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The adaptive radiation of Bromeliaceae (pineapple family) is one of the most diverse 30 

among Neotropical flowering plants. Diversification in this group was facilitated by 31 

several ´key innovations´ including the transition from C3 to CAM photosynthesis. We 32 

used a phylogenomic approach complemented by differential gene expression (RNA-33 

seq) and targeted metabolite profiling to address the patterns and mechanisms of 34 

C3/CAM evolution in the extremely species-rich bromeliad genus Tillandsia and related 35 

taxa. Evolutionary analyses at a range of different levels (selection on protein-coding 36 

genes, gene duplication and loss, regulatory evolution) revealed three common themes 37 

driving the evolution of CAM: response to heat and drought, alterations to basic 38 

carbohydrate metabolism, and regulation of organic acid storage. At the level of genes 39 

and their products, CAM/C3 shifts were accompanied by gene expansion of a circadian 40 

regulator, re-programming of ABA-related gene expression, and adaptive sequence 41 

evolution of an enolase, effectively linking carbohydrate metabolism to ABA-mediated 42 

stress response. These changes include several pleiotropic regulators, which facilitated 43 

the evolution of correlated adaptive traits during a textbook adaptive radiation. 44 
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Species radiations have traditionally been studied primarily from a macro-evolutionary 45 

perspective within a phylogenetic framework
1–3

. The recent “-omics” revolution and novel 46 

analytical tools increasingly allow evolutionary biologists to address the dynamics of 47 

genomic variation across time scales
4–7

. This potentially allows evolutionary geneticists to 48 

identify the major sources of genetic variation that fuel evolutionary radiations
8
. 49 

 The Bromeliaceae family (>3000 species) represents a ´textbook adaptive radiation´ 50 

in flowering plants
9
. Numerous adaptive traits or ´key innovations´ vary among species of 51 

this large Neotropical family, including the epiphytic growth habit (life on trees), presence or 52 

absence of water-impounding leaves (tank-forming rosettes), absorptive trichomes, leaf 53 

succulence, and Crassulacean Acid Metabolism (CAM) photosynthesis
9–11

. Chromosome 54 

counts in the family point to predominant diploidy with a remarkably widespread 2n=50 or 55 

2n=48 chromosomes and a comparatively compact range of DNA content from 0.85 to 56 

2.23pg/2C, suggesting a largely homoploid radiation
12

.  57 

 The highly species-rich genus Tillandsia L. (ca. 650 species) of the Tillandsioidae 58 

subfamily of Bromeliaceae exhibits great variation in life habits (epiphytic, terrestrial, and 59 

rock-growing), photosynthetic pathways (C3 and CAM), pollination syndromes (birds and 60 

insects), the presence or absence of absorptive trichomes and leaf succulence, and several 61 

other adaptive phenotypic traits
9–11,13,14

. These trait differences appear to have evolved in a 62 

correlated, contingent manner, giving rise to adaptive syndromes of correlated characters
11,15

. 63 

Most obviously, these trait associations manifest themselves in so-called “green” Tillandsia 64 

phenotypes and species adapted to cool, moist habitats, typically exhibiting C3 65 

photosynthesis, neither pronounced absorptive trichome cover nor succulence, and 66 

widespread formation of tank rosettes. This contrasts with so-called “grey” Tillandsia 67 

phenotypes and forms with a strong tendency to express CAM photosynthesis, dense 68 

absorptive trichome cover and pronounced succulence, and strong association with warm, 69 

highly irradiated habitats in regions with low rainfall
9,11

. Although shifts in these adaptive 70 

traits have long been hypothesized to be drivers of adaptive radiation in this group
9,11,14

, little 71 

to nothing is known about their genetic basis, with the notable exception of CAM 72 

photosynthesis. 73 

 The CAM pathway, known from at least 35 different plant families, represents an 74 

adaptation for increased water use efficiency by shifting CO2 assimilation to the night time, 75 

thus allowing stomata to be closed during the day and thereby reducing water loss
16,17

. CAM 76 

entails complex diel patterns of gene expression, post-translational regulation, and metabolic 77 
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fluxes that are only starting to be understood at a whole systems level
18

. 78 

Here, we combine a range of experimental approaches to shed light on the genetic 79 

basis and evolution of CAM photosynthesis and correlated traits in the adaptive radiation of 80 

tillandsioid bromeliads. To this end, we studied 28 accessions of Tillandsioideae including 25 81 

species of Tillandsia sensu lato, capturing much of the available variation in the CAM 82 

adaptive syndrome. We first used whole genome phylogenetics to ask whether repeated 83 

