therapy? If
yes, we expect that a suitable CML model shall always present three stable steady states, favoring the
three-basins models. If one argues that certain boundary conditions, like a patient’s particular immune
system is generally not suited to allow a cure (even for a more intensive therapy), one may also suggest
the two-basins models. In this case, a change of parameters (such as an additional sensitization of the
immune system) may result in a bifurcation and, thereby, a qualitatively altered phase space, which
then yields a cure state. Such a qualitative alteration of the phase space could possibly be supported
by the administration of immune-modulatory drugs that act independent from the TKI.

3.5 Third criteria for model selection: reproducing the onset of CML

We now turn our attention to the pre-treatment phase of CML, i.e., the time interval from the onset
of the first leukemic clone (i.e., mutation of a single cell) until diagnosis of a macroscopic disease.
Based on the hypotheses and interactions considered by our general ODE model, we argue that it is
plausible to use the outlined models to describe also this pre-treatment phase of CML.

To do so, we make the hypotheses that CML arises from a single leukemic stem cell initiated
within a population of immune cells at a normal, unchallenged level. In the permanent system (equa-
tions (1) with erx; = 0), this is described by the initial conditions X(0) = 0, Y(0) = 1 cell and
Z(0) = pz/dz. Therefore, the onset of CML is represented by a very small perturbation from the cure
steady state Ey. The persistence of the first clone and its progeny is only possible if Ej is unstable;
otherwise, this small perturbation would return to Ej, i.e., the immune system would control the onset
of CML.

We showed that the cure steady state Ey is stable if, and only if, parameters satisfy

Z—ZmKF'(O) > py 2)
Z

The proof is presented in Appendix A.3. The biological interpretation is the following: the value
mgF’(0) measures the rate at which one immune cell mounts a response against the onset of the
first leukemic cell. This value multiplied by pz/dz measures the response rate of the entire immune
population in the very beginning of leukemic growth. If this rate is greater than the proliferation rate
of the leukemic cells, py, then the immune system is able to control the onset of leukemia. If not, the
leukemic cells are able to break the first immune barrier and grow to a certain level. Interestingly, this
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condition does not depend on the recruitment function G(Y'), but only on the immune cells already
resident at the time of leukemic onset. It is worth to note that this condition cannot be satisfied when
the immune response is given by F (Y) = F¢(Y), since F/(0) = 0. This choice represents an immune
system which takes time to learn that the leukemic cells must be targeted. This delay, due to the
learning effect, leads to an inability to control the onset of CML.

Now, to fully describe the onset and diagnosis, once we assume Ej is unstable and CML cells
have escaped the first immune barrier, it is necessary that they grow until reaching the diagnosis size.
This means that £y must be in the attracting basin of Ey, so that the trajectory starting at the small
perturbation from Ep moves towards Ey. Otherwise the solution would converge to another nontrivial
steady state, such as E7 or Ep, and the “disease progression” would not be observed. There are only
two possible scenarios (phase portraits) which fit into this description and where the onset of CML is
fully covered.

3.5.1 Onset of CML starting from scenario I: the CML timeline viewed as sequential transi-
tions through different phase-portraits

The first possibility is to start from scenario I, where Ep is globally attracting for positive solutions
(Figure 5). In this case, the system needs to be pre-set into scenario I at the time of occurrence of
this first leukemic episode. This means that, at this time and stage, the immune system is not able to
control disease onset. However, if the phase portrait remains unchanged during disease progression,
then, after diagnosis and treatment, a relapse would be always observable. As this contradicts clinical
observations, we argue that there must be a change in the phase portrait during disease progression,
i.e., a bifurcation from scenario I to another scenario must occur such that at the time of diagnosis the
system has other, additional stable steady states. Possible transitions are from scenario I to II (via a
transcritical bifurcation involving Ey and E7) or from scenario I to III (via a saddle-node bifurcation
involving E;, and Ey); see Figure 5. Further transitions may occur from scenario II to IV, from III to
V (via saddle-node bifurcations) or between II to III ((via a transcritical bifurcation involving Ey and
Ep). All these bifurcations would be attributed to changes in parameters during disease progression.
As a plausible example, we point out that the strength of the immunological response against CML
may increase as the disease progresses, due to adaptative or stimulation effects on the immune system.
This would be reflected by an increase in parameter mg. This increase may lead to the bifurcations
pointed out in Figure 5, through scenarios I-II-1V or I-III-V, as exemplified in the bifurcation diagrams
in Figure 6. However, such change in the immunological response would occur too late in the sense
that the system trajectory would still remain in the attracting basin of the disease steady state Ey.

As we stated before, the system needs to be in scenario I at the moment of CML onset in order to
observe disease progression. However, it is not necessary that this scenario is the “natural” condition
for every patient. Indeed, the system may be initially in other scenarios where disease initiation is not
possible (when Ej is stable, as in scenarios II, IV or even 0), or not visible (when Ey is unstable but
belongs to the attracting basin of a remission steady state, as in scenarios III and V). In such cases, a
bifurcation leading to scenario I is required prior to onset and may be caused by a temporary loss or
decrease in the immunological function, reducing parameter mg. Once this disruption is caused and
the system moves to scenario I, the disease initiates, and may not be controlled anymore, even with a
return to the original scenario due to a regain of immunological response, as commented above.

3.5.2 Onset of CML starting from scenario III*: the complete CML timeline described by a
single scenario

The second possibility to describe CML onset with model (1) is to consider an alternative phase
portrait to scenario III, which we denote by III*. In this phase portrait, the stable steady states are Ey
and E7, as is the case of scenario III, but now the cure steady state Ey is in the basin of attraction of
Ep (Figure 7A). In this new scenario, a small perturbation from Ey, such as the onset of one CML

15


https://doi.org/10.1101/494575
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/494575; this version posted December 13, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

3000

1) Onset of first
leukemic clone

2000

1500

ImmungEffector Cells (2)

Scenario |

3A) Diagnosis,
Treatment,
Relapse

Two-basins models

Scenario |

/N

Three-basins models

Scenario |

/ N\

0 0001001 01 1 0
Prolferating Leukemic Stem Cells (¥)
(BCR-ABL1 Ratio in %)

0001001 0.1 1 0.
Prolferating Leukemic Stem Cels (Y)
(BCR-ABL1 Ratio in %)

10009 X X . cenario Il |«—| Scenario cenario Il [«—| Scenario
2 A S 1l S 1l S I S 1]
wpe T two bifurcation layers
T T TR TR W ) - -
Proliferating Leukemic Stem Cells (Y) | Scenario IV |<—>| Scenario V |
(BCR-ABL1 Ratio in %)
three bifurcation layers
w |Scenariollfi - sueec | 4A) Diagnosis, - i |Scenario Il [ s | 4B) Diagnosis,
: Treatment, w00 i Treatment,
S @ . Relapse . i Relapse
3 3 20001 H
; i OR 5 | i OR
g wb N Cure e e 9 Remission
é E «ncaf@ \ > i
200 s
soof
¢

Prolerating Leukemic Stem Cells (Y)
(BCR-ABL1 Ratio in %)

7000 —wns | 5A) Diagnosis, N 5B) Diagnosis,

o000 P Treatment, Treatment,
$ s i Relapse 0 Relapse
OR OR
% 2000 Remission 4000 Remission
OR OR

o Cure e Cure

%0 oooroor o1 1 0 700

0001001 041 1 0.
Prolferating Leukemic Stem Cells (Y)
(BCR-ABL1 Ratio in %)

100.

