










Figure 6: Numerical bifurcation diagrams illustrating changes in the attractor landscapes. Yellow
curves correspond to saddle steady states, blue curves correspond to stable steady states (dark blue
for stable nodes, light blue for stable focus). These bifurcation diagrams illustrate the different possi-
bilities of transition of sub-models through different phase portraits as the immunological parameters
change; the bifurcation points are indicated by vertical dashed lines. Each panel shows a different
path as indicated in the caption of Figure 5. In all cases shown here, the bifurcation parameter is the
strength of immune response mK , for which a small value of the leads to scenario I, where the onset
of CML is possible. Similar transitions are obtained by varying the proliferation rate pY of LSCs and
keeping mK constant (not shown). A) I→ II. B) I→ III. C) I→ III→ IV→ II. D) III→ V→ IV→
II. These bifurcation diagrams were obtained using an automated numerical routine which evaluates
the steady states for each value of the bifurcation parameter. For each of this steady states, the eigen-
values of the corresponding jacobian matrix were calculated, and the steady states were classified
according to the usual linear stability criteria.
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Figure 7: Onset of CML starting from scenario III*. (A) Route from CML onset until diagnosis,
treatment, and treatment cessation. Scenario III* explains CML onset, progression, treatment and
relapse/remission without the need of any bifurcation. (B) Formation of scenario III*. Scenario III*
originates when the system is in scenario I and a parameter change (in this example, an increase
in the immune response mK) leads to a saddle-focus bifurcation between ES and EL. On the other
hand, scenario III* also emerges when the system is in scenario III, and a parameter change (in
this example, a decrease in the immune response mK) leads to a heteroclinic connection between the
invariant manifolds of ES and E0, so that the basin of attraction of EL passes through a dramatic change
in size and shape, and the cure steady state (unstable) E0 turns to belong to the basin of attraction of
EL. In general, the parameter interval for which scenario III* is exhibited is narrow (it is interval
between the two dashed lines), meaning that small changes in parameters could lead to scenarios I or
III.
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belong to the basin of attraction of the disease steady state EH , and thus an additional time or dose in
the treatment would not lead to relapse, contrary to scenario III*.

As a drawback of adopting scenario III* to describe the entire CML timeline, we point to the fact
that this scenario does not predict a complete eradication of CML (E0 is always unstable). Therefore,
patients in which no CML is detectable would, according to the model, still have a very low number
of CML cells during the TFR phase. Furthermore, scenario III* is restricted to a narrow parameter
interval, thereby strongly limiting its robustness (see Figure 7B). Additionally, there is no clinical
evidence for an over-treatment in CML as the duration of TKI treatment has been repeatedly identified
as a predictor of TFR. These limitations argue in favor of scenarios involving bifurcations to change
the attractor landscape during disease progression and treatment.

4 Discussion
We presented a general mathematical model to describe the dynamics of CML with the particular
focus on interactions with the immune response. Different treatment dynamics are described as tra-
jectories within a landscape of possible steady states, which we refer to as disease states. Specifically,
we consider 20 possible sub-models with different mechanistic assumptions on the interactions be-
tween CML and immune cells and show that a quantitative model adaptation to time course data
before treatment cessation is not sufficient for model selection and needs to be complemented by
the assessment of qualitative criteria. Introducing such criteria, we systematically compare the pos-
sible behaviors of each of the 20 sub-models with qualitative data on CML treatment and therapy
cessation, and identified nine of them as more plausible compared to others. Under the hypothesis
that our model is suitable to also describes CML onset and growth until diagnosis, we concluded
that critical parameters of the interaction dynamics need to change during leukemia growth and treat-
ment, thereby resulting in bifurcations that alter the attractor landscape of available and biologically
meaningful disease states.

Within the nine sub-models satisfying the qualitative criteria, five assume the existence of a func-
tional window for the immune response (function fD). The other four sub-models assume one of
the other proposed functional forms of the immune response, but necessarily assume a recruitment
function with either an immune window effect (function g4, 2 sub-models) or direct suppression of
immune recruitment (function g5, 2 sub-models). Understanding that the immune window assumption
describes an inhibited recruitment for high tumor load, we note that all the nine selected sub-models
assume a suppression mechanism at least in one interaction (i.e., immune function or recruitment).
This result agrees with recent data on immunological profiles of CML patients during TKI therapy
[Hughes et al., 2017].

Indeed, several immune effector mechanisms appear to be inhibited or suppressed in CML patients
at diagnosis, and are restored or enhanced during TKI treatment and after reaching deep molecular
remission [Hughes and Yong, 2017]. Together with the immunosuppressive features of CML cells,
these findings underline the functional dependencies of immune effector cell number and function,
which we formally describe by the functional responses in the different selected sub-models. A
further characterization of such functional responses, to be included in a future mathematical model,
may be achieved by assessment of longitudinal data on the immune system of CML patients during
continuing TKI treatment [Hughes et al., 2017].

To qualitatively assess the predictive power of our model, we simulated treatment cessation in all
the nine selected sub-models. For each sub-model, we found two sets of parameters values, which
reasonably well describe the data, but predict different outcomes: while one set leads to relapse after
cessation (dashed lines in Figure 8), the other set leads to remission or cure (continuous lines in Fig-
ure 8). We obtained these two distinct outcomes by slightly varying the parameters mK (maximum
effector function of immune cells) and pY (leukemia proliferation rate) in each parameter set. Both
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Figure 8: Unidentifiability of treatment response after theray cessation. Using model simulations
to extrapolate patient data and predict outcome of treatment cessation. Plots of the modeled BCR-
ABL1/ABL1 ratio, LMOD(t), for each of the 9 sub-models (different colors). For each sub-model,
we identified two sets of parameter values which adjust the observed patient data (gray dots). When
treatment cessation is simulated at the time of the last measurement, one parameter set leads to relapse
(continuous lines) while the other leads to sustained remission/cure (dashed lines). Therefore, the
crucial parameters for determining the outcome of treatment cessation are not identifiable with tumor
load data only.

parameters are crucial for the outcome of treatment cessation, since mk directly affects the ability
of immune cells to control the residual disease and pY determines the intrinsic aggressiveness of the
leukemic cells. These results show that these parameters are not uniquely identifiable by the measure-
ments of tumor load in response to TKI treatment only. Thus, additional measurements of immune
cells function and number are necessary to correctly estimate these crucial parameters and to derive
reliable model predictions. Therefore, besides informing the actual functional dependence between
the immune effector cell number or function and the leukemic load, incorporating in mathematical
models the longitudinal data on the immune system of CML patients could also make these models
able to reliable estimate the outcome of treatment cessation in a patient-specific way.

An alternative treatment strategy includes TKI-dose reduction by 50 % before treatment cessation,
which has been recently studied the DESTINY trial [Clark et al., 2017]. Additionally, we discussed
the potential of TKI dose reduction in the context of long-term maintenance treatment [Fassoni et al.,
2018]. In both cases, the dose reduction is expected to cause a perturbation on the dynamics of CML,
which can be captured and quantified by the patient-specific response in the BCR-ABL1/ABL1 ratios
following dose reduction. This response may be informative about the patient’s immune system, and
can provide an alternative or complementary information to be incorporated by mathematical models
of CML - immune interactions.

Additionally, comparing the different phase portraits exhibited by the selected sub-models, we
concluded that the full dynamics of pre-treatment, treatment and post-treatment phase can only be
sufficiently and robustly covered if one assumes that critical model parameters change over time.
Mathematically such parameter changes lead to bifurcations and introduce qualitative changes in the
underlying attractor landscape. Our mathematical formalization allows to speculate about clinically
relevant parameters that appear suitable to purposely deliver those changes. As such, the maximal
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intensity of immune effector cell activity mK or the growth rate pY (quantifying leukemia aggressive-
ness) act as bifurcation parameters and can account for changes in the attractor landsca

Translating those findings into a biologically meaningful context, we suggest that if certain param-
eters, such as sensitivity of the immunological cells towards CML cells, can be identified as a target
that changes during therapy, drug-based approaches (such as immune-modulatory drugs) may be im-
plemented to alter the landscape of available disease states such that the remission or cure attractor
emerges and increases in size. In this way, a TKI driven remission can be supported and permanently
maintained even after therapy cessation. Earlier observations about the beneficial role of IFN-alpha
treatment point towards this direction [Mahon et al., 2010].

