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Abstract

Stochastic birth–death models provide the foundation for studying and

simulating evolutionary trees in phylodynamics. A curious feature of such

models is that they exhibit fundamental symmetries when the birth and death

rates are interchanged. In this paper, we explain and formally derive these

transformational symmetries. We also show that these transformational sym-

metries (encoded in algebraic identities) are preserved even when taxa at the

present are sampled with some probability. However, these extended symme-

tries require the death rate parameter to sometimes take a negative value.

In the last part of this paper, we describe the relevance of these transfor-

mations and their application to computational phylodynamics, particularly

to maximum likelihood and Bayesian inference methods, as well as to model

selection. Phylodynamics, phylogenetics, speciation-extinction models, birth-

death models, algebraic symmetries, maximum likelihood, Bayesian inference
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1 Introduction

Linear birth–death models play a pivotal role in phylodynamics. These stochastic

models provide a prior distribution on evolutionary trees (both the shape and edge

length distribution) for Bayesian inference methods [21, 18]. Moreover, these models

allow biologists to estimate key parameters of macroevolution (such as speciation

rates corresponding to birth rates, and extinction rates corresponding to death rates)

from reconstructed phylogenetic trees which were dated by fossil (or other time-

sampled) evidence [10].

The study of such models dates back to some classical papers from the early to

mid-20th century [22, 5, 6], and the application of these models to phylogenetics

and phylodynamics flourished from the 1990s onwards [10, 11]. Further in-depth

mathematical analysis [1, 8, 2, 9, 7] has extended our understanding of the properties

of these models and extensions that allow more complex processes of birth and death.

In this paper, we identify and explore curious symmetries in fundamental birth–

death model probability distributions when the birth and death rates (λ and µ)

are swapped. We will start the paper by providing an intuitive account of this

symmetry that seems at first a little surprising. We extend this to the more general

setting where a third parameter is introduced — the sampling probability ρ of taxa

sampled at the present — and show how analogous symmetries can be derived by

a transformation that reduces these three parameters to just two (λ′, µ′). One can

view these as ‘corrected’ birth and death rates, except for the caveat that this new

death rate µ′ can now take negative values. A major advantage of working with the

transformed pair of parameters (λ′, µ′) is that it captures the correct dimensionality

of the process (namely 2), thereby avoiding the inherent redundancy present in the

3-dimensional parameterization that uses the triple (λ, µ, ρ). This viewpoint has

implications for phylogenetic and phylodynamic inferences, both in the maximum

likelihood and Bayesian settings, and we explore these implications in the latter part
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of our paper.

2 Birth–death symmetries

Consider a phylogenetic tree that evolves from a single ancestral taxon according to

a birth–death process, with a constant birth rate λ ≥ 0 and a constant death rate

µ ≥ 0. Suppose that at some time point in the tree, there are n taxa present. Let

pn,m(t | λ, µ) be the probability that at time t later, there will be m taxa present.

These transition probabilities are classical and provide a foundation for phylody-

namic models. However, the starting point for this paper is the following curious

symmetry (communicated to the first author by Joseph Felsenstein):

p11(t | λ, µ) = p11(t | µ, λ). (1)

This equation states the surprising result that the probability of one individual

having one surviving descendant after time t remains the same if we swap the birth

rate (λ) and the death rate (µ). Thus a process with a birth rate of, say, 100 and

a death rate of, say, 1 — a scenario with a very fast-growing population — has the

same probability of having one surviving descendant as a process with a birth rate

of 1 and a death rate of 100, a scenario where we know that the process eventually

leads to extinction.

We will see that identities such as Eqn. (1) fall out from an algebraic analysis

of birth–death models (provided later). Our aim in the meantime is to provide an

intuitively transparent (but still rigorous) argument for Eqn. (1), as well as the

following more general identity, namely that the probability of n individuals having

n surviving descendants after time t is the same for birth rate λ and death rate µ

or birth rate µ and death rate λ, for all n ≥ 1.
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Proposition 2.1. For any non-negative value of λ, µ and any value of n ≥ 1:

pn,n(t | λ, µ) = pn,n(t | µ, λ).

We now provide a direct and intuitively-transparent proof of Proposition 2.1.

We deal in detail with the case n = 1 (i.e. Eqn. (1)); however, the result for n ≥ 1

follows by essentially applying the same idea. We start a birth–death process with

one individual. The waiting time between ‘events’ (a birth event or death event) is

exp(n(λ + µ)), where n is the number of individuals at the considered time point.