Figure 5: Routes from CML onset until diagnosis, treatment, and treatment cessation; starting from
Scenario 1. Some of the possible routes starting from scenario I and passing through scenarios II,
I, IV and V, are: 1-2-3A (stays in scenario 1), 1 +2—3B—4A (until scenario II; see Figure 6A),
1—2—3C—4B (until scenario III; see Figure 6B), 1 -2—3C—4D—5A (until scenario IV; see Figure
6C), and 1—-2—3C—4E—5B (until scenario V; see Figure 6D). TC(Ey, E;) denotes a transcritical
bifurcation between steady states Ey and E; (J = S,D or L), while SN(E;, Eg) denotes a saddle-node
bifurcation between E; (J = L or D) and a saddle-point Es. Upper-right part: the two-basins models,
which exhibit only scenarios I, II and III, transit along two bifurcation layers; while the three-basins
models, which additionally exhibit scenarios IV or V, transit along three bifurcation layers.
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Figure 6: Bifurcation diagrams illustrating changes in the attractor landscapes. Yellow curves cor-
respond to saddle steady states, blue curves correspond to stable steady states (dark blue for stable
nodes, light blue for stable focus). These bifurcation diagrams illustrate the different possibilities of
transition of sub-models through different phase portraits as the immunological parameters change;
the bifurcation points are indicated by vertical dashed lines. Each panel shows a different path as
indicated in the caption of Figure 5. In all cases shown here, the bifurcation parameter is the strength
of immune response mg, for which a small value of the leads to scenario I, where the onset of CML
is possible. Similar transitions are obtained by varying the proliferation rate py of LSCs and keeping
mg constant (no shown). A)I = I.B)I - IIL.CO)I -1l - IV—=I.D)IIl - V=1V = 1L
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cell, will be attracted to Ey, leading to disease progression and diagnosis. After treatment start, the
system will be moved to the basin of attraction of E7, leading to remission (Figure 7A, blue dotted
lines), or will remain in the basin of attraction of Ey, leading to relapse (Figure 7A, red dotted lines).
The actual outcome depends on the treatment parameters (intensity and duration). Therefore, besides
reproducing the onset of CML until diagnosis, this scenario already reproduces the clinical outcomes
of remission or relapse after treatment, without the need of a bifurcation to pass to another scenario.

Interestingly, we observe that, in scenario III*, a very long or intense treatment may pass the
basin of attraction of E; and end near Eq but in the basin of attraction of Epy, therefore, leading
to relapse, whereas a weaker or shorter treatment would lead to remission (Figure 7A, red dashed
line). Biologically, this corresponds to a situation where the immune system is capable to control the
residual CML cells if these are not too few. In contrast, the immune system is tuned down if there is
very low number of CML cells and, once they grow and activate the immune response again, it is too
late to control them.

Also worth noting, the remission steady state Ey, is a stable focus in scenario III*, which means
that, once a successful treatment drives the system inside the basin of attraction of Ej, the trajectories
converge to it with damped oscillations. This implies that oscillating BCR-ABL1 dynamics should
be observable during and after treatment, until the patient reaches TFR (Figure 6B). This oscillating
phenomenon was reported during the treatment phase by Clapp et al. [2015]. Here, we show that these
oscillations may be observable even after treatment cessation and may be a signature of an immune
system which turns off and allows disease relapse when strong treatments eradicate too many CML
cells. Indeed, in the model scenarios where TFR is reached without oscillations (scenarios II, III, IV
or V), the cure steady state Ey does not belong to the basin of attraction of the disease steady state Ep,
and thus an additional time or dose in the treatment would not lead to relapse, contrary to scenario
IT*.

As a drawback of adopting scenario III* to describe the entire CML timeline, we point to the fact
that this scenario does not predict a complete eradication of CML (Ej is always unstable). Therefore,
patients in which no CML is detectable would, according to the model, still have a very low number
of CML cells during the TFR phase. Furthermore, scenario III* is restricted to a narrow parameter
interval, thereby strongly limiting its robustness (see Figure 7B). Additionally, there is no clinical
evidence for an over-treatment in CML as the duration of TKI treatment has been repeatedly identified
as a predictor of TFR. These limitations argue in favor of scenarios involving bifurcations to change
the attractor landscape during disease progression and treatment.

4 Discussion

We presented a general mathematical framework to describe the dynamics of CML with the partic-
ular focus on interactions with the immune response. Different treatment dynamics are described as
trajectories within a landscape of possible steady states, which we refer to as disease states. Specifi-
cally, we consider 20 possible sub-models with different mechanistic assumptions on the interactions
between CML and immune cells and show that a quantitative model adaptation to time course data
before treatment cessation is not sufficient for model selection and needs to be complemented by the
assessment of qualitative criteria. Introducing such criteria, we systematically compare the possible
behaviors of each of the 20 sub-models with qualitative data on CML treatment and therapy cessation,
and identified nine of them as more plausible compared to others. Additionally, including aspects of
early CML onset, we can demonstrate that certain critical parameters of the interaction dynamics
need to change during leukemia growth and treatment, thereby resulting in bifurcations that alter the
attractor landscape of available and biologically meaningful disease states.

Within the nine sub-models satisfying the qualitative criteria, five assume the existence of a func-
tional window for the immune response (function fp). The other four sub-models assume one of
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Figure 7: Onset of CML starting from scenario III*. (A) Route from CML onset until diagnosis,
treatment, and treatment cessation. Scenario III* explains CML onset, progression, treatment and
relapse/remission without the need of any bifurcation. (B) Formation of scenario III*. Scenario IIT*
originates when the system is in scenario I and a parameter change (in this example, an increase
in the immune response mg) leads to a saddle-focus bifurcation between Eg and E;. On the other
hand, scenario III* also emerges when the system is in scenario III, and a parameter change (in
this example, a decrease in the immune response mg) leads to a heteroclinic connection between the
invariant manifolds of Es and E, so that the basin of attraction of Ey passes through a dramatic change
in size and shape, and the cure steady state (unstable) Ey turns to belong to the basin of attraction of
E;. In general, the parameter interval for which scenario III* is exhibited is narrow (it is interval
between the two dashed lines), meaning that small changes in parameters could lead to scenarios I or

I1I.
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Figure 8: Unidentifiability of treatment response after theray cessation. Using model simulations
to extrapolate patient data and predict outcome of treatment cessation. Plots of the modeled BCR-
ABLI1/ABLI ratio, Lyop(t), for each of the 9 sub-models (different colors). For each sub-model,
we identified two sets of parameter values which adjust the observed patient data (gray dots). When
treatment cessation is simulated at the time of the last measurement, one parameter set leads to relapse
(continuous lines) while the other leads to sustained remission/cure (dashed lines). Therefore, the
crucial parameters for determining the outcome of treatment cessation are not identifiable with tumor
load data only.

the other proposed functional forms of the immune response, but necessarily assume a recruitment
function with either an immune window effect (function g4, 2 sub-models) or direct suppression of
immune recruitment (function gs, 2 sub-models). Understanding that the immune window assumption
describes an inhibited recruitment for high tumor load, we note that all the nine selected sub-models
assume a suppression mechanism at least in one interaction (i.e., immune function or recruitment).
This result agrees with recent data on immunological profiles of CML patients during TKI therapy
[Hughes et al., 2017].

To qualitatively assess the predictive power of our model, we simulated treatment cessation in all
the nine selected sub-models. For each sub-model, we found two sets of parameters values, which
reasonably well describe the data, but predict different outcomes: while one set leads to relapse after
cessation (dashed lines in Figure 8), the other set leads to remission or cure (continuous lines in Fig-
ure 8). We obtained these two distinct outcomes by slightly varying the parameters mg (maximum
effector function of immune cells) and py (leukemia proliferation rate) in each parameter set. Pa-
rameter mg 1s crucial for the outcome of treatment cessation, because it directly affects the ability of
immune cells to control the residual disease. Parameter py is also crucial as it determines the intrin-
sic aggressiveness of the leukemic cells. These results show that these parameters are not uniquely
identifiable by the measurements of tumor load in response to TKI treatment only. Thus, additional
measurements of immune cells function and number are necessary to correctly estimate these crucial
parameters and to derive reliable model predictions.

We further showed that the full dynamics of pre-treatment, treatment and post-treatment phase can
only be sufficiently and robustly covered if one assumes that critical model parameters change over
time. Mathematically such parameter changes lead to bifurcations and introduce qualitative changes
in the attractor landscape. Our mathematical formalization allows to speculate about parameters that

20


https://doi.org/10.1101/494575
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/494575; this version posted December 13, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

appear suitable to deliver those changes in the attractor landscape. As such, the maximal intensity of
immune effector cell activity mg or the growth rate py (quantifying leukemia aggressiveness) act as
bifurcation parameters and can account for changes in the attractor landscape.

Translating those findings into a biologically meaningful context, it should be the central aim of
related clinical studies to identify interaction mechanisms between leukemic and immunological cells
populations that are progressively altered during CML growth and treatment. Although an increasing
number of studies addresses these aspects, we clearly point out that the assessment of cell numbers
at one time point during therapy can only be a first step since only time course data will provide
a dynamical understanding necessary to identify altered interaction parameters. However, if certain
parameters, such as sensitivity of the immunological cells towards CML cells, can be identified as a
target that changes during therapy, drug-based approaches (such as immune-modulatory drugs) may
be implemented to alter the landscape of available disease states such that the remission or cure
attractor emerges and increases in size. In this way, a TKI driven remission can be supported and
permanently maintained even after therapy cessation. Earlier observations about the beneficial role of
IFN-alpha treatment point towards this direction [Mahon et al., 2010].