Due to the homogeneity of the disease and the availability of high quality time course data, CML
has attracted mathematical modeling approaches with different foci [Catlin et al., 2005, Michor et al.,
2005, Roeder et al., 2006, Dingli et al., 2010, Stein et al., 2011, Komarova and Wodarz, 2009, Woy-
wod et al., 2017]. Several models also studied the role of the immune system in CML and made par-
ticular assumptions about the underlying mechanisms [Kim et al., 2008, Wodarz, 2010, Clapp et al.,
2015]. In our hands, there is no conclusive data to particularly highlight one over the other functional
mechanisms of CML-immune interaction. For this reason we chose a broader approach and illus-
trate how a set of qualitative criteria is suited to rule out a set of very simple interaction mechanisms
and points towards necessity of mutual suppression mechanisms between immune effector cells and
leukemic cells. The model considered here has some simplifying assumptions, which allow to derive
a mathematically analyzable model. First, the leukemic cells in the peripheral blood are not explicitly
considered, but are assumed to be in number proportional to the number of proliferating LSCs [Stein
et al., 2011, Fassoni et al., 2018]. Second, our ODE model does not consider stochastic effects, which
might become relevant when the number of LSCs is very small and potentially lead to disease eradica-
tion even when the cure steady state is mathematically unstable. However, as such low LSCs numbers
are only reached after very long treatment periods, we are confident to adhere to a regimen in which
stochastic effects do not confer substantially different results. Finally, our model does not consider
direct effects of the TKI itself on the immune system. Although there is some evidence for such an
interaction [Zitvogel et al., 2016], it appears to be a second order effect in comparison with the effect
on the immune response caused the TKI-induced reduction of tumor load [Hughes and Yong, 2017].

Our approach demonstrates that formalization in terms of mathematical models provide relevant
complementary means to systematically study regulatory mechanisms and speculate about the role of
immunological interactions in long term CML treatment. Our approach illustrates that the complexity
of clinically observed phenotypes can only be explained if suppressive feedback mechanisms and
dynamically altered interaction parameters are assumed. Experimental validation of those critical
parameters opens the door to target them using appropriate drugs and to achieve sustained remission
even after therapy cessation. Furthermore, mathematical models are an ideal tool for the virtual testing
of new measurement protocols and treatment schedules, and can lead to the formulation of testable
hypotheses.

A Mathematical analysis
The general dynamics of system (1) depend on the interactions between leukemic and immune cells:
four options for F(Y ) and five options for G(Y ) account for a total of 20 different combinations
(sub-models). In this Appendix, we identify which scenarios (phase portraits /0, I, II, III, IV and
V) are exhibited by each combination. Understanding that the TKI treatment acts as a temporary
force moving the system trajectories in the phase space, we analyze the asymptotic behavior of the
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permanent system, i.e., system (1) with eT KI = 0:

dX
dT

=−pXY X + pY XY,

dY
dT

= pXY X− pY XY + pYY
(

1− Y
TY

)
−mK Z F(Y ),

dZ
dT

= pZ−dZZ +mR Z G(Y ).

(3)

A.1 Non-dimensionalization
To reduce the number of parameters in the analytic study, we introduce the non-dimensional variables

t = T dZ, x =
X
TY

, y =
Y
TY

, z =
Z

pZ/dZ
, (4)

and obtain a non-dimensional model, mathematically equivalent to (3), given by

dx
dt

=−σxyx+σyxy,

dy
dt

= σxyx−σyxy+σyy(1− y)− γk z f (y),

dz
dt

= 1− z+ γr z g(y),

. (5)

where the non-dimensional parameters are

σxy =
pXY

dZ
, σyx =

pY X

dZ
, σy =

pY

dZ
, γk =

pZmK

d2
ZTY

, γr =
mR

dZ
, ξk =

CK

TY
, ξr =

CR

TY
, (6)

and the non-dimensional functional responses f (y) and g(y) are given, in each case fi(y) = Fi(Tyy),
i ∈ {A,B,C,D} and g j(y) = G j(Tyy), j ∈ {1,2,3,4,5}, by

fA(y) =
y
ξk
, fB(y) =

y
ξk + y

, fC(y) =
y2

ξ2
k + y2

, fD(y) =
2ξky

ξ2
k + y2

, (7)

g1(y) =
y
ξr
, g2(y) =

y
ξr + y

, g3(y) =
y2

ξ2
r + y2 , g4(y) =

2ξry
ξ2

r + y2 , g5(y) =
−y2

ξ2
r + y2 . (8)

A.2 Conditions on model parameters
We may impose biologically plausible conditions on some model parameters. As stated in Section
2, parameters CK and CR define the levels of leukemic cells at which the functions Fi(Y ) and G j(Y )
exert their action. Thus, it is reasonable to assume that all these effects occur on a population level
lower than the carrying capacity TY of the leukemic cells. Thus, we assume that CK,CR < TY . Further,
we note that the expression 1/dZ corresponds to the mean life-time of immune effector cells, while
1/mR can be understood as the mean time of individual immune recruitment when the recruitment
is at maximum, i.e., G(Y ) ≈ 1. In other words, 1/mR is the mean time spent by one immune cell
between the last contact with leukemic cells and the arrival of a new immune cell, in a situation where
the recruitment is at maximum. It is reasonable to assume that the former time (1/dZ) is greater
than the latter (1/mR), i.e, dZ < mR. Taken together, these conditions on the dimensional parameters,
correspond to conditions on the non-dimensional parameters:

ξk < 1, ξr < 1, γr > 1. (9)
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A.3 Analysis of the trivial steady state E0

All models for immune response f (y) and recruitment g(y) satisfy f (0) = g(0) = 0. Thus, the point
E0 = (0,0,1) (with coordinates (x,y,z)) is the trivial steady state for system (5). E0 is the “cure
steady-state”. The Jacobian matrix of system (5) evaluated at E0 is

J(E0) =

−σxy σyx 0
σyx σy−σyx− γk f ′(0) 0
0 γrg′(0) −1

 .
The characteristic polynomial of J(E0) is p0(λ) =−(λ+1)(λ2 +a1λ+a0), where a1 = σxy +σyx +
γk f ′(0)−σy and a0 = σxy (γk f ′(0)−σy). Thus, one eigenvalue of J(E0) is λ1 = −1 < 0, while the
other two satisfy λ2 +λ3 =−a1 and λ2λ3 = a0. We have the following cases:

1. If γk f ′(0)> σy then a0 > 0 and a1 > 0. Thus, λ2,λ3 < 0 and E0 is a stable node.

2. If γk f ′(0) < σy then a0 < 0. Thus, λ2 < 0 < λ3 and E0 is a saddle-point, with two negative
eigenvalues.

The above results are summarized in the following proposition.

Proposition 1. Let
φ =

γk

σy
f ′(0). (10)

If φ > 1, then E0 is a locally asymptotically stable steady state for system (5). If φ < 1, then E0 is a
saddle-point for system (5), with one positive eigenvalue and two eigenvalues with negative real part.