C3/CAM trait shifts in this radiation are more likely to have arisen independently or by wide-84 

spread gene flow. Next, we examined genome-wide signatures of branch-specific selection 85 

and gene duplication/loss accompanying CAM-related trait shifts. We then zoomed in on 86 

time-dependent metabolic and transcriptomic changes in representative species. We show that 87 

repeated xeric (heat/drought) adaptation including CAM involves not only structural genes, 88 

but also highly pleiotropic regulators.  89 

 90 

Results 91 

Phenotypic variation captured 92 

A total of 28 accessions representing 25 species of Tillandsia and closely related genera were 93 

studied to achieve representative sampling of phenotypic variation from the adaptive 94 

radiation of this group
9,14

, including also two outgroup taxa, Alcantarea trepida and Vriesea 95 

itatiaiae. We aimed to represent the range of photosynthetic syndromes ranging from typical 96 

C3 to typical CAM
10,19

. The CAM species sampled for this study display several phenotypic 97 

traits thought to represent adaptations to xeric conditions
9 

that likely evolved in a correlated, 98 

contingent manner
11

. Notwithstanding taxon-specific idiosyncrasies, there is a broad 99 

association between CAM, increased succulence, reduced leaf evaporation properties, dense 100 

trichomes, and the absence of a water tank in CAM tillandsioids (Fig. 1)
11

. 101 

 102 

Phylogenomic relationships among C3 and CAM taxa 103 

Whole genome sequencing of all species (SI Table 1) yielded 5,646,174 high-quality SNPs 104 

with an average coverage of 17.7x (median coverage: 20.6x). Coalescent-based 105 

reconstruction using ASTRAL resulted in a well resolved tree and we recovered major clades 106 

identified in previous molecular systematic work
14

. The coalescent tree was largely congruent 107 

with a maximum likelihood phylogeny estimated using RAxML (SI Fig. 1, SI Text). Based 108 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495812doi: bioRxiv preprint 

https://doi.org/10.1101/495812


5 
 

on the traditional sorting of taxa into discrete C3 and CAM phenotypes, our phylogenetic tree 109 

suggests a minimum of five independent transitions between C3 and CAM photosynthesis 110 

among the species sampled (Fig. 1). Placement of CAM and C3 taxa in the SplitsTree
20

 111 

network indicate no apparent signals of evolutionary reticulation at this phylogenetic scale 112 

(SI Fig. 2). 113 

 114 

Molecular phenotypes capturing photosynthetic syndromes 115 

Carbon isotope ratios recovered under greenhouse conditions indicate a continuum of values 116 

ranging from typical C3 to fairly strong CAM (Fig. 1), following commonly used 117 

thresholds
10,16

. Many species in our sample set displayed typical C3 carbon isotope (δ
13

C) 118 

phenotypes far beyond -20‰ and in fact reaching as far into the C3 extreme as -30‰ 119 

(labelled green in Fig. 1). On the other end of the C3/CAM continuum, T. ionantha exhibited 120 

a δ
13

C value of only -13.9‰, indicating it represents a so-called ´strong´ CAM species 121 

(labelled in yellow in Fig. 1). Species may vary in their degree of night time carbon 122 

utilization, in particular those with drought-inducible, facultative CAM phenotypes
16,21

. Since 123 

carbon isotope measurements were taken under standardized, well-watered conditions, it is 124 

thus possible that our phenotyping classified some inducible CAM species as C3. Other 125 

phenotyping methods such as acidity under drought conditions
16,21

 were not practicable for 126 

our experimental set-up involving highly divergent phenotypes from precious living 127 

collections, which required careful consideration to avoid loss of unique accessions 128 

(Supplemental Information). In effect, we used isotopic ratios as a proxy to partition 129 

species according to the extremes of the CAM/C3 distribution for evolutionary analyses. This 130 

is a conservative and pragmatic strategy, since phenotyping error would likely diminish the 131 

signal-to-noise ratio.  132 

We surveyed metabolic phenotypes of all species included in this study using GC-133 

TOF-MS for metabolomic profiling of green tissues sampled at 11am and 1am, congruent 134 

with our sampling also used for gene expression profiling (below). Species also used for 135 

RNA-seq were represented by up to three biological replicates. Partial Least Squares 136 

Discriminant Analysis (PLS-DA) of 32 putatively identified metabolic compounds 137 