Due to the homogeneity of the disease and the availability of high quality time course data, CML
has attracted mathematical modeling approaches with different foci [Catlin et al., 2005, Michor et al.,
2005, Roeder et al., 2006, Dingli et al., 2010, Stein et al., 2011, Komarova and Wodarz, 2009, Woywod
et al., 2017]. Several models also studied the role of the immune system in CML and made particular
assumptions about the underlying mechanisms [Kim et al., 2008, Wodarz, 2010, Clapp et al., 2015].
In our hands, there is no conclusive data to particularly highlight one over the other functional mech-
anisms of CML-immune interaction. For this reason we chose a broader approach and illustrate how
a set of qualitative criteria is suited to rule out a set of very simple interaction mechanisms and points
towards necessity of mutual suppression mechanisms between immune effector cells and leukemic
cells

Our approach demonstrates that formalization in terms of mathematical models provide powerful
complementary means to systematically study regulatory mechanisms and speculate about the role of
immunological interactions in long term CML treatment. Our approach illustrates that the complexity
of clinically observed phenotypes can only be explained if suppressive feedback mechanisms and
dynamically altered interaction parameters are assumed. Experimental validation of those critical
parameters opens the door to target them using appropriate drugs and to achieve sustained remission
even after therapy cessation. Furthermore, mathematical models are an ideal tool for the virtual testing
of new measurement protocols and treatment schedules, and can lead to the formulation of testable
hypotheses.

A Mathematical analysis

The general dynamics of system (1) depend on the interactions between leukemic and immune cells:
four options for F(Y) and five options for G(Y) account for a total of 20 different combinations
(sub-models). In this Appendix, we identify which scenarios (phase portraits 0, I, II, III, IV and
V) are exhibited by each combination. Understanding that the TKI treatment acts as a temporary
force moving the system trajectories in the phase space, we analyze the asymptotic behavior of the
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permanent system, i.e., system (1) with erg; = 0:

dX— X+ Y

ar Dxy pPrx1,

dY Y

— = X — Y Y[(1—— ) — ZF(Y 3
o = PxyX —prx +pr ( Ty) mg ZF(Y), 3)
dzZ

— = —dz7Z Z G(Y).

o7 = Pz —dzZ+mg (Y)

A.1 Non-dimensionalization

To reduce the number of parameters in the analytic study, we introduce the non-dimensional variables

X Y Z
tszZux:_ay:_7Z:—7 (4)
Ty Ty pz/dz
and obtain a non-dimensional model, mathematically equivalent to (3), given by
dx
E = —OxyX + Oy,
dy
o = Oux = Opy+ 01 —y) =%z f(), - )
dz
o = Lot zsly),
where the non-dimensional parameters are
pPxy Prx py pzmg mg Ck Cr
- - o =2 =K = ©)

Oxyy=—F—5 Opw=——, Oy = ) = "o - 5 - - T
v dz > dz Y dZ Y d%TY 'Yr dZ Iy Iy
and the non-dimensional functional responses f(y) and g(y) are given, in each case fi(y) = Fi(T,y),

i€ {A,B,C,D}and g;(y) = G;(Ty), j € {1,2,3,4,5}, by

Y .y Y 28y
fA(y)_ &k’ fB(y)_ &k"’y, fC(y)_ §%+y27 fD(y)_ &%‘l‘yz’ (7)
_J _ v _ _ 2%y _
gl(y) - 57 gZ(y) - §r+y’ 83(y) - §%+y27 g4(y) - 5_,%"‘)727 gS(y> - &%‘i‘yz (8)

A.2 Conditions on model parameters

We may impose biologically plausible conditions on some model parameters. As stated in Section
2, parameters Cx and Cg define the levels of leukemic cells at which the functions F;(Y) and G;(Y)
exert their action. Thus, it is reasonable to assume that all these effects occur on a population level
lower than the carrying capacity Ty of the leukemic cells. Thus, we assume that Cx,Cg < Ty. Further,
we note that the expression 1/dz corresponds to the mean life-time of immune effector cells, while
1/mpg can be understood as the mean time of individual immune recruitment when the recruitment
is at maximum, i.e., G(Y) ~ 1. In other words, 1/mg is the mean time spent by one immune cell
between the last contact with leukemic cells and the arrival of a new immune cell, in a situation where
the recruitment is at maximum. It is reasonable to assume that the former time (1/dz) is greater
than the latter (1/mg), i.e, dz < mg. Taken together, these conditions on the dimensional parameters,
correspond to conditions on the non-dimensional parameters:

§k<1: §r<17'Yr>1. )
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A.3 Analysis of the trivial steady state F

All models for immune response f(y) and recruitment g(y) satisfy f(0) = g(0) = 0. Thus, the point
Ey = (0,0,1) (with coordinates (x,y,z)) is the trivial steady state for system (5). Ep is the “cure
steady-state”. The Jacobian matrix of system (5) evaluated at E is

_ny ny O
0 Y-8'(0) -1

The characteristic polynomial of J(Ep) is po(A) = —(A+1)(A? + a1A+ap), where aj = Gyy + Gy +
Yf' (0) — oy and ag = Gy (Ykf'(0) —©y). Thus, one eigenvalue of J(Ep) is A = —1 < 0, while the
other two satisfy A + A3 = —a; and AyA3 = ag. We have the following cases:

L. Ifv.f'(0) > o, then ap > 0 and a; > 0. Thus, A»,A3 < 0 and Ej is a stable node.

2. If 1. f'(0) < oy then ag < 0. Thus, A < 0 < A3 and Ej is a saddle-point, with two negative
eigenvalues.

The above results are summarized in the following proposition.

Proposition 1. Let

o= 7(0). (10)

Oy
If 0 > 1, then Ey is a locally asymptotically stable steady state for system (5). If ¢ < 1, then Ey is a

saddle-point for system (5), with one positive eigenvalue and two eigenvalues with negative real part.

Remark 1. In terms of the dimensional parameters, parameter ¢ is written as

pzmg
=2Z2"2F0 11

(note that f'(0) = F'(0)Ty). Thus, the cure-equilibrium Ey is stable if, and only if,

%mKF'(O) > py. (12)
Z

A.4 Analysis of nontrivial steady states

Besides the trivial steady state, system (5) can have multiple other nontrivial steady states, which we
study in the following. Setting dx/dt = 0 we obtain x = (Gy,/Cyy)y. Substituting this expression in
dy/dt = 0 and solving for z, we obtain

oyy(1-y)
z=hi(y) = 22—, (13)
) Yif ()
On the other hand, setting dz/dt = 0 leads to
ha(y) L (14)
I=m = .
1 _Yrg(y>

Taken together, (13) and (14) imply that the coordinate y # 0 of a nontrivial steady state should satisfy

hi(y) = ha(y), (15)
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Therefore, the nontrivial steady states of system (5) are the points E = (x*(y),y,z"(y)) where

x"(y) = Z—)y;y, and z°(y) = ha(y). (16)

and y is a nonzero root of (15), which will be refereed as the equation for the nontrivial steady states.
Further, a nontrivial steady state is biologically feasible if its coordinates are positive, i.e., y > 0,
x*(y) > 0 and z*(y) > 0. Checking expressions in (13) and (14) and using the fact that f(y) > 0 for
all choices of f(y), we conclude that a root y of /1 (y) = hy(y) is feasible if, and only if, 0 <y < 1 and
hy(y) > 0. The results of this subsection are summarized in the following proposition.

Proposition 2. The feasible nontrivial steady states of system (5) are the equilibrium points E =
(x*(y),y, 2(y)) where x*(y) and z*(y) are defined in (16) and y is a root of (15) such that 0 <y < 1
and hy(y) > 0.