Remark 1. In terms of the dimensional parameters, parameter φ is written as

φ =
pZ

dZ

mK

pY
F ′(0), (11)

(note that f ′(0) = F ′(0)TY ). Thus, the cure-equilibrium E0 is stable if, and only if,

pZ

dZ
mKF ′(0)> pY . (12)

A.4 Analysis of nontrivial steady states
Besides the trivial steady state, system (5) can have multiple other nontrivial steady states, which we
study in the following. Setting dx/dt = 0 we obtain x = (σyx/σxy)y. Substituting this expression in
dy/dt = 0 and solving for z, we obtain

z = h1(y) :=
σyy(1− y)

γk f (y)
. (13)

On the other hand, setting dz/dt = 0 leads to

z = h2(y) :=
1

1− γrg(y)
. (14)

Taken together, (13) and (14) imply that the coordinate y 6= 0 of a nontrivial steady state should satisfy

h1(y) = h2(y), (15)
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Therefore, the nontrivial steady states of system (5) are the points E = (x∗(y),y,z∗(y)) where

x∗(y) =
σyx

σxy
y, and z∗(y) = h2(y). (16)

and y is a nonzero root of (15), which will be refereed as the equation for the nontrivial steady states.
Further, a nontrivial steady state is biologically feasible if its coordinates are positive, i.e., y > 0,
x∗(y) > 0 and z∗(y) ≥ 0. Checking expressions in (13) and (14) and using the fact that f (y) ≥ 0 for
all choices of f (y), we conclude that a root y of h1(y) = h2(y) is feasible if, and only if, 0 < y≤ 1 and
h2(y)> 0. The results of this subsection are summarized in the following proposition.

Proposition 2. The feasible nontrivial steady states of system (5) are the equilibrium points E =
(x∗(y),y, z∗(y)) where x∗(y) and z∗(y) are defined in (16) and y is a root of (15) such that 0 < y≤ 1
and h2(y)> 0.

It is our goal to describe which qualitatively distinct phase portraits (classified as 5 different sce-
narios, defined in Figure 4) are exhibited by each sub-model and which are not. This question may
be approached by assessing the number of roots of (15) which satisfy the feasibility conditions (note
that scenario I corresponds to 1 feasible nontrivial steady state, scenario II corresponds to 2 feasi-
ble nontrivial steady states, and so on; see Figure 4). With this, we will be able to i) conclude that
some scenarios are not exhibited by a given sub-model, due to the number of feasible nontrivial roots
admitted by equation (15), and ii) conclude that some scenarios are possibly exhibited by such sub-
model. In the latter case, we will numerically confirm this possibility by obtaining parameter values
for which the possible scenarios are indeed exhibited by the sub-model. Such analysis is summarized
in the following theorem.

Theorem 1. Consider system (5) under conditions (9), and scenarios /0, I, II, III, IV and V, defined
by their number of feasible nontrivial steady-states, 0, 1, 2, 3, 4 and 5, respectively, with their
local stability as indicated in Figure 4. Then, for each choice ( f ,g) = ( fi,g j), i ∈ {A,B,C,D},
j ∈ {1,2,3,4,5}, given in (7) and (8), a given subset of these scenarios cannot be exhibited by such
sub-model, while the remaining scenarios do. Such subsets and the parameter values which provide
the feasible scenarios are indicated in Tables 2 and 3.

Remark 2. Theorem 1 is a ‘non-existence result’ which exclude the possibility of some sub-models
to exhibit some scenarios. The affirmative answer is obtained by setting some model parameters (pa-
rameters pY , CK , CR, mK and mR) to a certain set of values in such way the scenario is observed when
we numerically calculate the steady states and their local stability (through the numerical calcula-
tion of the jacobian matrix and its eigenvalues). The global behavior of system (5) (existence of limit
cycles or other non-trivial attractors) is not approached by theorem 1. Table 1 summarizes the results
of Tables 2 and 3.

A.5 Proof of theorem 1
To prove theorem 1, we first present the expressions of h1 and h2 for each choice of f (y) and g(y).
We will express h1(y) in terms of φ, as this parameter is a threshold for the stability of E0 and so is
related to changes between scenarios. Remembering that φ = (γk/σy) f ′(0) and using the formulas
for fi(y), i ∈ {A,B,C,D} in equation (7), we obtain:

f ′A(0) =
1
ξk
, f ′B(0) =

1
ξk
, f ′C(0) = 0, f ′D(0) =

2
ξk
. (17)
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Table 2: Summary of analysis of models F = FA,FB and G = G1,G2,G3,G4,G5. For each sub-model
and each of scenarios /0, I, II, III, IV and V, we either present a set of parameter values which leads
to the specified scenario, or exclude such scenario with a formal proof, presented in section A.5.
See Appendix B for a reference to the other parameter values, which remained constant through all
sub-models and scenarios.

F G Scenario pY CK CR mK mR

FA G1 /0 0.2 5× 105 5×105 110 2
FA G1 I 0.2 5× 105 5×105 10 2
FA G1 II, III, IV, V excluded by analytic tools
FA G2 /0 0.2 5× 105 5×105 110 2
FA G2 I 0.2 5× 105 5×105 10 2
FA G2 II, III, IV, V excluded by analytic tools
FA G3 /0 0.2 5× 105 104 110 2
FA G3 I 0.2 5× 105 104 10 2
FA G3 II, III, IV, V excluded by analytic tools
FA G4 /0 0.2 5× 105 103 110 2
FA G4 I 0.2 5× 105 105 90 2
FA G4 III 0.2 5× 105 105 10 2
FA G4 II, IV, V excluded by analytic tools
FA G5 /0 0.2 5× 105 5× 105 110 2
FA G5 I 0.2 5× 105 103 90 2
FA G5 II 0.2 5× 105 103 110 2
FA G5 III 0.2 5× 105 4×105 97 1.15
FA G5 IV, V excluded by analytic tools
FB G1 /0 0.2 104 2×105 6 2
FB G1 I 0.2 104 2×105 1.98 3
FB G1 II 0.2 104 5×105 4 2
FB G1 III, IV, V excluded by analytic tools
FB G2 /0 0.2 104 2×105 6 3
FB G2 I 0.2 104 2×105 1.98 4
FB G2 II 0.2 104 5×105 4 2
FB G2 III, IV, V excluded by analytic tools
FB G3 /0 0.2 104 2×105 6 12
FB G3 I 0.2 104 2×105 1.98 12
FB G3 II 0.2 104 5×105 4 2
FB G3 III, IV, V excluded by analytic tools
FB G4 /0 0.2 104 2×105 6 12
FB G4 I 0.2 104 2×105 1.98 12
FB G4 II 0.2 104 5×105 4 2
FB G4 III 0.2 104 105 1.9 2
FB G4 IV 0.2 104 105 2.1 2
FB G4 V excluded by analytic tools
FB G5 /0 0.2 104 103 160 2
FB G5 I 0.2 104 103 1.9 2
FB G5 II 0.2 104 103 2.2 2
FB G5 III, IV, V excluded by analytic tools
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Table 3: Summary of analysis of models F = FC,FD and G = G1,G2,G3,G4,G5. For each sub-model
and each of scenarios /0, I, II, III, IV and V, we either present a set of parameter values which leads
to the specified scenario, or exclude such scenario with a formal proof, presented in section A.5.
See Appendix B for a reference to the other parameter values, which remained constant through all
sub-models and scenarios.