Let p = λ
λ+µ

, and consider two different scenarios (one proceeds forward in time, the

other backward):

• Scenario 1: The process starts at time 0 and is stopped at time t > 0. At an

event, with probability p, we add an individual and, with probability 1 − p.

we remove an individual. Scenario 1 is a classic forward-in-time birth–death

process.

• Scenario 2: The process starts at time t > 0 and is stopped at time 0. At an

event, with probability 1 − p we add an individual and, with probability p,

we remove an individual. Scenario 2 is a birth–death process in reversed time

with the birth and death rates being interchanged compared with Scenario 1.

Intuitively, the result of the time-reversed process with birth and death being

interchanged is analogous to the forward-in-time process. However, we justify this

intuition by a formal argument showing that the probability of observing one indi-

vidual after time t is the same under Scenario 1 and Scenario 2.

Consider some population size trajectory X that starts at time 0 with one in-

dividual and ends with one individual after time t. At each event, X can grow or

decrease by one. Let the number of growth events be k, which therefore also equals
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Figure 1: The forward-in-time birth–death process with realization X and the equiv-
alent time-reversed process with interchanged rates and realization X ′.

the number of death events. Denote the time of these 2k events by t1, t2, . . . t2k, and

define t0 = 0 and t2k+1 = t. See Figure 2 for an example with k = 2.

The probability density of X under Scenario 1, L1(X), is a product of the prob-

ability for the birth events, pk, for the death events (1− p)k, and the waiting times

between events,
∏2k

i=1(λ + µ)nie
−(λ+µ)ni(ti−ti−1), where ni is the number of individ-

uals prior to the event at time ti. Finally, the term e−(λ+µ)(t−t2k) stipulates that no

subsequent event happens after the event at time t2k. In summary, the probability

density of X under Scenario 1 for k > 0 is:

L1(X) = pk(1− p)k(λ+ µ)e−(λ+µ)((t1−t0)+(t2k+1−t2k))
2k∏
i=2

(λ+ µ)nie
−(λ+µ)ni(ti−ti−1).

For k = 0, we have

L1(X) = e−(λ+µ)(t2k+1−t0).

Now we reverse time in the realization X and call it X ′. Thus, X ′ starts where

X ends, and X ′ ends where X starts. The probability density of X ′ under Scenario
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2 is then L2(X
′). We establish L2(X

′) analogous to the procedure above, with the

birth events in X being death events in X ′ and vice versa. Thus, the same p and

(1 − p) factors are multiplied when calculating the probability density of X ′ under

Scenario 2, compared to the probability density of X under Scenario 1. Furthermore,

the waiting time contributions are the same for Scenario 1 and Scenario 2, and thus

L1(X) = L2(X
′).

Note that p1(t | λ, µ) is the integral over all realizations X under Scenario 1,

p1(t | λ, µ) =
∑∞

k=0

∫
τ
L1(Xτ,k)dτ , where Xτ,k is a realization with k birth events

according to an event time vector τ = (t1, t2, . . . , t2k).

Analogously, p1(t | µ, λ) =
∑∞

k=0

∫
τ
L2(X

′
τ,k)dτ . Since L1(Xτ,k) = L2(X

′
τ,k), each

component in this integration has the same probability density and thus we have

p1(t | λ, µ) = p1(t | µ, λ).

One can directly extend this argument to establish Proposition 2.1 for any value

of n ≥ 1 by considering the associated forward-in-time and backward-in-time pro-

cesses. However, as we will derive this equation later from an algebraic identity, we

do not describe this further here.

3 General symmetries under incomplete sampling

We continue to study a birth–death model with constant and non-negative birth

and death rates λ and µ. However, we now allow each of the individuals present at

time t to be sampled (independently) with probability ρ ∈ (0, 1].

Let us first suppose that we start with one individual at time t0, and let

pi(t | λ, µ, ρ) be the probability that i sampled descendants are observed (i.e. ex-

tant and sampled) at time t0 + t. Exact expressions for pi(t) = pi(t | λ, µ, ρ) are

provided by the following formulae (all proofs of theorems and corollaries are found
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in the Appendix). Let

q(t) = q(t | λ, µ, ρ) =
ρ(1− e−(λ−µ)t)

λρ+ (λ(1− ρ)− µ)e−(λ−µ)t
.