(comprising mainly amino acids, carbohydrates and organic acids; SI Table 2) indicated 138 

broad metabolic differentiation between CAM and C3 plants, especially along the second 139 

principal axis for both sampling time points, day and night (Fig. 2). These patterns were 140 
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driven primarily by organic acids such as malic and fumaric acid as expected for CAM 141 

plants
9,22

, but also by soluble sugars. Closer inspection of organic acids revealed complex 142 

patterns of compound accumulation across taxa and sampling time points (Fig. 1; Table S2). 143 

Most conspicuously, species with strong CAM phenotypes in our study such as T. ionantha 144 

and T. fasciculata showed strongly increased night-time malic acid abundances, compared to 145 

most C3 species studied (Fig. 1). In some of the weaker CAM species such as T. floribunda, 146 

night-time malic acid abundances were inconspicuous, but citric acid abundances were 147 

increased instead. Tillandsia australis, our C3 reference species for expression profiling, did 148 

not exhibit increased accumulation of either CAM-related carbohydrate. A general pattern 149 

emerged with respect to carbohydrates (Fig. 2C), with more abundant soluble sugars in C3 150 

compared  to CAM plants (Fig. 2C). 151 

 152 

Branch-specific positive selection in coding sequences 153 

To identify genes that underwent adaptive protein evolution during C3/CAM transitions, we 154 

scanned the gene space of all genome-sequenced species for branch-specific signatures of 155 

positive selection
23

. Stringently implemented tests for positive selection in the coding regions 156 

of 13,603 genes revealed 22 genes that have apparently undergone adaptive protein evolution 157 

along branches relevant to C3/CAM shifts (SI Table 3). This includes two transcription 158 

factors (TFs) and eight genes of relevance in the context of the xeric adaptive syndrome 159 

associated with CAM in tillandsioids (Fig. 1). Eleven of the 22 genes under selection were 160 

identified as being differentially expressed in one or more of our CAM-related temporal and 161 

interspecific DE comparisons (SI Table 3; below). The 22 selected genes also include two 162 

genes involved in regulation of carbohydrate fluxes in plant tissues, an enolase (gene 163 

Aco020962; SI Figs 6 and 7) and a glucose6phosphate dehydrogenase (G6PD; gene 164 

Aco012435). The former encodes a homolog of AtENO2/LOS2, a bifunctional gene encoding 165 

both an enolase that catalyses the conversion of 2‐phosphoglycerate to phosphoenolpyruvate, 166 

and MBP-1, a transcriptional repressor that plays a role in abscisic acid (ABA)-mediated 167 

response to abiotic stress
24

.  168 

Gene family evolution 169 

We used birth-death models implemented in CAFÉ
25

 to investigate the impact of gene 170 

duplications and losses on the repeated evolution of the CAM correlated trait syndrome. 171 

Copy number variant (CNV) calling in the subset of species sequenced with high coverage 172 
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(Fig. 3) identified gains in 2,808 and losses in 1,749 genes out of the 19,728 genes surveyed 173 

for CNVs. Clustering of the A. comosus proteome into gene families resulted in a total of 174 

8,418 clusters of which 7,216 had non-zero counts in at least one Tillandsia species and were 175 

retained for further analysis. Estimation of gene birth () and death () rates revealed distinct 176 

evolutionary dynamics among different clades within Tillandsia (Fig. 3). Rates of duplication 177 

and loss were almost threefold higher in the clade containing species of the subg. Tillandsia 178 

with a Central and North American distribution, including T. fasciculata, T. juncea, T. 179 

leiboldiana and T. trauneri
26

 when compared to the rest of the tree (2 = 0.002841, 2 = 180 

0.000865 and 1 = 0.000795, 1 = 0.000239, respectively). Mining for gene families with an 181 

increase in duplication or loss rate in association with trait shifts (C3 to CAM) along the tree 182 

resulted in five candidate gene families showing rate increases along more than one branch 183 

(Table 1). At least two of these are directly relevant to the adaptive trait syndrome associated 184 

with CAM plants: Cluster_1286 consists of a family of galactinol synthases and duplications 185 

in this family are all found in Aco001744, a homolog of GolS1 in Arabidopsis thaliana. In A. 186 

thaliana, this protein is involved in the production of raffinose, an osmoprotectant, and 187 

expressed under the control of heat shock factors in response to a combination of high light 188 

and heat stress
27

. The metabolite data also point to this metabolic checkpoint of adaptation, 189 

galactinol being a metabolite marker discriminating C3 and CAM plants (Fig. 2C). 190 