F G Scenario pY CK CR mK mR

FC G1 I 0.2 5×104 105 5 1.1
FC G1 III 0.2 2×104 5×105 8 1.1
FC G1 /0, II, IV, V excluded by analytic tools
FC G2 I 0.2 105 105 20 1.1
FC G2 III 0.2 2×104 105 8 1.1
FC G2 /0, II, IV, V excluded by analytic tools
FC G3 I 0.2 105 105 20 1.1
FC G3 III 0.2 2×104 105 8 1.1
FC G3 /0, II, IV, V excluded by analytic tools
FC G4 I 0.2 105 2×105 20 1.5
FC G4 III 0.2 105 105 20 1.1
FC G4 V 0.2 1.55×104 1.7×105 4.805 1.01
FC G4 /0, II, IV excluded by analytic tools
FC G5 I 0.2 105 2×105 20 1.5
FC G5 III 0.1 105 105 33.33 1.1
FC G5 V 1 9.8×104 3.4×104 1800 10
FC G5 /0, II, IV excluded by analytic tools
FD G1 /0 0.1 105 4×105 10 1.1
FD G1 I 0.1 105 104 0.5 1.1
FD G1 II 0.1 105 5×105 10 1.1
FD G1 III 0.1 3×104 9×104 1.485 1.1
FD G1 IV, V excluded by analytic tools
FD G2 /0 0.1 105 105 10 1.1
FD G2 I 0.1 105 104 0.5 1.1
FD G2 II 0.1 105 5×105 10 1.1
FD G2 III 0.1 3×104 9×104 1.485 1.1
FD G2 IV, V excluded by analytic tools
FD G3 /0 0.1 105 105 10 1.1
FD G3 I 0.1 105 104 0.5 1.1
FD G3 II 0.1 105 5×105 10 1.1
FD G3 III 0.1 2×105 2.9×105 9.9 1.1
FD G3 IV, V excluded by analytic tools
FD G4 /0 0.1 105 5×105 10 1.1
FD G4 I 0.1 2×105 5×105 9 1.1
FD G4 II 0.1 105 105 10 1.1
FD G4 III 0.1 105 104 0.5 1.1
FD G4 IV 0.1 1.1×105 5×105 5.555 1.01
FD G4 V 0.1 1.1×105 5×105 5.445 1.01
FD G5 /0 0.5 1.3×105 105 650 1.2
FD G5 I 0.1 2×105 103 9.9 1.01
FD G5 II 0.1 105 105 10 1.1
FD G5 III 0.1 3×105 5×105 14.85 1.1
FD G5 IV 0.9 4.5×105 5×102 2800 13
FD G5 V excluded by analytic tools
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Then, φ = γk/(σyξk) if f = fA, φ = γk/(σyξk) if f = fB, φ = 0 if f = fC, and φ = 2γk/(σyξk) if f = fD.
Thus, in each case, the formula for h1(y) can be expressed in terms of φ as

h1(y) =



1− y
φ

if f = fA,

(1− y)(1+ y/ξk)

φ
if f = fB,

σy

ξk

(1− y)(ξ2
k + y2)

y
if f = fC,

(1− y)(1+(y/ξk)
2)

φ
if f = fD.

(18)

In the same way, the expressions for h2(y) in each case g(y) = g j(y), j ∈ {1,2,3,4,5}, are

h2(y) =



1
1− γr(y/ξr)

if g = g1,

1+(y/ξr)

1− (γr−1)(y/ξr)
if g = g2,

1+(y/ξr)
2

1− (γr−1)(y/ξr)2 if g = g3,

1+(y/ξr)
2

1−2γr(y/ξr)+(y/ξr)2 if g = g4,

1+(y/ξr)
2

1+(γr +1)(y/ξr)2 if g = g5.

(19)

To analyze some of the sub-models, we will also study a polynomial equation equivalent to h1 =
h2. From equations (18) and (19), we note that h1 and h2 are rational functions, i.e., quotient of
polynomial functions. Therefore, equation h1(y) = h2(y), is equivalent to the polynomial equation

q(y) := numh1(y)denh2(y)−numh2(y)denh1(y) = 0, (20)

where numhi and denhi are the numerator and denominator of hi, respectively, and are polynomial
functions. For each choice ( fi,g j) of the sub-models, a different polynomial equation will be obtained,
and the number of positive roots of such equation will be studied by using the Descarte’s Rule of
Sign. If these roots satisfy the feasibility conditions, 0 < y ≤ 1 and h2(y) > 0, then, their quantity
correspond to the number of feasible nontrivial steady states. The Descarte’s Rule of Sign states
that the number of positive roots of a polynomial equation is equal to the number of sign variations
between consecutive non-zero coefficients, or less than it by some even number [Kennedy, 2001]. For
instance, if q is a fourth degree polynomial and its coefficients satisfy c0 > 0, c1 > 0, c2 < 0, c3 > 0
and c4 < 0, then the sign sequence is of q is Sq = (++−+−) (S for sequence) and the number of
sign variations is Vq = 3 (V for variation). Therefore, such polynomial has 1 or 3 positive roots. The
notation introduced in this paragraph will be used throughout the subsequent analysis. Further, we
denote by ± the sign of a coefficient which can be positive or negative. To facilitate the referencing,
we summarize the above results in the following lemma.

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 8, 2019. ; https://doi.org/10.1101/494575doi: bioRxiv preprint 

https://doi.org/10.1101/494575
http://creativecommons.org/licenses/by-nc-nd/4.0/


Lemma 1. Let q(y) = 0 the polynomial equation for the nontrivial roots, with coefficients ci. The
number of roots of q satisfying y > 0 is given by Vq− 2l, where l is a positive integer such that
Vq ≥ 2l.

Now, we introduce a way to easily verify which positive roots of q satisfy the feasibility condition
y ≤ 1. Substituting y = 1+ u in q(y) = 0, we obtain another polynomial equation, r(u) = 0, where
r(u) = q(1 + u). Each root u > 0 of r(u) = 0 corresponds to a root y = 1 + u > 1 of q(y) = 0.
Thus, using the Descarte’s Rule of Sign as above, we may count the number of positive roots of
r(u), which is equal to the number of positive roots of q which do not satisfy the feasibility condition
y ≤ 1. Further, we note that r(u) has the same degree as q and, if q(y) = c0 + c1y+ · · ·+ cnyn and
r(u) = d0 + d1u+ · · ·+ dnun have degree n, then the coefficients d0 and dn of r(u) are related to the
coefficients ci of q as

d0 = c0 + c1 + · · ·+ cn and dn = cn. (21)

Furthermore, we conclude that, if d0 and dn have different signs, then the sequence Sr of signs of
r(u) has at least one sign variation and the number of sign variations Vr is an odd number. This is
true because every sign change between d0 and dn needs to occur in pairs and Vr = 1+ 2k for some
integer k≥ 0, i.e., Vr is an odd number if d0 and dn have different signs. Using this result, we obtain a
simple criterion for the existence of positive but non-feasible roots for q, which is summarized in the
following lemma.

Lemma 2. Let q(y) = 0 the polynomial equation for the nontrivial roots, with coefficients ci, and
r(u) = q(1+u), with coefficients di. Then, the formulas in (21) hold. Furthermore, if d0 and dn have
different signs, then the number of the positive roots of q which satisfy the condition y > 1 is a positive
odd number, less or equal the degree of q.

We now analyze each sub-model in detail. Conditions (9) are assumed to hold.

Analysis for f = fA and g = g1,g2,g3. For f (y) = fA(y), from (18), we have that

h′1(y) =−
1
φ
.

Therefore, h1(y) is a decreasing function. Furthermore, h1(y) is non-negative only in the interval
0≤ y < 1 with h1(0) = 1/φ and h1(1) = 0.

Now, we study h2(y) for the choices g = g1,g2,g3. From the expressions of h2(y) in these cases,
we conclude the denominator of h2(y) vanishes and change its sign at an unique yd > 0, where yd =
ξr/γr for g = g1, yd = ξr/(γr− 1) > 0 for g = g2, and yd = ξr/

√
(γr−1) for g = g3 (since γr > 1).

Analyzing the sign of the denominator, we conclude that h2(y) is positive for 0 ≤ y < yd and is
negative for y > yd . Therefore, the feasibility condition h2(y)> 0 restricts the analysis to the interval
0≤ y < yd . Now we show that h2(y) is increasing in this interval. From the general equation for h2(y)
(14), we have

h′2(y) =
γrg′(y)

(1− γrg(y))2 .

Since g(y) is an increasing function when g = g1,g2,g3, we have g′(y)≥ 0. Thus, h′2(y)≥ 0 and h2(y)
is an increasing function for these cases. Summarizing, in the interval 0≤ y < yd , we have h2(0) = 1,
h2(y) is increasing, and h2(y)→+∞ when y→ yd , y < yd .