Theorem 3.1. For λ 6= µ, we have:

pn(t) =



1− ρ(λ−µ)
ρλ+(λ(1−ρ)−µ)e−(λ−µ)t , if n = 0;

ρ(λ−µ)2e−(λ−µ)t

(ρλ+(λ(1−ρ)−µ)e−(λ−µ)t)2
, if n = 1;

p1(t)(λq(t))
n−1, if n > 1.

Note that λq(t) = p2(t)/p1(t), and for ρ = 1 and µ > 0, we have q(t) = 1
µ
p0(t).

Corollary 3.2. For the critical case λ = µ, let q(t) = q(t | λ = µ, ρ) = ρt
1+ρλt

. We

then have:

pn(t) =



1− ρ
1+ρλt

, if n = 0;

ρ
(1+ρλt)2

, if n = 1;

p1(t)(λq(t))
n−1, if n > 1.

We investigate the expressions for pi(t |λ, µ, ρ) in detail, and identify symmetries

with respect to λ and µ. We begin with the case where all extant taxa are sampled.

Theorem 3.3. In the case of complete sampling (i.e. ρ = 1), we have:

λp0(t | λ, µ) = µp0(t | µ, λ),

1− p0(t | λ, µ) = e(λ−µ)t(1− p0(t | µ, λ)),

µn−1pn(t | λ, µ) = λn−1pn(t | µ, λ), n ≥ 1,

q(t | λ, µ) = q(t | µ, λ).

Next, consider the probability pn,m(t | λ, µ) of having m individuals at time t,
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given that n are present at time 0 (as described in the introduction).

Corollary 3.4. For m ≥ n ≥ 1, we have: µm−npn,m(t | λ, µ) = λm−npn,m(t | µ, λ).

In particular, pn,n(t | λ, µ) = pn,n(t | µ, λ), for all n ≥ 1 (as in Proposition 2.1). For

0 ≤ m < n, we have: λn−mpn,m(t | λ, µ) = µn−mpn,m(t | µ, λ).

3.1 Negative ‘death rates’ in the case of incomplete sam-

pling

We now investigate the case ρ ≤ 1. We introduce two new variables λ′ and µ′, which

will play a key role in the remainder of the paper. They are defined by λ, µ and ρ

according to the following transformation:

λ′ = ρλ and µ′ = µ− λ(1− ρ).

Note that when ρ = 1, we have λ′ = λ. Further, for all vales of ρ we have

λ′ − µ′ = λ− µ (thus λ′ 6= µ′ if and only if λ 6= µ). Note also that µ′ < 0 is entirely

possible (for example, when λ = 4µ and ρ = 0.5, we obtain µ′ = −µ). In this case,

µ′ can not easily be viewed as a death rate (nor as a birth rate); however, allowing

µ′ to take any real value (positive or negative) means that all parameter triplets

(λ, µ, ρ) have a transformation to (λ′, µ′).

The following lemma is straightforward to verify using simple algebra.

Lemma 3.5. For all λ, µ ≥ 0 and 0 < ρ < 1, the four functions

λq(t | λ, µ, ρ), λ(1− p0(t | λ, µ, ρ)), λp1(t | λ, µ, ρ), and λpn(t | λ, µ, ρ)

can be written as functions of only two parameters (λ′ and µ′) when λ 6= µ (rather

than the three parameters λ, µ, ρ). When λ = µ, these four functions can be written

as functions of the single parameter λ′.
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In order to investigate symmetries, we define the following functions, which only

depend on λ′, µ′, and t (rather than the four parameters λ, µ, ρ and t). Let:

p̃0(t | λ′, µ′) :=
1

ρ
(1− p0(t | λ, µ, ρ)),

q̃(t | λ′, µ′) :=
1

ρ
q(t | λ, µ, ρ),

p̃1(t | λ′, µ′) :=
1

ρ
p1(t | λ, µ, ρ),

p̃n(t | λ′, µ′) := p̃1(t | λ′, µ′)q̃(t | λ′, µ′)n−1.

For λ 6= µ, these equations are,

p̃0(t | λ′, µ′) =
λ′ − µ′

λ′ − µ′e−(λ′−µ′)t
,

p̃1(t | λ′, µ′) =
(λ′ − µ′)2e−(λ′−µ′)t

(λ′ − µ′e−(λ′−µ′)t)2
,

p̃n(t | λ′, µ′) =
1

ρn
p1(t | λ, µ, ρ)(q(t | λ, µ, ρ))n−1,

q̃(t | λ′, µ′) =
1− e−(λ′−µ′)t

λ′ − µ′e−(λ′−µ′)t
.