Cluster_7372, on the other hand, contains a single gene, Aco019534, which encodes a 191 

homolog of XAP5 CIRCARDIAN TIMEKEEPER (XCT) in A. thaliana (Fig. 3). AtXCT is a 192 

regulatory protein involved in regulation of circadian period length, developmental processes 193 

such as tissue greening and chloroplast development and important for sugar- and light 194 

quality-dependent ethylene signalling related to growth
28,29

. Moreover, AtXCT is known to 195 

be a key player in regulation of all three major classes of small RNAs in A. thaliana
30

.  196 

 197 

Transcriptome-wide gene expression profiling across the C3/CAM continuum 198 

To identify genes potentially involved in C3/CAM transitions and related trait shifts, we 199 

examined transcriptome-wide changes in gene expression by RNA sequencing (RNA-seq). 200 

One C3 species (Tillandsia australis; Taust from here onwards) and three CAM species (T. 201 

sphaerocephala, Tspha; T. fasciculata, Tfasc; T. floribunda, Tflor) were selected for RNA-seq 202 

(Fig. 1; SI Table 1). These species were chosen based on their range of carbon isotope 203 

phenotypes, the local availability of biological replicates, and because they represent 204 
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CAM/C3 comparisons with different evolutionary distances between each CAM species and 205 

the C3 reference taxon (Fig. 1). Taust, our C3 reference taxon exhibited δ
13

C values of -26 to 206 

-29‰, clearly beyond the -20‰ threshold commonly used to classify C3 plants
16

. This 207 

species also exhibited all other phenotypic features expected for C3 bromeliads, including 208 

tank-forming rosettes, no succulence, and absence of dense trichome cover. The three CAM 209 

taxa sampled for expression profiling exhibited a broad range of CAM-like δ
13

C values and 210 

morphological features (Supplemental Information). Species were sampled at 1am and 211 

11am, corresponding to the highest and lowest peaks, respectively of net CO2 assimilation 212 

rates (phase I, carboxylation at night and phase III, decarboxylation at day) and apparent 213 

PEPC kinase (PPCK) activation state of the CAM species T. usneoides
31

. Between 18,439 214 

and 20,378 genes were successfully recovered per individual sample, representing between 215 

68.2% and 75.4% of the 27,024 annotated genes presented in the A. comosus reference 216 

genome assembly. Multi-dimensional scaling (MDS) of RNA-seq data revealed clear 217 

clustering of biological replicates within each species, and patterns of interspecific 218 

differentiation along the first (=horizontal) axis broadly reflected the known phylogenetic 219 

relationships among the studied taxa (SI Fig. 3). 220 

Intraspecific day/night comparisons. Comparisons of our day and night sampling time 221 

points within each species revealed that between 82 (Tflor) and 1354 (Tfasc) genes were 222 

differentially expressed at FDR 5% and log fold change (LFC) >1 between day and night 223 

conditions across the four tested species (SI Fig. 4A). On average, 65.4% of them were over-224 

expressed during the night, with few apparent differences shared among the three CAM 225 

species to the exclusion of our C3 reference taxon (SI Fig. 4A). Only two genes showed 226 

diurnal regulation in all three CAM but not the C3 species. One of these, Aco003903 encodes 227 

a regulatory protein homologous to A. thaliana ABF2/ABF3. In A. thaliana, this gene family 228 

is involved in abscisic acid (ABA)-mediated stress response to sugar-, salt-, and osmotic 229 

stress
32

. The other gene (Aco016050) is of unknown function but encodes an ACT amino acid 230 

binding domain (PF01842) and may therefore play a role in amino acid metabolism. 231 

Differential gene expression (DE) results and gene ontology (GO) enrichments yielded 232 

patterns of up- and down- regulated genes and expressed metabolic pathways consistent with 233 

expected differences between day and night (SI Fig. 5; SI Text), including a range of 234 

photosynthesis-related GO terms.  235 

Interspecific C3/CAM comparisons. Comparisons between each of our CAM species and our 236 

C3 reference taxon revealed between 1302 (Tflor) and 2757 (Tfasc) genes that were DE 237 
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between CAM and C3 species during day conditions (11AM) with 49.9% of genes 238 

significantly up-regulated in CAM species. Under night conditions (1AM), 51.7% of the 239 

genes were up-regulated in CAM species, affecting between 1460 (Tflor) and 3110 (Tfasc) 240 

genes (Fig. 4A). Hundreds of DE transcripts were shared among all three CAM species in 241 

these comparisons, with many more shared DE genes during the night (336) than during the 242 

day (233; SI Table 4). Large numbers of DE transcripts were unique to each CAM taxon, 243 

indicating abundant lineage-specific changes (Fig. 4A). As expected, Tfasc, the species with 244 

the strongest CAM phenotype and the greatest phylogenetic distance to the C3 reference 245 

taxon, exhibited by far the greatest number of unique DE transcripts (1838 during the day and 246 