Combining the properties of h1 and h2 we conclude the following. If h1(0) > h2(0), then h1 and
h2 intersect in the interval 0 < y < yd exactly once, at some y∗ such that 0 < y∗ < 1 and h2(y∗) > 0.
Thus, there is an unique nontrivial steady state E. If h1(0) < h2(0) then h1 and h2 do not intersect
and there is no feasible nontrivial steady state. Since h1(0) = 1/φ and h2(0) = 1, we have established
the following result: if φ > 1, system (5) has an unique nontrivial steady state E; and If φ < 1, sys-
tem (5) does not admit nontrivial steady states. This result states that sub-models with f = fA and
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g = g1,g2,g3 do not exhibit scenarios II, III, IV and V. The only possible scenarios exhibited by these
sub-models are I and /0. We numerically verified that such scenarios are indeed exhibited by these
sub-models (see Table 2).

Analysis for f = fA and g = g4. For f = fA, we have h1(y) = (1− y)/φ. Thus, h1(y) is a decreasing
function with h1(0) = 1/φ > h1(y) > h1(1) = 0 for 0 < y < 1. On the other hand, since g4(y) ≥ 0
h2(y) = 1/(1− γrg4(y)), we conclude that h2(y) ≥ 1 if g4(y) < 1/γr and, h2(y) < 0 if g4(y) > 1/γr.
Since one of the feasibility conditions is h2(y)> 0, we conclude that if a feasible root y∗ occurs, then
h2(y∗)≥ 1. Hence, no feasible root occurs for φ > 1, since, in this case, 1 > h1(y)> 0 for 0 < y < 1.
Therefore, only scenario /0 occurs if φ > 1. The case φ < 1 is studied with the polynomial equation q,
which has degree ∂(q) = 3 and coefficients

c0 = 1−φ > 0, c1 =−1−2
γr

ξr
< 0, c2 =

1−φ+2γrξr

ξ2
r

> 0, c3 =−
1
ξ2

r
< 0.

Thus, the sign sequence of q is Sq = (+−+−) and the number of sign variations is Vq = 3. Therefore,
q admits 1 or 3 positive roots. Thus, scenarios I and III are possible for model ( fA,g4) if φ < 1, while
the other scenarios are excluded. We numerically verified the occurrence of scenarios I and III (see
Table 2).

Analysis for f = fA and g = g5. In this case, q is a third degree polynomial with coefficients

c0 = 1−φ, c1 =−1 < 0, c2 =
1−φ+ γr

ξ2
r

, c3 =−
1+ γr

ξ2
r

< 0,

(remember that the nondimensional parameters are positive and satisfy conditions (9)). If φ < 1, the
sign sequence is Sq = (+−+−) and the number of sign variations is Vq = 3. Thus, such equation
admits 1 or 3 positive roots and scenarios I and III are possible for model ( fA,g5). If φ > 1, the sign
sequence is Sq = (−−±−) and the number of sign variations is Vq = 0 or 2. If we additionally have
φ < 1+ γr, then c2 > 0 and Vq = 2. In this case, equation q(y) = 0 admits 0 or 2 positive roots and
scenarios /0 and II are possible for model ( fA,g5). We numerically verified the occurrence of scenarios
I and III, and /0 and II, under the respective conditions above (see Table 2).

Analysis for f = fB and g = g1. In this case, q is a third degree polynomial with coefficients

c0 = 1−φ, c1 =
1−ξk

ξk
− γr

ξr
, c2 =−

γr(1−ξk)+ξr

ξ2
r

< 0, c3 =
γr

ξrξk
> 0,

(remember that ξk < 1). By lemma 2, we obtain that the coefficients d0 and d3 of r(u) are

d0 =−φ < 0 < d3 =
γr

ξrξk
.

Thus, it follows also by lemma 2 that 1 or 3 positive roots of q are non-feasible, i.e., satisfy y > 1.
Now we analyze the sign sequence of q. If φ < 1, the sign sequence is Sq = (+±−+) and the number
of sign variations is Vq = 2. Thus, such equation admits 0 or 2 positive roots. Since at least one is
non-feasible, equation q has 2 positive roots but an unique feasible root. Thus, only scenario I is
possible if φ < 1. If φ > 1, the sign sequence is Sq = (−±−+) and the number of sign variations
is Vq = 1 or 3. Thus, equation q(y) = 0 admits 1 or 3 positive roots. Since 1 or 3 of such roots are
non-feasible, we have 0 or 2 feasible roots. Hence, only scenarios /0 and II are possible if φ > 1. We
numerically verified the occurrence of scenarios I, and /0 and II, under the respective conditions above
(Table 2).
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Analysis for f = fB and g = g2. In this case, q is a third degree polynomial with coefficients

c0 = 1−φ, c1 =
1−ξk

ξk
− γr

ξr
, c2 =−

γr(1−ξk)+ξr

ξ2
r

< 0, c3 =
γr−1
ξrξk

> 0.

By lemma 2, the coefficients d0 and d3 of r(u) are

d0 =−φ− φ

ξr
< 0 < d3 =

γr−1
ξrξk

.

Thus, it follows that 1 or 3 positive roots of q satisfy y > 1. Now we analyze the sign sequence of q.
If φ < 1, we have Sq = (+±−+) and Vq = 2. Thus, q admits 0 or 2 positive roots. As at least one
satisfies y > 1, we conclude that q has 2 positive roots but an unique root in the interval 0 < y < 1.
Hence, only scenario I is possible if φ < 1. If φ > 1, we have Sq = (−±−+) and Vq = 1 or 3. Thus,
q admits 1 or 3 positive roots. Since 1 or 3 of such roots are non-feasible, we have 0 or 2 feasible
roots. Hence, only scenarios /0 and II are possible if φ > 1. We numerically verified the occurrence of
scenarios I, and /0 and II, under the respective conditions above (see Table 2).

Analysis for f = fB and g = g3. In this case, q is a fourth degree polynomial with coefficients

c0 = 1−φ,c1 =
1−ξk

ξk
> 0,c2 =−

1
ξk
− γr−1

ξ2
r
− φ

ξ2
r
< 0, ,c3 =

γr−1
ξ2

r

ξk−1
ξk

< 0,c4 =
γr−1
ξkξ2

r
> 0.

The coefficients d0 and d4 of r(u) are

d0 =−
φ

ξ2
r
(1+ξ

2
r )< 0 < d4 =

γr−1
ξkξ2

r
.

Thus, by lemma 2, 1 or 3 positive roots of q satisfy y > 1. Let us analyse the sign sequence of q. If
φ < 1, then Sq = (++−−+) and Vq = 2. Thus, q admits 0 or 2 positive roots. As at least one satisfies
y > 1, it follows that q has 2 positive roots but an unique root in the interval 0 < y < 1. Hence, only
scenario I is possible if φ < 1. If φ > 1, then Sq = (−+−−+) and Vq = 3. Thus, q admits 1 or 3
positive roots. Since 1 or 3 of such roots satisfy y > 1, we have 0 or 2 feasible roots. Hence, only
scenarios /0 and II are possible if φ > 1. We numerically verified the occurrence of scenarios I, and /0

and II, under the respective conditions above (see Table 2).

Analysis for f = fB and g = g4. In this case, q is a fourth degree polynomial. A priori, q may admits
up to 4 positive roots and scenarios /0, I, II, III and IV would be possible, while scenario V is not pos-
sible, since it corresponds to five positive roots for q. Indeed, we numerically verified the occurrence
of all these scenarios (see Table 2).

Analysis for f = fB and g = g5. In this case, the next lemma guarantees that equation h1 = h2 does
not admit more than two different positive roots. This implies that only scenarios /0, I and II are
possible. We numerically verified the occurrence of these scenarios (see Table 2).