In particular, we have: p̃1(t | λ′, µ′) = p1(t | λ, µ, ρ = 1). This leads to the following

symmetries with respect to λ′ and µ′.

Theorem 3.6. For µ′ ≥ 0, the following symmetries hold:

p̃0(t | λ′, µ′) = p̃0(t | µ′, λ′)e(λ
′−µ′)t,

q̃(t | λ′, µ′) = q̃(t | µ′, λ′),

and for all n ≥ 1:

p̃n(t | λ′, µ′) = p̃n(t | µ′, λ′).
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4 Tree probability densities

Let T be a phylogenetic tree generated by a birth–death process starting with one

taxon and being stopped after time t0. Each individual alive after time t0 is sampled

with probability ρ. In this tree, all extinct lineages are pruned, and only the lineages

leading to the sampled tips are kept. Such a tree is also called the reconstructed tree

[10], as indicated by the red lines in Fig. 2. Let this tree have n sampled tips and the

branching times t1 > t2, . . . > tn−1, where time is measured from the present time

0. Let L(t) be the number of co-existing lineages of tree T at time t (see Fig. 2).

time from the present (present)

d

c

b

a

L(t) = 2

t1 t2 · · ·t0

tstem

tcrown

Figure 2: A phylogenetic tree T that evolves under under a birth–death process with
rates λ, µ and with sampling at the present with probability ρ. Lineages ending in
a death (extinction) are marked by × whereas lineages at the present that are not
sampled are marked by o. The reconstructed tree on the sampled extant taxa is
shown in red.

Let f(T | L(t0) = 1) be the probability density of the tree T , and let f(T | t0 =

tstem) be the probability density of the tree T , given that at least one individual

is sampled at present. Thus t0 is the stem age (tstem) of the process. For ρ = 1,

this corresponds to conditioning on non-extinction of the process. Let f(T | t0 =

tstem, Ls(0) = n) denote the probability density of the tree T , given that we sample

exactly n tips at present (denoted by Ls(0) = n).
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The tree T in these formulations was a tree starting with one individual, leading

to two lineages at time t1 in the past. Alternatively, a tree T may start with two

lineages at time t1 ago; the probability of such a tree is f(T |L(t1) = 2). Let f(T |t1 =

tcrown) be the probability density of the tree T conditioning on sampling at least

one descendant individual from both initial lineages. Note that when conditioning

on sampling, the time t1 is the crown age of the clade (tcrown). Furthermore, let

f(T | t1 = tcrown, Ls(0) = n) be the probability density of the tree T conditioned on

sampling exactly n tips at present. Finally, in the setting where t0 is chosen uniformly

at random from (0,∞), then a tree T conditioned on n tips and integrated over all

possible t0 has probability density f(T | Ls(0) = n).

In what follows, we assume λ > 0 and thus λ′ > 0; otherwise, we cannot obtain

a tree with n > 1.

Theorem 4.1. The tree probability densities can be expressed as functions of

p0(t |λ, µ, ρ), p1(t |λ, µ, ρ) and q(t |λ, µ, ρ), or p̂0(t |λ′, µ′), p̂1(t |λ′, µ′) and q̂(t |λ′, µ′).

Omitting the parameters λ, µ, ρ, λ′ and µ′ in these functions for easier reading, the
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expressions are given in the following table:

Tree probability densities (λ, µ, ρ)− parameters (λ′, µ′)− parameters

Unconditioned

f(T | L(t0) = 1) p1(t0)
∏n−1

i=1 λp1(ti) ρp̃1(t0)
∏n−1

i=1 λ
′p̃1(ti)

f(T | L(t1) = 2) p1(t1)
2
∏n−1

i=2 λp1(ti) (ρp̃1(t0))
2∏n−1

i=2 λ
′p̃1(ti)

Conditioned

f(T | t0 = tstem) p1(t0)
1−p0(t0)

∏n−1
i=1 λp1(ti)

p̃1(t0)
p̃0(t0)

∏n−1
i=1 λ

′p̃1(ti)

f(T | t1 = tcrown)
(

p1(t1)
1−p0(t1)

)2∏n−1
i=2 λp1(ti)

(
p̃1(t0)
p̃0(t0)