It is our goal to describe which qualitatively distinct phase portraits (classified as 5 different sce-
narios, defined in Figure 4) are exhibited by each sub-model and which are not. This question may
be approached by assessing the number of roots of (15) which satisfy the feasibility conditions (note
that scenario I corresponds to 1 feasible nontrivial steady state, scenario II corresponds to 2 feasi-
ble nontrivial steady states, and so on; see Figure 4). With this, we will be able to i) conclude that
some scenarios are not exhibited by a given sub-model, due to the number of feasible nontrivial roots
admitted by equation (15), and ii) conclude that some scenarios are possibly exhibited by such sub-
model. In the latter case, we will numerically confirm this possibility by obtaining parameter values
for which the possible scenarios are indeed exhibited by the sub-model. Such analysis is summarized
in the following theorem.

Theorem 1. Consider system (5) under conditions (9), and scenarios 0, I, 11, III, IV and 'V, defined
by their number of feasible nontrivial steady-states, 0, 1, 2, 3, 4 and 5, respectively, with their
local stability as indicated in Figure 4. Then, for each choice (f,g) = (f;,8j), i € {A,B,C,D},
j€{1,2,3,4,5}, given in (7) and (8), a given subset of these scenarios cannot be exhibited by such
sub-model, while the remaining scenarios do. Such subsets and the parameter values which provide
the feasible scenarios are indicated in Tables 2 and 3.

Remark 2. Theorem 1 is a ‘non-existence result’ which exclude the possibility of some sub-models
to exhibit some scenarios. The affirmative answer is obtained by setting some model parameters (pa-
rameters py, Cx, Cr, mg and mg) to a certain set of values in such way the scenario is observed when
we numerically calculate the steady states and their local stability (through the numerical calcula-
tion of the jacobian matrix and its eigenvalues). The global behavior of system (5) (existence of limit
cycles or other non-trivial attractors) is not approached by theorem 1. Table 1 summarizes the results
of Tables 2 and 3.

A.5 Proof of theorem 1

To prove theorem 1, we first present the expressions of #; and Ay for each choice of f(y) and g(y).
We will express 41 (y) in terms of ¢, as this parameter is a threshold for the stability of Ey and so is
related to changes between scenarios. Remembering that ¢ = (yx/0y)f'(0) and using the formulas
for fi(y), i € {A,B,C,D} in equation (7), we obtain:
/ 1 / 1 / / 2
fA(O):_v fB(O):_7 fC(O):07 fD(O):_ (17)
&k Sk g

k
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Table 2: Summary of analysis of models F' = Fy4, Fp and G = G, G>,G3, Gy, Gs. For each sub-model
and each of scenarios 0, I, I, III, IV and V, we either present a set of parameter values which leads
to the specified scenario, or exclude such scenario with a formal proof, presented in section A.S.
See Appendix B for a reference to the other parameter values, which remained constant through all

sub-models and scenarios.

F G Scenario py Cg Cgr mg MR
Fx G 0 02 5x10° 5x10° 110 2
Fyx G 1 02 5x 100 5x10° 10 2
Fy G 1L L IV, V excluded by analytic tools

Fx G, 0 02 5x 100 5x10° 110 2
Fy Gy 1 0.2 5x10° 5x10° 10 2
Fyx Gy ILIIL IV, V excluded by analytic tools

Fx G3 0 02 5x10° 10 110 2
Fyx Giz 1 0.2 5x10° 10* 10 2
Fy Gz ILIIL IV, V excluded by analytic tools

Fx Gy 0 02 5x10° 10° 110 2
Fyr Gy 1 02 5x10° 10° 920 2
Fyx Gy 1 02 5x10° 10° 10 2
Fy Gy 1L 1V, V excluded by analytic tools

Fyx Gs 0 02 5x 100 5x10° 110 2
Fyx Gs 1 02 5x10° 103 9 2
Fx Gs 11 02 5x10° 103 110 2
Fyx Gs T 02 5x10° 4x10° 97 1.15
Fy  Gs 1V, V excluded by analytic tools

Fg G 0 0.2 10* 2x10° 2
Fg G; 1 0.2 10* 2x10° 198 3
Fg G T 02 10* 5%10° 2
Fp G 1L, 1V, V excluded by analytic tools

Fg G, 0 02 10* 2x10° 6 3
Fg G, 1 0.2 10* 2x10° 198 4
Fp G, 11 0.2 10* 5x10° 4 2
Fp G, I, 1V, V excluded by analytic tools

Fg G3 0 02 10* 2x10° 6 12
Fg G3 1 0.2 10* 2x10° 198 12
Fp G3 1T 0.2 10* 5%10° 4 2
Fp Gz 11,1V, V excluded by analytic tools

Fg Gy 0 0.2 10* 2x10° 6 12
Fg Gy 1 02 10* 2x10° 198 12
Fg Gy 1T 02 10* 5x10° 4 2
Fz Gy 1 0.2 10* 10° 19 2
Fg Gy IV 02 10* 10° 2.1 2
Fp G4 'V excluded by analytic tools

Fg Gs 0 0.2 10* 103 160 2
Fg Gs 1 0.2 10 103 1.9 2
Fp Gs 11 0.2 10* 103 22 2
Fp Gs 1L, 1V, V excluded by analytic tools
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Table 3: Summary of analysis of models F = F¢, Fp and G = G, G3,G3,Gya, Gs. For each sub-model
and each of scenarios 0, I, I, III, IV and V, we either present a set of parameter values which leads
to the specified scenario, or exclude such scenario with a formal proof, presented in section A.S.
See Appendix B for a reference to the other parameter values, which remained constant through all
sub-models and scenarios.

F G Scenario py Cg Cgr mg mg
Fe G 1 0.2 5x10% 10° 5 1.1
Fr G 1 02 2x10* 5100 8 1.1
Fc Gp 0,11, IV, V excluded by analytic tools

Fe Gy 1 02 10° 10° 20 1.1
Fr Gy, III 0.2 2x10* 10° 8 1.1
Fc Gy 0,11, 1V, V excluded by analytic tools

Fe Gy 1 02 10° 10° 20 1.1
Fe Gz I 02 2x10* 10° 8 1.1
Fc Gz 0,11, IV, V excluded by analytic tools

Fe Gy 1 02 10° 2x10° 20 1.5
Fr Gy 1 02 10° 10° 20 1.1
Fc Gy V 0.2 1.55x10* 1.7x10° 4.805 1.01
Fc Gy 0,11, IV excluded by analytic tools

Fe Gs 1 02 10° 2x10° 20 1.5
Fe Gs I 0.1 10° 10° 33.33 1.1
Fc Gs V 1 9.8x10* 3.4x10* 1800 10
Fc Gs 0,11, IV excluded by analytic tools

Fp G, 0 0.1 10° 4%x10° 10 1.1
Fp G 1 0.1 10° 10* 0.5 1.1
Fp G, 1T 0.1 10° 5%10° 10 1.1
Fp G 1 0.1 3x10* 9x10* 1485 1.1
Fp Gp 1V, V excluded by analytic tools

Fp Gy 0 0.1 10° 10° 10 1.1
Fp Gy 1 0.1 10° 10* 0.5 1.1
Fp Gy, 1I 0.1 10° 5%10° 10 1.1
Fp G, 1II 0.1 3x10* 9x10*  1.485 1.1
Fp G, 1V, V excluded by analytic tools

Fp Gz 0 0.1 10° 10° 10 1.1
Fp Gy 1 0.1 10° 10* 0.5 1.1
Fp G3 1T 0.1 10° 5100 10 1.1
Fp Gi III 0.1 2x10° 29%x10° 9.9 1.1
Fp Gz 1V, V excluded by analytic tools

Fp Gs 0 0.1 10° 5%x10° 10 1.1
Fp Gy 1 0.1 2x10° 5100 9 1.1
Fp Gsq 11 0.1 10° 10° 10 1.1
Fp Gy 1II 0.1 10° 10% 0.5 1.1
Fp Gi IV 0.1 1.1x100 5x10° 5.555 1.01
Fp Gy V 0.1 1.1x10° 5x10° 5.445 1.01
Fp Gs 0 0.5 13x10° 10° 650 1.2
Fp Gs 1 0.1 2x10° 103 9.9 1.01
Fp Gs 1T 0.1 10° 10° 10 1.1
Fp Gs 1III 0.1 3x10° 5100 14.85 1.1
Fp Gs IV 09 45x10° 5x10> 2800 13

Fp Gs V excluded by analytic tools >
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Then, ¢ = Y/(0y&) if f = fa, 0 ="/ (0,&) if f = fp, o =0if f = fc, and 0 =2y /(0,&k) if f = fp.