1881 during the night; Fig. 4A). 247 

Genes with DE in interspecific C3/CAM comparisons common to all three CAM 248 

species were enriched for a range of CAM-related metabolic processes in photosynthetic leaf 249 

tissues (Fig 3B). For example, day time points were enriched for genes involved in carbon 250 

fixation (GO:0015977), carbohydrate metabolic process (GO:0005975), and the TCA cycle 251 

(GO:0006099). In turn, DE genes at night showed enrichment for vacuolar acidification 252 

(GO:0007035), sucrose transport (GO:0015770) and glycolysis (GO:0006096), among 253 

others. These results provide evidence for large-scale transcriptional reprogramming of 254 

CAM-related pathways shared among CAM Tillandsia species. A more detailed exploration 255 

of regulatory changes shaping carbohydrate metabolism based on KEGG maps is given in 256 

Supplementary Materials (SI Text, SI Fig. 6ABC). 257 

Among the common CAM/C3 DE genes (up-regulated in all CAM compared to the 258 

C3 species) there are also several genes involved in abscisic-acid signalling (GO:0009738), 259 

including Aco005513 a homolog of AtPYL, an ABA receptor involved in drought response 260 

and leaf senescence in A. thaliana
24

, and Aco004854, a further member of the ABF2/ABF3 261 

gene family involved in ABA-mediated response to sugar, drought and osmotic stress
32

. DE 262 

genes also included five LEA genes (SI Table 4) likely involved in drought protection
33

 and 263 

Aco004804, a homolog of  the A. thaliana gene YLS7 identified as a QTL for drought 264 

resistance in this species
34

. Together, these results place a strong emphasis on the importance 265 

of drought response to the evolution of the CAM-related adaptive syndrome.  266 

 267 

Targeted DE analysis for CAM-related genes from pineapple 268 

Available functional annotation and gene expression information from A. comosus
18,35 269 
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facilitated targeted analysis of known CAM-related genes in Tillandsia spp. and comparisons 270 

to pineapple. Based on published information, we identified 35 homologue clusters of 271 

putatively CAM-related genes in the annotated A. comosus reference genome (Fig. 5; SI 272 

Figs. 7 and 8). The results revealed diel cycling and upregulation in CAM species of the key 273 

post-translational regulator of CAM photosynthesis, phosphoenolpyruvate carboxylase kinase 274 

(PPCK, also commonly referred to as PEPC kinase, A. comosus gene model Aco13938; Fig. 275 

5). We also detected significant upregulation of a PEPC gene (Aco010025) in all three CAM 276 

Tillandsia spp., indicating that this is the homolog involved in nocturnal carbon fixation, 277 

consistent with its proposed function in pineapple
35

 (Supplementary information). At a 278 

broader level, targeted DE analysis of known pineapple CAM genes mirrored important 279 

patterns recovered from the global functional enrichment analysis (above; Fig. 4B). These 280 

include upregulation of malate transporters and vacuolar proton pumps (enabling metabolite 281 

transport) in Tillandsia CAM species relative to our C3 reference (Taust) (Fig. 5D), and 282 

significant expression changes in many transcripts involved in glycolysis and 283 

gluconeogenesis (SI Figs. 6B and 7), two important pathways in photosynthetic leaf tissues 284 

of plants. Also, starch synthase and other enzymes of starch metabolism were upregulated in 285 

CAM plants (SI Fig. 6C and 8), consistent with the use of starch as the predominant 286 

transitory carbon storage compound in Tillandsia spp.
22

, as opposed to sucrose in the case of 287 

pineapple
18

.  288 

 289 

Discussion 290 

Our whole-genome phylogenomic data point to extensive associations between CAM and 291 

numerous other plant traits linked to xeric adaptation, including leaf succulence, trichomes, 292 

leaf shape, and rosette morphology (Fig. 1), as previously observed by evolutionary 293 

biologists
9–11

 and plant physiologists
16,17,36

. Combining genomic signatures with 294 

transcriptomic and targeted metabolite analyses, we revealed the genetic and molecular 295 

components underpinning this correlated adaptive trait syndrome in tillandsioid bromeliads. 296 