)2∏n−1
i=2 λ

′p̃1(ti)

f(T | Ls(0) = n) n p1(t1)
1−p0(t1)

∏n−1
i=1 λp1(ti) n p̃1(t0)

p̃0(t0)

∏n−1
i=1 λ

′p̃1(ti)

f(T | t0 = tstem, Ls(0) = n)
∏n−1

i=1
p1(ti)
q(t0)

∏n−1
i=1

p̃1(ti)
q̃(t0)

f(T | t1 = tcrown, Ls(0) = n) 1
(n−1)

∏n−1
i=2

p1(ti)
q(t0)

1
(n−1)

∏n−1
i=2

p̃1(ti)
q̃(t0)

We note that the expressions in the middle column have been presented in [13] [Eq.

1-7], highlighting that f(T |L(t1) = 2) goes back to [20] for ρ = 1, f(T | t1 = tcrown)

to [10], and f(T | t1 = tcrown, Ls(0) = n) to [21] (both for ρ ∈ (0, 1]). Furthermore,

the probability density f(T | t0 = tstem, Ls(0) = n) for ρ = 1 is described in [4] and

in earlier work by [12]. The idea of parameter transformation (right column) has

been introduced for f(T | Ls(0) = n) in [14].

Remark 4.2. Only the expressions for the unconditioned tree probability densities

(i.e. the equations not conditioning on observing at least one sample) depend on all

12

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 21, 2019. ; https://doi.org/10.1101/494583doi: bioRxiv preprint 

https://doi.org/10.1101/494583
http://creativecommons.org/licenses/by-nc/4.0/


three parameters λ, µ and ρ. The remaining five expressions (the conditioned tree

probability densities) only depend on two parameters (λ′, µ′), meaning only two out

of the three birth–death parameters λ, µ, ρ can be inferred from the phylogenetic

tree. Furthermore, the expressions for f(T | t0 = tstem, Ls(0) = n) and f(T | t1 =

tcrown, Ls(0) = n) (i.e. the expressions where we condition on both the age of the

process and the number of sampled tips) give the same result for λ′, µ′ and for

when the parameters are swapped to µ′, λ′. For complete sampling, [12] noticed

this symmetry in f(T | t0 = tstem, Ls(0) = n) (This author mentioned that this

special symmetry had also been independently observed by Monty Slatkin). Note

that µ′ ≤ 0 is possible, whereas λ′ > 0, thus the switching is only well-defined if

µ′ > 0.

5 Mapping from (λ′, µ′) to the birth–death model

parameters (λ, µ, ρ) with consequences for max-

imum likelihood and Bayesian inference

When using the tree probability densities in a maximum likelihood inference frame-

work, the expressions are maximized over the parameters for a given tree. Based on

the five conditioned tree probability density equations, we should optimize over λ′

and µ′, with λ′ ∈ (0,∞) and µ′ ∈ (−∞,∞), instead of maximizing over the three

parameters λ, µ and ρ, as the latter parameterization induces a ridge in the likeli-

hood surface and thus optimization is problematic. This is equivalent to optimizing

when assuming complete sampling (and allowing the ‘death rate’ µ′ to be negative)

and, in a second step, assuming a sampling probability ρ and transforming from

(λ′, µ′) to (λ, µ). We next investigate for which chosen values of ρ we can transform

λ′, µ′ to λ, µ.

Theorem 5.1. Let P denote the conditioned tree probability density for an arbitrary
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tree T given λ′ ∈ (0,∞) and µ′ ∈ (−∞,∞). The expression for P is given in the

right column of Theorem 4.1. Each (λ′, µ′) has corresponding birth–death parameters

(λ ∈ (0,∞), µ ∈ [0,∞), ρ ∈ (0, 1]), namely:

• Given µ′ ≥ 0, we obtain the same tree probability density P using the expres-

sion in the middle column of Theorem 4.1 with parameters (λ = λ′/ρ, µ =

µ′ − λ′ + λ′/ρ), where ρ is any value in ρ ∈ (0, 1].

• Given µ′ < 0, we obtain the same tree probability density P using the expression

in the middle column of Theorem 4.1 with parameters (λ = λ′/ρ, µ = µ′−λ′+

λ′/ρ), where ρ is any value in ρ ∈ (0, 1
1−µ′/λ′ ].