Thus, in each case, the formula for 4 (y) can be expressed in terms of ¢ as

(I;yﬁfzﬁ,
1048 i,
hi(y) = (18)
o (1-NE )
&k y ’
=N+ 68D e
| () '

In the same way, the expressions for A, (y) in each case g(y) = g;(y), j € {1,2,3,4,5}, are
4 1 f

T ey 18=81,

1 _'Yr(y/ar)

YO
/5 TETE

2
)= T e e (19

1+ (}’/gr)z . _
T 20,078 + 0/5)2 T8 =8

1+ (y/€)?
L I+ (v + D)/,

To analyze some of the sub-models, we will also study a polynomial equation equivalent to & =
h;. From equations (18) and (19), we note that 4y and h, are rational functions, i.e., quotient of
polynomial functions. Therefore, equation 4 (y) = ha(y), is equivalent to the polynomial equation

72 ifg=gs.

q(y) := numy, (y)denp,(y) — nump, (y)deny, (y) =0, (20)

where numy,, and deny, are the numerator and denominator of 4;, respectively, and are polynomial
functions. For each choice (f;, g;) of the sub-models, a different polynomial equation will be obtained,
and the number of positive roots of such equation will be studied by using the Descarte’s Rule of
Sign. If these roots satisfy the feasibility conditions, 0 < y < 1 and h;(y) > 0, then, their quantity
correspond to the number of feasible nontrivial steady states. The Descarte’s Rule of Sign states
that the number of positive roots of a polynomial equation is equal to the number of sign variations
between consecutive non-zero coefficients, or less than it by some even number [Kennedy, 2001]. For
instance, if g is a fourth degree polynomial and its coefficients satisfy co > 0, c; >0, ¢ <0, ¢c3 >0
and ¢4 < 0, then the sign sequence is of g is S, = (++4 — + —) (S for sequence) and the number of
sign variations is V, = 3 (V for variation). Therefore, such polynomial has 1 or 3 positive roots. The
notation introduced in this paragraph will be used throughout the subsequent analysis. Further, we
denote by + the sign of a coefficient which can be positive or negative. To facilitate the referencing,
we summarize the above results in the following lemma.
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Lemma 1. Let ¢(y) = 0 the polynomial equation for the nontrivial roots, with coefficients c;. The
number of roots of q satisfying y > 0 is given by V, —2I, where | is a positive integer such that
V, > 2L

Now, we introduce a way to easily verify which positive roots of ¢ satisfy the feasibility condition
y < 1. Substituting y = 1+ u in ¢(y) = 0, we obtain another polynomial equation, r(u) = 0, where
r(u) = q(1 +u). Each root u > 0 of r(u) = 0 corresponds to a root y =1+u > 1 of g(y) = 0.
Thus, using the Descarte’s Rule of Sign as above, we may count the number of positive roots of
r(u), which is equal to the number of positive roots of ¢ which do not satisfy the feasibility condition
y < 1. Further, we note that r(u) has the same degree as ¢ and, if g(y) = co+c1y+---+¢,)" and
r(u) = do+diu+---+d,u" have degree n, then the coefficients dy and d,, of r(u) are related to the
coefficients c; of g as
dy=co+c1+---+c¢, and d,=c,. 21)

Furthermore, we conclude that, if dy and d, have different signs, then the sequence S, of signs of
r(u) has at least one sign variation and the number of sign variations V, is an odd number. This is
true because every sign change between dy and d, needs to occur in pairs and V, = 1 4 2k for some
integer k > 0, i.e., V, is an odd number if dy and d,, have different signs. Using this result, we obtain a
simple criterion for the existence of positive but non-feasible roots for ¢, which is summarized in the
following lemma.

Lemma 2. Let g(y) = 0 the polynomial equation for the nontrivial roots, with coefficients c;, and
r(u) = q(1+ u), with coefficients d;. Then, the formulas in (21) hold. Furthermore, if dy and d, have
different signs, then the number of the positive roots of g which satisfy the condition y > 1 is a positive
odd number, less or equal the degree of q.

We now analyze each sub-model in detail. Conditions (9) are assumed to hold.

Analysis for f = f4 and g = g1, 22,g3. For f(y) = fa(y), from (18), we have that

1
/
hi(y) o
Therefore, h;(y) is a decreasing function. Furthermore, h(y) is non-negative only in the interval
0<y<1withh;(0)=1/¢and h;(1) =0.

Now, we study &, (y) for the choices g = g1, g2,g3. From the expressions of 4, (y) in these cases,
we conclude the denominator of 4, (y) vanishes and change its sign at an unique y; > 0, where y; =
&r/Yr for g = g1, ¥4 = &/(¥r — 1) > 0 for g = g2, and y; = &,/+/ (Y, — 1) for g = g3 (since ¥, > 1).
Analyzing the sign of the denominator, we conclude that h;(y) is positive for 0 <y < y; and is
negative for y > y,. Therefore, the feasibility condition /4, (y) > O restricts the analysis to the interval
0 <y <y,. Now we show that /1, (y) is increasing in this interval. From the general equation for A, (y)
(14), we have ')

/ Yrg (Y
N ()

Since g(y) is an increasing function when g = g1, ¢, g3, we have g'(y) > 0. Thus, 4 (y) > 0 and A, (y)
is an increasing function for these cases. Summarizing, in the interval 0 <y < yy, we have /,(0) = 1,
hy(y) is increasing, and hy(y) — +eo wheny — yg, y < yg.

Combining the properties of i and hy we conclude the following. If 41(0) > hy(0), then h; and
h; intersect in the interval 0 < y < y, exactly once, at some y* such that 0 < y* < 1 and hy(y*) > 0.
Thus, there is an unique nontrivial steady state E. If 4;(0) < hy(0) then h; and Ay do not intersect
and there is no feasible nontrivial steady state. Since #;(0) = 1/¢ and h,(0) = 1, we have established
the following result: if ¢ > 1, system (5) has an unique nontrivial steady state E; and If ¢ < 1, sys-
tem (5) does not admit nontrivial steady states. This result states that sub-models with f = f4 and
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g = 81,82,83 do not exhibit scenarios II, III, IV and V. The only possible scenarios exhibited by these
sub-models are I and 0. We numerically verified that such scenarios are indeed exhibited by these
sub-models (see Table 2).

Analysis for f = f4 and g = g4. For f = f4, we have hi(y) = (1 —y)/0. Thus, h;(y) is a decreasing
function with 4;(0) = 1/¢ > h1(y) > h1(1) =0 for 0 <y < 1. On the other hand, since g4(y) > 0
ha(y) = 1/(1 —v,g4(y)), we conclude that hy(y) > 1if g4(y) < 1/y, and, ho(y) < 0if ga(y) > 1/7,.
Since one of the feasibility conditions is /2 (y) > 0, we conclude that if a feasible root y* occurs, then
hy(y*) > 1. Hence, no feasible root occurs for ¢ > 1, since, in this case, 1 > hj(y) >0for0 <y < 1.
Therefore, only scenario 0 occurs if ¢ > 1. The case ¢ < 1 is studied with the polynomial equation g,
which has degree d(g) = 3 and coefficients

1—0+2
co=1-0>0,¢c;=-1-2<0, C2=M>o, c3=—=5<0.

Y, 1

& & &
Thus, the sign sequence of ¢ is S, = (+ — +—) and the number of sign variations is V, = 3. Therefore,
¢ admits 1 or 3 positive roots. Thus, scenarios I and III are possible for model (f4,g4) if ¢ < 1, while

the other scenarios are excluded. We numerically verified the occurrence of scenarios I and III (see
Table 2).