Lemma 3. If ( f ,g) = ( fB,g5), then equation h1 = h2 admits at most two different positive roots.

Proof. Suppose by contradiction that h1(y) = h2(y) admits three or more different positive roots.
Since h1 and h2 are differentiable functions for all y ≥ 0, it follows from the Rolle theorem that the
difference of their derivatives, w(y) = h′1(y)− h′2(y), has at least two different positive roots, say
0 < ŷ1 < ŷ2. The expressions for h′1(y) and h′2(y) are

h′1(y) =
1−ξk−2y

ξkφ
and h′2(y) =

−2γrξ
2
r y

(ξ2
r +(1+ γr)y2)2 .

31

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 8, 2019. ; https://doi.org/10.1101/494575doi: bioRxiv preprint 

https://doi.org/10.1101/494575
http://creativecommons.org/licenses/by-nc-nd/4.0/


Thus, limy→∞ w(y) = −∞, which implies that there exists M > 0 such that w(y) < 0 for all y ≥ M.
Hence, ŷ1 and ŷ2 are inside the interval (0,M). From the Rolle theorem, it follows that w′(y) has a
root ỹ1 ∈ (ŷ1, ŷ2)⊂ (0,M).

We shall show that w′(y) admits a second root ỹ2 6= ỹ1 within (0,M). If w′(ŷi) = 0 for some
i0 ∈{1,2}, then just take ỹ2 = ŷi0 . Now, suppose w′(ŷi) 6= 0 for i= 1,2. Since w(0)= (1−ξk)/(ξkφ)>
0 > w(M), we conclude that w(y) changes its sign an odd number of times within the interval [0,M].
As w′(ŷi) 6= 0 for i= 1,2, it follows that w(y) changes it sign at the roots ŷi and necessarily w(y) admits
a third root ŷ3 ∈ [0,M], distinct from ŷ1 and ŷ2. Suppose without loss of generality that ŷ3 > ŷ2. Thus,
it follows from the Rolle theorem that w′(y) has another root ỹ2 within the interval (0,M). Therefore,
we’ve proved that w′(y) = h′′1(y)−h′′2(y) has two distinct roots ỹ1 and ỹ2 within the interval (0,M).

Thus, the curves of h′′1 and h′′2 have at least two intersections for y > 0. Since

h′′2(y) =
2γrξ

2
r

(ξ2
r +(1+ γr)y2)3

(
3y2(1+ γr)−ξ

2
r
)
,

the interval of positive values of y where h′′2(y) is negative is I∗= [0,u1), where u1 = ξr/(
√

3
√

1+ γr).
On the other hand, we have that h′′1(y)=−2/(ξkφ) is negative for y≥ 0. Thus, the two roots of h′′1 = h′′2
should occur within I∗. The derivative of h′′2 ,

h′′′2 (y) =
24γr(1+ γr)ξ

2
r y

ξ2
r +(1+ γr)y2)4

(
ξ

2
r − (1+ γr)y2)

has the following properties: if u2 = ξr/
√

1+ γr, then h′′′2 (y)> 0 for 0≤ y< u2, h′′′2 (u2)= 0, h′′′2 (y)< 0
for y > u2, and u2 > u1. Thus, h′′2(y) is an increasing function within the interval I∗, while h′′1(y) is
constant. Therefore, the curves of h′′1(y) and h′′2(y) do not have two intersections for y > 0, which is a
contradiction. Therefore, the equation h1(y) = h2(y) do not have more than two positive roots.

Analysis for f = fC and g = g1. In this case, q is a fourth degree polynomial with coefficients

c0 = σyξ
2
k ,c1 =−γk−

σyξ2
k(γr +ξr)

ξr
< 0,c2 = σy +

γrσyξ2
k

ξr
> 0,c3 =−

σy(γr +ξr)

ξr
< 0,c4 =

γrσy

ξr
.

Thus, Sq = (+−+−+), Vq = 4 and q admits 0 or 2 or 4 positive roots. The coefficients d0 and d4 or
r are

d0 =−γk < 0 < d4 =
γrσy

ξr
.

By lemma 2, 1 or 3 positive roots of q satisfy y > 1. Therefore, q admits 1 or 3 feasible roots. Hence,
only scenarios I and III are possible. We numerically verified the occurrence of such scenarios (see
Table 3).

Analysis for f = fC and g = g2. In this case, q is a fourth degree polynomial with coefficients

c0 = σyξ
2
k > 0, c1 =−γk−σyξ

2
k−

σyξ2
k(γr−1)

ξr
< 0, c2 = σy−

γk

ξr
+

(γr−1)σyξ2
k

ξr
,

c3 =−σy−
σy(γr−1)

ξr
< 0, c4 =

(γr−1)σy

ξr
> 0.

Thus, Sq = (+−±−+), Vq = 2 or 4, and q admits 0 or 2 or 4 positive roots. The coefficients d0 and
d4 are

d0 =−
γk(ξr +1)

ξr
< 0 < d4 =

σy(γr−1)
ξr

.
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By lemma 2, 1 or 3 positive roots of q satisfy y > 1. Therefore, q admits 1 or 3 feasible roots. Hence,
only scenarios I and III are possible. We numerically verified the occurrence of such scenarios (see
Table 3).

Analysis for f = fC and g = g3. In this case, q is a fifth degree polynomial with coefficients

c0 = σyξ
2
k > 0, c1 =−γk−σyξ

2
k < 0, c2 = σy−

(γr−1)σyξ2
k

ξr
, c3 =−c2−

γk

ξ2
r
,

c4 =−
(γr−1)σy

ξ2
r

< 0, c5 =
(γr−1)σy

ξ2
r

> 0.

If c2 > 0, then c3 < 0, Sq = (+−+−−+), Vq = 4, and q admits 0 or 2 or 4 positive roots. If c2 < 0,
then Sq = (+−−±−+), Vq = 2 or 4, and q admits 0 or 2 or 4 positive roots. Thus, both cases result
in the same possibilities. The coefficients d0 and d5 of r(u) are

d0 =−γk

(
1+

1
ξ2

r

)
< 0 < d5 =

σy(γr−1)
ξ2

r
.

By lemma 2, q has 1 or 3 or 5 roots y > 1. Therefore, q admits 1 or 3 feasible roots. Hence, only
scenarios I and III are possible. We numerically verified the occurrence of such scenarios (see Table
3).

Analysis for f = fC and g = g4. In this case, q is a fifth degree polynomial with coefficients

c0 = σyξ
2
k > 0, c1 =−γk−σyξ

2
k−

2γrσyξ2
k

ξr
< 0, c2 = σy +

σyξ2
k

ξ2
r

+
2γrσyξ2

k
ξr

,

c3 =−
γk

ξ2
r
−σy−

σyξ2
k

ξ2
r
−

2γrσy

ξr
< 0, c4 =

σy

ξ2
r
+

2γrσy

ξr
> 0, c5 =−

σy

ξ2
r
< 0.

Thus, Sq = (+−+−+−), Vq = 5, and q admits 1 or 3 or 5 positive roots. Hence, only scenarios I,
III and V are possible. We numerically verified the occurrence of such scenarios (see Table 3).

Analysis for f = fC and g = g5. In this case, q is a fifth degree polynomial with coefficients

c0 = σyξ
2
k > 0, c1 =−γk−σyξ

2
k < 0, c2 = σy +

(1+ γr)σyξ2
k

ξ2
r

,

c3 =−
γk

ξ2
r
−σy−

(1+ γr)σyξ2
k

ξ2
r

< 0, c4 =
σy(1+ γr)

ξ2
r

> 0, c5 =−
σy(1+ γr)

ξ2
r

< 0.

Thus, Sq = (+−+−+−), Vq = 5, and q admits 1 or 3 or 5 positive roots. Hence, only scenarios I,
III and V are possible. We numerically verified the occurrence of such scenarios (see Table 3).