Given the correlations among λ, µ and ρ, one may decide to perform a Bayesian

Markov chain Monte Carlo analysis on λ′ ∈ (0,∞), µ′ ∈ (−∞,∞). Care has to be

taken though regarding the priors, since these priors play out in non-straightforward

ways. Assume, for example, that the analysis is performed by sampling λ′, µ′. For

each sampled parameter pair, one might pick a ρ ∈ (0, 1] uniformly at random. Given

that µ′ ≥ 0, this would yield a uniform distribution on the chosen ρ. However, given

that some sampled parameter pairs reveal µ′ < 0, it follows that only a small ρ,

namely ρ ∈ (0, 1
1−µ′/λ′ ] is possible, meaning that overall, the samples on ρ would be

non-uniform, with a preference for small values of ρ. Thus, in the Bayesian setting,

it is advantageous to estimate λ, µ, ρ in order to have control over their priors.

6 Mappings between birth–death model parame-

ters (λ, µ, ρ) and (λ̂, µ̂, ρ̂)

Next we characterize all birth–death parameters that are transformations of λ, µ, ρ.
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Theorem 6.1. Let (λ, µ, ρ) be birth–death parameters with the corresponding

(λ′, µ′). There exists parameters λ̂ > 0, µ̂ ≥ 0, and ρ̂ ∈ (0, 1] with

λρ = λ̂ρ̂ = λ′ and µ− λ(1− ρ) = µ̂− λ̂(1− ρ̂) = µ′

if µ/λ ≥ 1 (for all ρ̂ ∈ (0, 1]) and if µ/λ < 1 (for all 0 < ρ̂ ≤ ρ/(1− µ
λ
)).

Note that the parameters (λ, µ, ρ) and (λ̂, µ̂, ρ̂) thus give thus rise to the same

tree probability density.

Corollary 6.2. With µ
λ
< 1 (and thus ρ̂ ≤ ρ/(1− µ

λ
)) a transformation always exists

for ρ̂ < ρ. However, a parameter transformation may not be possible for ρ̂ > ρ (for

example, if µ
λ

= 0, we cannot transform to ρ′ > ρ).

Next we consider ρ̂ = 1 (i.e. the transformation to the case of complete sampling).

Corollary 6.3. Let (λ, µ, ρ) be birth–death parameters with the corresponding

(λ′, µ′). There exists a transformation to (λ̂ > 0, µ̂ ≥ 0, ρ̂ = 1) if µ
λ
≥ 1 − ρ. If

0 ≤ µ
λ
< 1− ρ, no transformation exists.

6.1 Consequences for the birth–death tree distribution

Sometimes, proofs of the properties of the conditioned tree distribution are carried

out for complete sampling (i.e. for parameters λ̂, µ̂, ρ̂ = 1). Such properties also hold

for incomplete sampling if µ
λ
≥ 1 or if µ

λ
≥ 1 − ρ. To include the parameter space,

0 ≤ µ
λ
< 1− ρ the proof needs to be done with explicitly acknowledging incomplete

sampling. This was noticed already in [19].

6.2 Consequences for model choice regarding complete sam-

pling

For a given phylogenetic tree, it is tempting to ask if a model with ρ = 1 or ρ = ρ̂ < 1

fits the data better. However, for every parameter combination (λ, µ, 1), we also
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find a parameter combination (λ̂, µ̂, ρ̂) with both parameter triples having the same

conditioned tree probability density. Moreover, there are parameter combinations

(λ̂, µ̂, ρ̂) without a corresponding triplet where ρ = 1 (see Corollary 6.2). Thus, the

model with ρ < 1 always gets more support than the model with ρ = 1. In summary,

such a test is meaningless because of the parameter correlations.

7 Discussion

Birth–death models have been studied for almost 100 years [22, 5]. However, sur-

prising properties are still being uncovered. Here, we presented some unexpected

symmetries in birth–death models, namely, fundamental birth–death probability

distributions are invariant towards swapping the birth and the death rate. We ex-

plained this surprising observation in a special case, by using an argument that

is both intuitive and precise, then derived more general symmetries algebraically.

Second, we showed that a birth–death process with incomplete taxon sampling can

be described phylogenetically through two parameters instead of three parameters

due to parameter correlations, and that the two-parameter description again reveals

symmetries.

Such correlations have important consequences for using birth–death models in

phylogenetic and phylodynamic inference. In particular, the likelihood surface of

the three birth–death parameters λ, µ and ρ for a given tree has a ridge casued by

the correlations, and we can therefore only estimate two of the three parameters.