Analysis for f = f4 and g = g5. In this case, ¢ is a third degree polynomial with coefficients

1—0+Y, 1+,

Tghes gt

(remember that the nondimensional parameters are positive and satisfy conditions (9)). If ¢ < 1, the
sign sequence is S, = (+ — +—) and the number of sign variations is V, = 3. Thus, such equation
admits 1 or 3 positive roots and scenarios I and III are possible for model (f4,gs). If ¢ > 1, the sign
sequence is S; = (— — +—) and the number of sign variations is V, = 0 or 2. If we additionally have
¢ < 147, then c; > 0 and V, = 2. In this case, equation ¢(y) = 0 admits O or 2 positive roots and
scenarios @ and II are possible for model (f4, gs). We numerically verified the occurrence of scenarios
I and III, and @ and II, under the respective conditions above (see Table 2).

co=1—-0,c1=—1<0, =

Analysis for f = fp and g = g. In this case, ¢ is a third degree polynomial with coefficients

co=1-9, clzl_ék Yr __'Yr(l_gk)‘“t:r Yr

&k _57 @ é% &rk

(remember that &; < 1). By lemma 2, we obtain that the coefficients dy and d3 of r(u) are

Yr
‘tor‘tok '

Thus, it follows also by lemma 2 that 1 or 3 positive roots of g are non-feasible, i.e., satisfy y > 1.
Now we analyze the sign sequence of g. If ¢ < 1, the sign sequence is S, = (+ =+ —+) and the number
of sign variations is V;, = 2. Thus, such equation admits O or 2 positive roots. Since at least one is
non-feasible, equation ¢ has 2 positive roots but an unique feasible root. Thus, only scenario I is
possible if ¢ < 1. If ¢ > 1, the sign sequence is S; = (— = —+) and the number of sign variations
is V; = 1 or 3. Thus, equation ¢g(y) = 0 admits 1 or 3 positive roots. Since 1 or 3 of such roots are
non-feasible, we have 0 or 2 feasible roots. Hence, only scenarios @ and II are possible if ¢ > 1. We
numerically verified the occurrence of scenarios I, and @ and II, under the respective conditions above
(Table 2).

<0, c3=

>0,

do=—-0<0<dz=
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Analysis for f = fp and g = g». In this case, ¢ is a third degree polynomial with coefficients

1_§k T c __Yr(l_ék)+§r c :Yr_l
& E O g Ve Tgg 7Y

By lemma 2, the coefficients dy and d3 of r(u) are

1
do=—0-2 cocday =Y

&r &rgk

Thus, it follows that 1 or 3 positive roots of g satisfy y > 1. Now we analyze the sign sequence of g.
If ¢ <1, we have S; = (+=+ —+) and V, = 2. Thus, ¢ admits O or 2 positive roots. As at least one
satisfies y > 1, we conclude that g has 2 positive roots but an unique root in the interval 0 <y < 1.
Hence, only scenario I is possible if ¢ < 1. If ¢ > 1, we have S, = (—+ —+) and V;, = 1 or 3. Thus,
q admits 1 or 3 positive roots. Since 1 or 3 of such roots are non-feasible, we have 0 or 2 feasible
roots. Hence, only scenarios 0 and II are possible if ¢ > 1. We numerically verified the occurrence of
scenarios I, and 0 and II, under the respective conditions above (see Table 2).

¢7 1 =

Analysis for f = fp and g = g3. In this case, ¢ is a fourth degree polynomial with coefficients

_ Y= 1&—1
& &

Yr—

<0,¢c4 = & &2

:1—¢,01:g—§>0,c2:—5——2—§2 > 0.

The coefficients dy and dy of r(u) are

dy=— é2(1+§2) <0<dy= & gz
Thus, by lemma 2, 1 or 3 positive roots of g satisfy y > 1. Let us analyse the sign sequence of ¢g. If
¢ <1, then S; = (++——+) and V, = 2. Thus, ¢ admits O or 2 positive roots. As at least one satisfies
y > 1, it follows that g has 2 positive roots but an unique root in the interval 0 < y < 1. Hence, only
scenario I is possible if ¢ < 1. If ¢ > 1, then S, = (—+ — —+) and V,, = 3. Thus, ¢ admits 1 or 3
positive roots. Since 1 or 3 of such roots satisfy y > 1, we have 0 or 2 feasible roots. Hence, only
scenarios 0 and II are possible if ¢ > 1. We numerically verified the occurrence of scenarios I, and 0
and II, under the respective conditions above (see Table 2).

Analysis for f = fp and g = g4. In this case, ¢ is a fourth degree polynomial. A priori, ¢ may admits
up to 4 positive roots and scenarios 0, I, II, III and IV would be possible, while scenario V is not pos-
sible, since it corresponds to five positive roots for g. Indeed, we numerically verified the occurrence
of all these scenarios (see Table 2).

Analysis for f = fp and g = g5. In this case, the next lemma guarantees that equation s; = hy does
not admit more than two different positive roots. This implies that only scenarios @, I and II are
possible. We numerically verified the occurrence of these scenarios (see Table 2).

Lemma 3. If (f,g) = (fB,gs), then equation hy = hy admits at most two different positive roots.

Proof. Suppose by contradiction that A (y) = h2(y) admits three or more different positive roots.
Since h; and hy are differentiable functions for all y > 0, it follows from the Rolle theorem that the
difference of their derivatives, w(y) = h|(y) — k5 (y), has at least two different positive roots, say
0 < $1 < $2. The expressions for A} (y) and 7, (y) are

1-8 -2y
T

—2v &y
(& + (1 +7)y%)>

H(y) = and (y) =
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Thus, limy_..w(y) = —oo, which implies that there exists M > 0 such that w(y) < 0 for all y > M.
Hence, $; and §, are inside the interval (0,M). From the Rolle theorem, it follows that w'(y) has a
root §1 € ($1,92) C (0,M).

We shall show that w'(y) admits a second root ¥, # §; within (0,M). If w/(;) = 0 for some
ip € {1,2}, then just take > = $;,. Now, suppose w'(§;) # 0 fori = 1,2. Since w(0) = (1—&)/(Ex0) >
0 > w(M), we conclude that w(y) changes its sign an odd number of times within the interval [0, M].
Asw (3;) #0fori=1,2, it follows that w(y) changes it sign at the roots §; and necessarily w(y) admits
a third root y3 € [0, M], distinct from $; and ¥,. Suppose without loss of generality that 3 > $,. Thus,
it follows from the Rolle theorem that w'(y) has another root ¥, within the interval (0,M). Therefore,
we’ve proved that w'(y) = h(y) — h5(y) has two distinct roots §; and §, within the interval (0,M).

Thus, the curves of 4/ and ) have at least two intersections for y > 0. Since

2v,E2
(& + (7))
the interval of positive values of y where 4} (y) is negative is . = [0,u1 ), where u; =&,/ (v/3v/T+7y).

On the other hand, we have that 4 (y) = —2/(&x0) is negative for y > 0. Thus, the two roots of h{ = h)
should occur within Z.. The derivative of h/z’,

Hy (y) = By (1+7)—&F),

_ 24%(1 + Vr)gg)’
&2+ (1+7,)y%)*

has the following properties: if up =&, //T+7,, then 7' (y) > 0 for 0 <y <up, h}'(u2) =0, 1’ (y) <0
for y > up, and up > uy. Thus, h/z/ (y) is an increasing function within the interval I, while h’l’ (y) is
constant. Therefore, the curves of 4 (y) and 1) (y) do not have two intersections for y > 0, which is a
contradiction. Therefore, the equation /;(y) = h2(y) do not have more than two positive roots. [l

hy (y) (& — (1+7)y%)

Analysis for f = fc and g = g;. In this case, ¢ is a fourth degree polynomial with coefficients

B Gy&/% (v +&)

2
(& o G
CO:G}’&I%aCIZ_Yk §—<0,62:Gy—|—yr yik - y(’Yr‘F&r) _Yr y

&r & &
Thus, S, = (+—+—+), V, =4 and g admits O or 2 or 4 positive roots. The coefficients dy and dj or

r are
(o]
d():—’Yk<0<d4:’Y%y.

By lemma 2, 1 or 3 positive roots of ¢ satisfy y > 1. Therefore, g admits 1 or 3 feasible roots. Hence,
only scenarios I and III are possible. We numerically verified the occurrence of such scenarios (see
Table 3).

>0,c3 = <0,ca

Analysis for f = fc and g = g». In this case, ¢ is a fourth degree polynomial with coefficients

Gyilz (Yr - 1) Yk (Yr - I)Gy&%
T )20, 0y =0y — kL 2Bk
g, 2T, g,

co = Gy&l% >0, ¢ = _'Yk_cyilz -

Sy(v—1) (Y- —1)o,
& &
Thus, §; = (+—+—+), V4 =2 or 4, and g admits O or 2 or 4 positive roots. The coefficients dy and

dy are

€3 = —0y — <0, c4= > 0.

Sy(v— 1)

&)
g

dy=— "2
&r

<0<dy=
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By lemma 2, 1 or 3 positive roots of ¢ satisfy y > 1. Therefore, g admits 1 or 3 feasible roots. Hence,
only scenarios I and III are possible. We numerically verified the occurrence of such scenarios (see
Table 3).