Analysis for f = fD and g = g1. In this case, q is a fourth degree polynomial with coefficients

c0 = 1−φ,c1 =−
γr +ξr

ξr
< 0,c2 =

1
ξ2

k
+

γr

ξr
> 0,c3 =−

γr +ξr

ξ2
kξr

< 0, c4 =
γr

ξ2
kξr

> 0.

The coefficients d0 and d4 of r(u) are

d0 =−φ < 0 < d4 =
γr

ξ2
kξr

.
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By lemma 2, q has 1 or 3 positive roots which satisfy y > 1. Analyzing the sign sequence of q, we
conclude the following. If φ < 1, then Sq = (+−+−+), Vq = 4, and q admits 0 or 2 or 4 positive
roots. Since 1 or 3 are non-feasible, it follows that q has 1 or 3 feasible roots and only scenarios I and
III are possible in this case. If φ > 1, then Sq = (−−+−+), Vq = 3, and q admits 1 or 3 positive
roots. Since 1 or 3 are non-feasible, it follows that q has 0 or 2 feasible roots and only scenarios /0 and
II are possible in this case. We numerically verified the occurrence of scenarios /0, I, II and III (see
Table 3).

Analysis for f = fD and g = g2. In this case, q is a fourth degree polynomial with coefficients

c0 = 1−φ,c1 =
1− γr−1−ξr−φ

ξr
< 0,c2 =

1
ξ2

k
+

γr−1
ξr

> 0,c3 =
1− γr−ξr

ξ2
kξr

< 0,c4 =
γr−1
ξ2

kξr
> 0.

The coefficients d0 and d4 of r(u) are

d0 =−
φ(1+ξr)

ξr
< 0 < d4 =

γr−1
ξ2

kξr
.

By lemma 2, q has 1 or 3 positive roots which satisfy y > 1. Analyzing the sign sequence of q, we
conclude the following. If φ < 1, then Sq = (+−+−+), Vq = 4, and q admits 0 or 2 or 4 positive
roots. Since 1 or 3 are non-feasible, it follows that q has 1 or 3 feasible roots and only scenarios I and
III are possible in this case. If φ > 1, then Sq = (−−+−+), Vq = 3, and q admits 1 or 3 positive
roots. Since 1 or 3 are non-feasible, it follows that q has 0 or 2 feasible roots and only scenarios /0 and
II are possible in this case. We numerically verified the occurrence of scenarios /0, I, II and III (see
Table 3).

Analysis for f = fD and g = g3. In this case, q is a fifth degree polynomial with coefficients

c0 = 1−φ,c1 =−1 < 0,c2 =
1
ξ2

k
− γr−1+φ

ξ2
r

,c3 =
γr−1

ξ2
r
− 1

ξ2
k
,c4 =

1− γr

ξ2
kξ2

r
< 0, c5 =

γr−1
ξ2

kξ2
r
> 0.

The coefficients d0 and d5 of r(u) are

d0 =−φ
(1+ξ2

r )

ξ2
r

< 0 < d5 =
γr−1
ξ2

kξ2
r
.

By lemma 2, q has 1 or 3 positive roots which satisfy y > 1. Analyzing the sign sequence of q, we
conclude the following. If φ < 1, then Sq = (+−±±−+), Vq = 2 or 4, and q admits 0 or 2 or 4 pos-
itive roots. Since 1 or 3 are non-feasible, it follows that q has 1 or 3 feasible roots and only scenarios
I and III are possible in this case. If φ > 1, then Sq = (−−±±−+), Vq = 1 or 3, and q admits 1
or 3 positive roots. Since 1 or 3 are non-feasible, it follows that q has 0 or 2 feasible roots and only
scenarios /0 and II are possible in this case. We numerically verified the occurrence of scenarios /0, I,
II, and III (see Table 3).

Analysis for f = fD and g = g4. In this case, q is a fifth degree polynomial and all scenarios are
possible. We numerically verified the occurrence of each scenario (see Table 3).

Analysis for f = fD and g = g5. In this case, q is a fifth degree polynomial and all scenarios are
possible. We numerically verified the occurrence of scenarios /0, I, II, III and IV (see Table 3), while
scenario V is excluded due to the following lemma.

Lemma 4. If ( f ,g) = ( fD,g5), then q(y) does not admit five different roots in the interval y ∈ [0,1].
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Proof. For f = fD and g = g5 we have

q(y) = c0 + c1y+ c2y2 + c3y3 + c4y4 + c5y5 (22)

with coefficients

c0 = 1−φ,c1 =−1,c2 =
γr +1−φ

ξ2
r

+
1
ξ2

k
,c3 =−

γr +1
ξ2

r
− 1

ξ2
k
,c4 =

γr +1
ξ2

kξ2
r
,c5 =−

γr +1
ξ2

kξ2
r
. (23)

If φ > 1, then the sign sequence of q is (−−+−+−), and thus Vq = 4. Hence, q(y) has at most 4
positive roots and our claim is valid.

Now, assume that φ < 1, and suppose by contradiction that q(y) has 5 different roots within the
interval [0,1]. Then, by the Rolle theorem, it follows that q′(y) has 4 roots within (0,1) and then q′′(y)
has three roots within (0,1). The function q′′(y) is a third degree polynomial, and we will count its
roots by calculating its Sturm sequence and applying the Sturm’s theorem (see Basu et al. [2007],
section 2.2.2).

The Sturm sequence of a polynomial S(y) is a sequence (S0,S1,S2, · · ·) of polynomials defined as
follows:

S0 = S,
S1 = S′,
Sn+1 =−rem (Sn−1,Sn), n≥ 1,

where rem(Sn−1,Sn) is the remainder of the Euclidean division of Sn−1 by Sn (see Basu et al. [2007],
section 2.2.2). The number of sign variations of the Sturm sequence evaluated at c ∈R, is denoted by
VS(c) and defined as the number of sign variations in the sequence of numbers

(S0(c), S1(c), S2(c), · · ·).

Let a,b ∈ R. The Sturm‘s Theorem states that the number of roots of S(y) within the interval [a,b] is
equal to the difference VS(a)−VS(b).

We will apply the Sturm‘s Theorem to S(y) = q′′(y) and count its roots inside the interval [a,b] =
[0,1]. The Sturm sequence of a third degree polynomial

S(y) =C0 +C1y+C2y2 +C3y3

is given by

S0(y) = S(y) =C0 +C1y+C2y2 +C3y3,

S1(y) = S′(y) =C1 +2C2y+3C3y2,

S2(y) =−rem (S0,S1) =
C1C2

9C3
−C0 +

(
2C2

2
9C3
− 2C1

3

)
y,

S3(y) =−rem (S1,S2) =
9C3

(
18C0C1C2C3 +C2

1C2
2−4C3C3

1−C0
(
4C3

2 +27C0C2
3
))

4
(
C2

2−3C1C3
)

2
.

Thus, the Sturm sequence of S evaluated at y = 0 is

(S0(0),S1(0),S2(0),S3(0)) =
(

C0,C1,
C1C2
9C3
−C0,

9C3
(
18C0C1C2C3 +C2

1C2
2−4C3C3

1−C0
(
4C3

2 +27C0C2
3
))

4
(
C2

2−3C1C3
) 2)

,

(24)
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and the Sturm sequence of S evaluated at y = 1 is

(S0(1),S1(1),S2(1),S3(1)) =

(
C0 +C1 +C2 +C3,C1 +2C2 +3C3,

C1C2 +2C2
2

9C3
−C0−

2C1

3
,

9C3
(
18C0C1C2C3 +C2

1C2
2−4C3C3

1−C0
(
4C3

2 +27C0C2
3
))

4
(
C2

2−3C1C3
) 2)

.