Maximum likelihood estimation should thus be done over the two parameters. On the

other hand, in Bayesian analysis, using the two-parameter description of the process

would not allow us to use all prior information on the three original parameters and

therefore using the original parameterization is advantageous.

Furthermore, we showed that for some of the parameter triplets (λ, µ, ρ), their
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two-parameter description is, in fact, equivalent to a birth–death process with com-

plete sampling. However, in some cases, the resulting ‘death’ rate is negative, and

thus the transformed parameters cannot always be considered as a birth–death pro-

cess with complete-sampling. This means that we cannot simply prove properties of

phylogenetic trees for complete sampling and then extrapolate to incomplete sam-

pling, as we then miss some birth–death parameter combinations (namely the ones

leading to a negative ‘death’ rate). Furthermore, testing whether the data are com-

pletely sampled (ρ = 1) or not (ρ < 1) is not informative, as the models with ρ < 1

always have more support: parameter triplets for incomplete sampling may only have

corresponding complete sampling parameters with a negative ‘death’ rate, whereas

birth and death rates under complete sampling have a corresponding triplet for all

ρ ∈ (0, 1].

The birth–death model presented here is the simplest model for speciation and

extinction, or for transmission and recovery. However, it has limitations for ex-

plaining the data, as it assumes exponential growth of the population, although

populations cannot have unlimited growth, and it assumes that all individuals are

dynamically equivalent. There has been considerable work on extending the birth–

death model to address such limitations [8, 9, 16, 3, 17], but no symmetries and only

very special parameter correlations have been observed [18]. It will be interesting

to explore in the future whether the observed symmetries and correlations in our

simple model are also present in these more complex models.
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9 Appendix: Proofs

Proof of Theorem 3.1. For λ > 0 and ρ > 0, the expressions are provided in [15],

based on earlier work by [10, 21]. In fact, [15] requires λ > µ, but the proof is

identical for λ < µ.

These expresions also hold for λ = 0 (and thus µ > 0). To see this, observe first

that the probability p1(t | λ = 0, µ, ρ) is the product of the probability of no death

e−µt with the sampling probability ρ. Indeed this equation simplifies to:

p1(t | λ = 0, µ, ρ) =
ρµ2

µ2eµt
= ρe−µt.

Second, notice that the probability pn(t | λ = 0, µ, ρ) for n > 1 is 0, as no birth

event may occur. Indeed, by using the expressions above, we get q(t | λ = 0, µ, ρ) =

ρ
µ
(1− e−µt) and thus pn(t | λ = 0, µ, ρ) = 0 for n > 1.

Finally, the probability p0(t | λ = 0, µ, ρ) is 1 − p1(t | λ = 0, µ, ρ) = 1 − ρe−µt.

Again, the above equation simplifies:

p0(t | λ = 0, µ, ρ) = 1− −ρµ
−µeµt

= 1− ρe−µt.

2

Proof of Corollary 3.2. Note that these equations can be derived from the supercrit-

ical case λ > µ by setting λ − µ = ε and using the property e−ε ∼ 1 − ε as ε → 0.

In particular, for the expression in the denominator, we obtain:

λρ+ (λ(1− ρ)− µ)e−(λ−µ)t = λρ+ (ε− λρ)(1− εt) = ε(1 + ρλt− εt),
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from which we directly get the expressions above. 2

Now we first prove Theorem 3.6 and then provide the proofs for the special case

of complete sampling.

Proof of Theorem 3.6. The first three equations can be directly observed. For the

last equation, observe that p̃0(t | λ′, µ′) = λ′−µ′
λ′−µ′e−(λ′−µ′)t . When swapping λ′ and µ′,

we obtain:

p̃0(t | µ′, λ′) =
−λ′ + µ′

µ′ − λ′e(λ′−µ′)t
=

(λ′ − µ′)e−(λ′−µ′)t

λ′ − µ′e−(λ′−µ′)t
= p̃0(t | λ′, µ′)e−(λ

′−µ′)t.

2

Proof of Theorem 3.3. For p0(t | λ, µ) = µ(1−e−(λ−µ)t)

λ−µe−(λ−µ)t , we obtain,

λp0(t | λ, µ) = µ
λ(1− e−(λ−µ)t)
λ− µe−(λ−µ)t

= µ
λ(1− e(λ−µ)t)
µ− λe(λ−µ)t

= µp0(t | µ, λ).

The remaining four equations are directly observed as special cases of Theorem 3.6.