Analysis for f = fc and g = g3. In this case, ¢ is a fifth degree polynomial with coefficients

(Yr - I)Gy&l%
&

2 2
cO:Gy&k>Ov Cl:_'Yk_Gyak<0, ¢ =0y — , 3= —C)—

ik
&’
(v — 1)oy (v-—1)oy
& e
If ¢, >0, thenc3 <0, S, = (+—+——+), V, =4, and ¢ admits 0 or 2 or 4 positive roots. If ¢; <0,

then S, = (+——x—+), V, =2 or 4, and g admits O or 2 or 4 positive roots. Thus, both cases result
in the same possibilities. The coefficients dy and ds of r(u) are

1 o, (v —1
doz—’Yk<l+&—%)<0<d5:%.

By lemma 2, g has 1 or 3 or 5 roots y > 1. Therefore, ¢ admits 1 or 3 feasible roots. Hence, only

scenarios | and III are possible. We numerically verified the occurrence of such scenarios (see Table
3).

C4 = — <0, ¢c5= 2> 0.

Analysis for f = fc and g = g4. In this case, ¢ is a fifth degree polynomial with coefficients

2v,6,E2 6,£2  2v.6,&2
co = Gy&l% >0,c1=—Y— Gy&,% — ’Yrg y&k <0, = Oy + gfk + 'Yré yé;k,
r r r
2
Yi & 2y.0, Cy  2Y,0y (o
c3=—25—0y— —5 — <0,c4==+ >0, c5=—= <0.
g g & & & &

Thus, S, = (+—4+—+-), V, =15, and g admits 1 or 3 or 5 positive roots. Hence, only scenarios I,
IIT and V are possible. We numerically verified the occurrence of such scenarios (see Table 3).

Analysis for f = fc and g = gs. In this case, ¢ is a fifth degree polynomial with coefficients

1+v,)0,E7
0 =08 >0, 1 = —%—0& <0, CZZGy‘i‘%,
r
1+v.)o 1+, 11,
c3:—y—§—<5y ( +'Yz) y§k<07 C4=L;W)>0, CSZ—L;—Y)<0,
é::>r i EJr gr

Thus, S, = (+—+—4+-),V, 4 =5, and g admits 1 or 3 or 5 positive roots. Hence, only scenarios I,
IIT and V are possible. We numerically verified the occurrence of such scenarios (see Table 3).

Analysis for f = fp and g = g;. In this case, ¢ is a fourth degree polynomial with coefficients

Yr + &r Y Yr + &r Yr
co=1—0,c1=— <0,cp == >0,c3=— <0, c4= > 0.
E ak g &%, &,
The coefficients dy and dy of r(u) are
Yr
dy=—0<0<dy= A
&8
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By lemma 2, g has 1 or 3 positive roots which satisfy y > 1. Analyzing the sign sequence of g, we
conclude the following. If ¢ < 1, then S, = (+—+ —+), V, = 4, and ¢ admits O or 2 or 4 positive
roots. Since 1 or 3 are non-feasible, it follows that ¢ has 1 or 3 feasible roots and only scenarios I and
III are possible in this case. If ¢ > 1, then S, = (——+-—+4), V, =3, and g admits 1 or 3 positive
roots. Since 1 or 3 are non-feasible, it follows that ¢ has 0 or 2 feasible roots and only scenarios @ and

IT are possible in this case. We numerically verified the occurrence of scenarios 0, I, IT and III (see
Table 3).

Analysis for f = fp and g = g». In this case, ¢ is a fourth degree polynomial with coefficients

11—y, —1-¢,— 1 —1
co=1—-0,c1 = v £ & ¢<0,C2:?+%§—>0,C3=
r k r

-y —-&
ELEr

Y —1
> 0.
&re,

<0,c4 =

The coefficients dy and d4 of r(u) are

Yr—1
do <0<dy %@
By lemma 2, g has 1 or 3 positive roots which satisfy y > 1. Analyzing the sign sequence of ¢, we
conclude the following. If ¢ < 1, then S, = (+ —+ —+), V, =4, and ¢ admits O or 2 or 4 positive
roots. Since 1 or 3 are non-feasible, it follows that g has 1 or 3 feasible roots and only scenarios I and
III are possible in this case. If ¢ > 1, then S; = (— —+ —+), V, = 3, and ¢ admits 1 or 3 positive
roots. Since 1 or 3 are non-feasible, it follows that ¢ has 0 or 2 feasible roots and only scenarios @ and

IT are possible in this case. We numerically verified the occurrence of scenarios 0, I, IT and III (see
Table 3).

Analysis for f = fp and g = g3. In this case, ¢ is a fifth degree polynomial with coefficients

I v—-1+9¢ -1 1 Yr Tr—1
co=1-0,c1=—-1<0,c0=5 — ,03 = — 5,04 = —55 <0, c5 = > 0.
gz g g gy e
The coefficients dy and ds of r(u) are
1482 —1
&r k&r

By lemma 2, g has 1 or 3 positive roots which satisfy y > 1. Analyzing the sign sequence of g, we
conclude the following. If ¢ < I, then S, = (+ — £+ —+), V, =2 or 4, and ¢ admits O or 2 or 4 pos-
itive roots. Since 1 or 3 are non-feasible, it follows that ¢ has 1 or 3 feasible roots and only scenarios
I and IIT are possible in this case. If ¢ > 1, then S, = (— — £+ —+), V,=1or 3, and g admits 1
or 3 positive roots. Since 1 or 3 are non-feasible, it follows that ¢ has 0 or 2 feasible roots and only
scenarios @ and II are possible in this case. We numerically verified the occurrence of scenarios 0, I,
II, and III (see Table 3).

Analysis for f = fp and g = g4. In this case, ¢ is a fifth degree polynomial and all scenarios are
possible. We numerically verified the occurrence of each scenario (see Table 3).

Analysis for f = fp and g = g5. In this case, ¢ is a fifth degree polynomial and all scenarios are
possible. We numerically verified the occurrence of scenarios 0, I, II, III and IV (see Table 3), while
scenario V is excluded due to the following lemma.

Lemmad. If (f,g) = (fp,gs), then q(y) does not admit five different roots in the interval y € [0, 1].
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Proof. For f = fp and g = g5 we have

q(y) = co+c1y+cay* +e3y +eayt +esy’ (22)
with coefficients
co=1-0,cir=—l,c0=———+5,63=——5 — 55,04 = 555,05 = — . (23)
& & & & &RE? &:E?

If ¢ > 1, then the sign sequence of g is (— —+ — +—), and thus V, = 4. Hence, ¢g(y) has at most 4
positive roots and our claim is valid.

Now, assume that ¢ < 1, and suppose by contradiction that ¢(y) has 5 different roots within the
interval [0, 1]. Then, by the Rolle theorem, it follows that ¢’ (y) has 4 roots within (0, 1) and then ¢” (y)
has three roots within (0, 1). The function ¢”(y) is a third degree polynomial, and we will count its
roots by calculating its Sturm sequence and applying the Sturm’s theorem (see Basu et al. [2007],
section 2.2.2).

The Sturm sequence of a polynomial S(y) is a sequence (So,S1,S2,---) of polynomials defined as
follows:

So = S7

S1=9,

Sn+1 = —rem (Sn—lvsl’l)u nz1,
where rem(S,_1,S,) is the remainder of the Euclidean division of S,,_; by S, (see Basu et al. [2007],
section 2.2.2). The number of sign variations of the Sturm sequence evaluated at ¢ € R, is denoted by
Vs(c) and defined as the number of sign variations in the sequence of numbers

(So(c), Si(c), Sa(e),---).

Let a,b € R. The Sturm‘s Theorem states that the number of roots of S(y) within the interval [a, b] is
equal to the difference Vg(a) — V(D).