(25)
From (22), we have q′′(y) = 2c2 + 6c3y+ 12c4y2 + 20c5y3 with ci given in (23). Writing S(y) =
q′′(y) =C0 +C1y+C2y2 +C3y3, we obtain the coefficients

C0 = 2c2, C1 = 6c3, C2 = 12c4, C3 = 20c5. (26)

Hence, using formulas (24), (26) and (23), and the fact that φ < 1 < γr, we obtain that the first three
terms of the Sturm sequence of q′′ evaluated at y = 0 are

S0(0) = 2 γr+1−φ

ξ2
r

+ 2
ξ2

k
> 0,

S1(0) =−6 γr+1
ξ2

r
− 6

ξ2
k
< 0,

S2(0) =− 8
5ξ2

k
−24(1−φ)+3γr+(γr−φ)

5ξ2
r

< 0,

while S3(0) has a complicated expression with an undetermined sign. However, we can conclude that
Vq′′(0) = 2 if S3(0)> 0 and Vq′′(0) = 1 if S3(0)< 0.

Now, again using the fact that φ < 1 < γr and formulas (25), (26) and (23), we obtain that the first
three terms of the Sturm sequence of q′′ evaluated at y = 1 are

S0(1) =−2
(2γr(2+ξ2

k)+2(2+ξ2
r )+ξ2

k(2+φ))

ξ2
kξ2

r
< 0,

S1(1) =−6
(ξ2

r +(1+ γr)(6+ξ2
k))

ξ2
kξ2

r
< 0,

S2(1) = 2
(−4+ γr(6ξ2

k−4)+6ξ2
r +ξ2

k(6+5φ))

5ξ2
kξ2

r
,

which has an undetermined sign, and S3(1), which has a complicated expression with an undetermined
sign. However, notice from (24) and (25) that S3(1) = S3(0). Thus, we can conclude that Vq′′(1) = 1
if S3(0)> 0 and Vq′′(1) = 0 or 2 if S3(0)< 0.

Therefore, the number of roots of q′′(y) within the interval [0,1], which, by the Sturm‘s Theorem,
is equal to the difference Vq′′(0)−Vq′′(1), is always less than 3, which is a contradiction. Hence, the
equation q(y) cannot have five roots within the interval [0,1].

B Model parameterization and parameter estimation
Here we report the parameter values used for the model simulations. To describe the different scenar-
ios with each sub-model (Tables 2 and 3) we started with the following set of basic values. Parameters
regarding proliferating and quiescent LSCs were set to values used in a previous publication and cor-
respond to the median values of a cohort of 122 CML patients [Fassoni et al., 2018]. The values are
pXY = 0.05, pY X = 0.001, pY = 0.2 and TY = 106. For immune cells we adopted the values dZ = 1
month−1 and pZ = 103 cells/month so that the normal level of immune cells is pZ/dZ = 103 cells.
Parameters CK and CR were set to values defined according to the specific functional responses used
in each sub-model. For linear functional responses (F = FA or G = G1), we adopted CK,CR = 5×105
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Table 4: Estimated values for pY , pY X , mK and mR, used in Figure 3.

(F,G) pY mK mR pY X

(FA,G1) 0.18939321 0.00006908 3.31196830 0.00298540
(FA,G2) 0.18940069 0.00003577 1.19091170 0.00298540
(FA,G3) 0.18836653 0.00002774 1.23852800 0.00298517
(FA,G4) 0.21386851 0.43721542 1.22494960 0.00315841
(FA,G5) 0.18929618 0.00093258 9.66089240 0.00298538
(FB,G1) 0.18940055 0.00002076 5.76081590 0.00298541
(FB,G2) 0.18940214 0.00000225 1.29802820 0.00298540
(FB,G3) 0.18939853 0.00000192 1.23391420 0.00298540
(FB,G4) 0.21721919 0.00597071 1.21093450 0.00316262
(FB,G5) 0.18929618 0.00093258 9.66089240 0.00298538
(FC,G1) 0.18939538 0.00000256 6.04955220 0.00298540
(FC,G2) 0.18940266 0.00000309 1.27006090 0.00298540
(FC,G3) 0.18939157 0.00000223 1.25669390 0.00298540
(FC,G4) 0.21534823 0.01383360 1.32215430 0.00315400
(FC,G5) 0.18938712 0.00000897 2.59943410 0.00298539
(FD,G1) 0.31487806 0.09655284 4.78823520 0.00390086
(FD,G2) 0.32421736 0.11156311 1.00156410 0.00409459
(FD,G3) 0.30345149 0.09890912 1.00002180 0.00393134
(FD,G4) 0.24723328 0.00845071 1.00001490 0.00338385
(FD,G5) 0.18506692 0.00023119 94.0396200 0.00298504

meaning that F and G reach their maximum values for BCR-ABL1/ABL1 ratios around 50%. For
the Holling type II and III functional responses (F = FB,FC or G = G2,G3), we adopted CK,CR = 104

meaning that F and G reach half of their maximum values for BCR-ABL1/ABL1 ratios around 1%.
For immune window (F =FD or G=G4) and the immune suppression (G=G5) functional responses,
we adopted CK,CR = 103 meaning that F and G reach their maximum values for BCR-ABL1/ABL1
ratios around 0.1%, i.e. MR3. All these basic values above were used as starting values for searching
the possible scenarios for each submodel. Parameters mK and mR did not have a specific starting
value. By varying the least possible number of parameters (starting with mK , mR, then CK , CR and
then pY ), we obtained the parameter values shown in Tables 2 and 3, leading to different scenarios for
each possible sub-model.

To estimate the model parameter values corresponding to the fits in Figure 3, we allowed param-
eters pY , pY X , mK and mR to vary and used a minimization algorithm to find those parameter values
that minimize the quadratic error between the model solution and the patient data, defined as

E(pY , pY X ,mK,mR) =
nd

∑
i=1

(log10(LOBS(ti))− log10(LMOD(tI)))
2 , (27)

where LOBS(ti) are the observed BCR-ABL1/ABL1 ratios at times ti in the patient time course with
nd = 30 data-points, and LMOD(ti) = 100Y (ti)/TY are the simulated BCR-ABL1/ABL1 ratios at the
same time points. The following intervals for parameter searches were used: 0.05 ≤ pY ≤ 1, 0 ≤
mK ≤ 1000, dZ < mR ≤ 1000, and 0 ≤ pY X ≤ 0.1. The other parameters remained constant and we
assumed the following values: regarding leukemic cells, we used the values obtained in our previous
model for a specific patient: pXY = 0.0451256, TY = 106 and eT KI = 0.493541+ pY [Fassoni et al.,
2018]. For parameters dZ , pZ , CK , CR we adopted the same values as above (values for CK and CR
varied according to each sub-model). The results with the estimated values are given in Table 4.

To generate Figure 8, we fixed all parameters, with exception of mK and mR, which were allowed
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Table 5: Values for mK and mR used to generate the different outcomes in the simulations shown in
Figure 8: relapse (solid lines) and remission/cure (dashed lines).

(F,G) mK (relapse) mR (relapse) mK (remission/cure) mR (remission/cure)

(FA,G5) 600 100 700 100
(FB,G4) 0.15 1.05 0.20 1.05
(FC,G4) 0.50 1.10 2.00 1.10
(FC,G5) 200 150 1000 150
(FD,G1) 0.10 1.05 0.15 1.05
(FD,G2) 0.50 1.05 1.10 1.05
(FD,G3) 0.05 1.01 0.10 1.01
(FD,G4) 0.01 1.05 0.02 1.05
(FD,G5) 0.10 1.05 0.15 1.05

to vary in order to lead to different outcomes after cessation for each selected sub-model. The values
for mK and mR were manually selected and are given in Table 5. Regarding the other parameters,
in all simulations we used the fixed values pY X = 0.00353003, pY = 0.2, eT KI = 0.693541, pXY =
0.0451256, while TY dZ , pZ , CK , and CR are the same as above (values for CK and CR varied according
to each sub-model).
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