Alternatively, they can be established through simple algebraic rearrangements. 2

Proof of Theorem 3.4. First, we assume that both λ and µ are different from 0. For

m = 0, we have λnpn,0(t | λ, µ) = (λp0(t | λ, µ))n = (µp0(t | µ, λ))n = µnpn,0(t | µ, λ)

where the second equality follows from Thm. 3.3. For m > 0, we use a generating

function argument. Let

P (x) =
∑
i≥0

pt(t | λ, µ)xi and P̃ (x) =
∑
i≥0

pt(t | µ, λ)xi.

Theorem 3.3 gives:

P (x) =
µ

λ
· P̃
(
λ

µ
x

)
.
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Now pn,m(t | λ, µ) is the coefficient of xm in P (x)n, which, by the previous equation,

equals (µ
λ
)n multiplied by the coefficient of xm in P̃

(
λ
µ
x
)n

. The latter coefficient is

just pn,m(t |λ, µ) times
(
λ
µ

)m
. Thus pn,m(t |λ, µ) =

(
µ
λ

)n ·pn,m(t |λ, µ) ·
(
λ
µ

)m
, which

leads to the claimed identities in the cases where m > 0 and λ, µ 6= 0.

Finally, we prove the case where λ=0; the case where µ = 0 is then analogous.

For the case m = n, pn,n(t | 0, µ) is the probability of no event happening within t,

and thus pn,n(t | 0, µ) = e−µt = pn,n(t | µ, 0). If m > n, pn,m(t | λ, µ) = 0 and thus

the equation in the corollary is true. If m < n, then pn,m(t | µ, λ) = 0 and again the

equation in the corollary is true. 2

Proof of Theorem 5.1. We can always transform λ′ ∈ (0,∞) and ρ ∈ (0, 1] to

λ ∈ (0,∞) via λ = λ′/ρ. Second, since µ′ = µ − λ(1 − ρ) and µ ≥ 0, we have

µ = µ′ − λ′ + λ = µ′ − λ′ + λ′/ρ ≥ 0, and thus λ′ − µ′ ≤ λ′/ρ. Thus, we can only

transform µ′ to µ if this last inequality is fulfilled. This constrains our choices for

ρ ∈ (0, 1]:

• For λ′ − µ′ > 0, the constraint is 0 < ρ ≤ 1
1−µ′/λ′ .

– If µ′ ≥ 0, then 1
1−µ′/λ′ ≥ 1, and thus there exists a transformation from

λ′, µ′ to λ, µ, ρ for all ρ ∈ (0, 1].

– If µ′ < 0, we have 0 < 1
1−µ′/λ′ < 1 and thus we require 0 < ρ ≤ 1

1−µ′/λ′ for

a transformation to λ, µ.

• For λ′ − µ′ < 0 (implying µ′/λ′ > 1 and µ′ > 0), our constraint is, 1 ≥ ρ ≥
1

1−µ′/λ′ . Since 1
1−µ′/λ′ < 0, this means that a transformation for all ρ ∈ (0, 1]

exists.

• For λ′ − µ′ = 0 (implying µ′ > 0), we require 0 ≤ λ′/ρ which is fulfilled for all

ρ ∈ (0, 1].

2
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Proof of Theorem 6.1. We can always transform λ ∈ (0,∞) and ρ ∈ (0, 1] to λ̂ ∈

(0,∞) and ρ̂ ∈ (0, 1] via λ̂ = λρ/ρ̂. Second, since µ̂ = µ − λ(1 − ρ/ρ̂) with µ̂ ≥ 0,

we need to determine for which ρ̂ we have µ̂ = µ− λ(1− ρ/ρ̂) ≥ 0.

• For λ = µ, we have µ̂ = λ′/ρ̂ > 0 for all ρ̂ ∈ (0, 1].

• For λ 6= µ, we obtain,

µ− λ(1− ρ/ρ̂) > 0⇒ µ

λ
≥ 1− ρ

ρ̂
⇒ ρ

ρ̂
≥ 1− µ

λ
.

– For µ
λ
> 1, we have 0 > 1− µ

λ
and thus we have µ̂ = µ− λ(1− ρ/ρ̂) ≥ 0

for all ρ̂ ∈ (0, 1].

– For µ
λ
< 1, ρ̂ needs to fulfil ρ

1−µ
λ
≥ ρ′ such that µ̂ ≥ 0.

2
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