We will apply the Sturm‘s Theorem to S(y) = ¢” (y) and count its roots inside the interval [a,b] =
[0, 1]. The Sturm sequence of a third degree polynomial

S(y) = Co+Ciy+Cay* +C3y°
is given by

So(y) = S(y) = Co+ Cry + Cay* + C3y?,

S1(y) =S'(y) = C1 +2Cay + 3C3)?,

Sz(y) = —rem (S(),Sl) = 9—6'3 —C0+

GG 22 g
oc, — 3 )V

9C3 (18CoC1C2C3 4 CIC3 — 4C3C3 — Cp (4C3 +27CC3))

$3(y) = —rem (S1,52) = 4(C2=3C,G5)2
2

Thus, the Sturm sequence of S evaluated at y = 0 is

(6(0).51(0),82(0),53(0)) = (Co,C1. G2 ~Co,

9C3 (18CHC1C2C3 + C3CE — 4C3C3 — G (4C3 +27CC2) )
4(C3-3C1G3) ’
(24)
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and the Sturm sequence of S evaluated at y = 1 is

Ci1C,+2C3 2C
(So(1),81(1),82(1),83(1)) = <C0+C1+C2+C3,C1+2C2+3C3,%—Co—Tl,
3
9C3 (18CoC1CoC3 + C2CE — 4CC3 — Cy (4C3 +27CC2))
4(C3—3C1C3)

(25)
From (22), we have ¢"(y) = 2c3 + 6¢3y + 12¢4y* + 20cs5y® with ¢; given in (23). Writing S(y) =
q"(y) = Co+C1y + Cyy* +C3y>, we obtain the coefficients

Co=2c2, Ci =6c3, Co=12c4, C3=20cs. (26)

Hence, using formulas (24), (26) and (23), and the fact that ¢ < 1 < ,, we obtain that the first three
terms of the Sturm sequence of ¢” evaluated at y = 0 are
So(0) = 2"+ & >0,
r k
$1(0) = -6+ —§ <0,

k
4(1-0) 43y + (5~
52(0) =~ ~2 Lo te=9) <,

while S3(0) has a complicated expression with an undetermined sign. However, we can conclude that
V,(0) = 2if §3(0) > 0 and V,(0) = 1 if $3(0) < 0.
Now, again using the fact that ¢ < 1 <, and formulas (25), (26) and (23), we obtain that the first

three terms of the Sturm sequence of ¢” evaluated at y = 1 are

(2v(2+&) +22+E&) +EX(2+9))

So(1) = —2 5 <0,
2 ék%

Sl(l):_6<&r+(1+2v¥<6+§k>)<0,

(1) = 2 THHI(EE T 4) 62 +E 6+ 50)

2T SE2E2 |

which has an undetermined sign, and S3(1), which has a complicated expression with an undetermined
sign. However, notice from (24) and (25) that S3(1) = S3(0). Thus, we can conclude that V(1) = 1
if $3(0) >0 and V,»(1) =0 or 2 if $3(0) < 0.

Therefore, the number of roots of ¢’ (y) within the interval [0, 1], which, by the Sturm‘s Theorem,
is equal to the difference V,#(0) — V,#(1), is always less than 3, which is a contradiction. Hence, the

q
equation ¢(y) cannot have five roots within the interval [0, 1]. O

B Model parameterization and parameter estimation

Here we report the parameter values used for the model simulations. To describe the different scenar-
ios with each sub-model (Tables 2 and 3) we started with the following set of basic values. Parameters
regarding proliferating and quiescent LSCs were set to values used in a previous publication and cor-
respond to the median values of a cohort of 122 CML patients [Fassoni et al., 2018]. The values are
pxy = 0.05, pyx = 0.001, py = 0.2 and Ty = 10°. For immune cells we adopted the values dz = 1
month~! and Pz = 103 cells/month so that the normal level of immune cells is pz/dz = 103 cells.
Parameters Cx and Cg were set to values defined according to the specific functional responses used
in each sub-model. For linear functional responses (F = F4 or G = G1), we adopted Cg,Cr =5 X 10°
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Table 4: Estimated values for py, pyx, mg and mg, used in Figure 3.

(F,G) py mg mR PYx
(Fa,G1) 0.18939321 0.00006908 3.31196830 0.00298540
(Fa,G2) 0.18940069 0.00003577 1.19091170 0.00298540
(Fy, G3) 0.18836653 0.00002774 1.23852800 0.00298517
(FA, G4) 0.21386851 0.43721542 1.22494960 0.00315841
(Fy, GS) 0.18929618 0.00093258 9.66089240 0.00298538
(Fg,G1) 0.18940055 0.00002076 5.76081590 0.00298541
(Fg,G>2) 0.18940214 0.00000225 1.29802820 0.00298540
(Fp, G3) 0.18939853 0.00000192 1.23391420 0.00298540
(FB, G4) 0.21721919 0.00597071 1.21093450 0.00316262
(Fp, Gs) 0.18929618 0.00093258 9.66089240 0.00298538
(Fc,G1) 0.18939538  0.00000256 6.04955220 0.00298540
(Fc,G2) 0.18940266 0.00000309 1.27006090 0.00298540
(Fc, G3) 0.18939157 0.00000223 1.25669390 0.00298540
(Fc, G4) 0.21534823 0.01383360 1.32215430 0.00315400
(FC7 Gs) 0.18938712 0.00000897 2.59943410 0.00298539
(Fp,G1) 0.31487806 0.09655284 4.78823520 0.00390086
(Fp,G>) 0.32421736 0.11156311 1.00156410 0.00409459
(Fp,G3) 0.30345149 0.09890912 1.00002180 0.00393134
(FD, G4) 0.24723328 0.00845071 1.00001490 0.00338385
(FD, G5) 0.18506692 0.00023119 94.0396200 0.00298504

meaning that F and G reach their maximum values for BCR-ABL1/ABL1 ratios around 50%. For
the Holling type II and III functional responses (F' = Fp, Fc or G = G2, G3), we adopted Ck,Cgr = 10*
meaning that ' and G reach half of their maximum values for BCR-ABL1/ABL1 ratios around 1%.
For immune window (F = Fp or G = G4) and the immune suppression (G = G5) functional responses,
we adopted Cx,Cr = 10> meaning that F and G reach their maximum values for BCR-ABL1/ABL1
ratios around 0.1%, i.e. MR3. All these basic values above were used as starting values for searching
the possible scenarios for each submodel. Parameters mg and mpg did not have a specific starting
value. By varying the least possible number of parameters (starting with mg, mg, then Cg, Cg and
then py), we obtained the parameter values shown in Tables 2 and 3, leading to different scenarios for
each possible sub-model.

To estimate the model parameter values corresponding to the fits in Figure 3, we allowed param-
eters py, pyx, mg and mg to vary and used a minimization algorithm to find those parameter values
that minimize the quadratic error between the model solution and the patient data, defined as

g

E(py,pyx.mx,mg) = Y (logo(Lops(1:)) — logyo(Lmon(tr))),
i=1

27)

where Lops(t;) are the observed BCR-ABL1/ABLI ratios at times ¢; in the patient time course with
ng = 30 data-points, and Lyop(t;) = 100Y (¢;) /Ty are the simulated BCR-ABL1/ABLI ratios at the
same time points. The following intervals for parameter searches were used: 0.05 < py <1, 0 <
mg < 1000, dz < mg < 1000, and 0 < pyx < 0.1. The other parameters remained constant and we
assumed the following values: regarding leukemic cells, we used the values obtained in our previous
model for a specific patient: pxy = 0.0451256, Ty = 10° and e7x; = 0.493541 + py [Fassoni et al.,
2018]. For parameters dz, pz, Cx, Cg we adopted the same values as above (values for Cx and Cg
varied according to each sub-model). The results with the estimated values are given in Table 4.

To generate Figure 8, we fixed all parameters, with exception of mg and mg, which were allowed
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Table 5: Values for mg and mpg used to generate the different outcomes in the simulations shown in
Figure 8: relapse (solid lines) and remission/cure (dashed lines).

(F,G) mg (relapse) mp (relapse) mg (remission/cure) mpg (remission/cure)

(F4,Gs) 600 100 700 100
(F3,Gy) 0.15 1.05 0.20 1.05
(Fe,Gy) 0.50 1.10 2.00 1.10
(Fc,Gs) 200 150 1000 150
(Fp,G1) 0.10 1.05 0.15 1.05
(Fp,Ga) 0.50 1.05 1.10 1.05
(Fp,G3) 0.05 1.01 0.10 1.01
(Fp,Gs) 0.01 1.05 0.02 1.05
(Fp,Gs) 0.10 1.05 0.15 1.05

to vary in order to lead to different outcomes after cessation for each selected sub-model. The values
for mg and mgr were manually selected and are given in Table 5. Regarding the other parameters,
in all simulations we used the fixed values pyx = 0.00353003, py = 0.2, erg; = 0.693541, pxy =
0.0451256, while Ty dz, pz, Ck, and Cg are the same as above (values for Cx and Cg varied according
to each sub-model).
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