Together, our data paint a picture of complex interactions of evolutionary changes to 297 

gene expression levels, metabolite-based regulation and physiological transitions. We 298 

discovered convergent regulatory changes shared among the three CAM species for hundreds 299 

of genes (Fig. 4; SI Table 4), including significant upregulation of malate transporters and 300 

vacuolar proton pumps (Fig. 4D), commonly associated with increased leaf succulence
16,17,22

, 301 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495812doi: bioRxiv preprint 

https://doi.org/10.1101/495812


11 
 

and extensive upregulation of transcripts involved in carbohydrate metabolism and fluxes (SI 302 

Fig. 8) as expected for CAM plants
37

. Widespread convergence in gene expression patterns 303 

accompanying C3/CAM shifts suggests that the most plausible evolutionary path would be 304 

the alteration of a shared regulator of these gene sets and that the regulatory networks active 305 

in CAM species are largely already in place in C3. Indeed, we found changes in gene 306 

expression and/or gene family expansion for several TFs and a sensor involved in ABA 307 

signalling, promising candidates for regulators mediating this transition. We also discovered 308 

convergent expansion of the XAP5/XCT gene in several CAM lineages (Fig. 3, right panel). 309 

This gene encodes a highly pleiotropic regulator known to be involved in a variety of 310 

processes including light-dependent gene expression and developmental processes in A. 311 

thaliana
28–30

. CAM genes are regulated in a circadian-clock dependent manner in the 312 

bromeliad A. comosus
35

 and duplication of XCT could have helped to mediate light-based 313 

reprogramming of transcription in CAM species. Gene duplication was also detected for a 314 

galactinol synthase gene which may play a role in drought resistance
27

, underlining this to be 315 

a common theme among different evolutionary mechanisms captured by our dataset. 316 

Besides pleiotropic TFs, we also found indications for alterations to genes involved in 317 

regulation at the metabolic level. In particular, branch-specific tests for selection highlighted 318 

the enolase Aco020962, a homolog of AtENO2/LOS2. This gene is of particular interest to 319 

correlated evolution involving CAM, drought response, and carbon fluxes, since it provides a 320 

direct link between glycolysis/gluconeogenesis and the CAM pathway via PEP, catalysed by 321 

the enolase-coding isoform, and ABA-dependent response to abiotic stress mediated by the 322 

regulatory protein MBP-1 transcribed from an alternative start codon at the same locus
38

. 323 

Notably, this gene exhibited significant temporal and interspecific C3/CAM expression 324 

changes in T. fasciculata (Tfasc), the strongest CAM species in our transcriptome study. CNV 325 

data indicate this gene was present in multiple copies in Tillandsia genomes, and it is thus 326 

possible that increased expression in the strong CAM plant Tfasc and a high estimate of non-327 

synonymous substitutions was due to recent gene duplication, hypotheses that remain to be 328 

tested in the future. 329 

A persistent pattern recovered by both global and targeted gene expression profiling is 330 

the general absence of a clear temporal signature of diel cycling of CAM genes that 331 

distinguishes CAM- and C3-like species (Fig. 4). Instead, we found sweeping regulatory 332 

changes to key CAM genes and many other pathways relevant for the CAM phenotype, often 333 

evident during both day and night (Figs. 4 and 5). Consequently, our data suggest that rather 334 
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than altering the timing of expression, relevant genes already follow CAM-like expression 335 

patterns in the C3 species but their expression is amplified in CAM species (Fig. 4). These 336 

observations provide mechanistic insights into the evolutionary mechanisms supporting the 337 

C3/CAM continuum
16,36

 and suggest that genes already following a CAM-like expression 338 

pattern are preferentially co-opted into the CAM pathway, as suggested by Bräutigam et al 339 

(2017)
39

. This may explain the predominance of convergent co-option of the same homologs 340 

among our three CAM species surveyed (Fig. 5) and mirrors observations made in C4 341 

grasses, where recurrent co-option of specific C4 homologs in independent origins of C4 342 

photosynthesis was driven by expression levels of the respective gene copies in 343 

photosynthetic leaves of the C3 ancestor
40

.  344 

 In summary, our combined whole-genome, transcriptome, and metabolic data point to 345 

a central role of highly pleiotropic regulators and drought response-related pathways to the 346 

repeated origin of CAM photosynthesis in tillandsioid bromeliads,  involving both “top 347 

down” and “bottom up” changes. We thus hypothesize that transitions to CAM 348 

photosynthesis involved the re-programming of drought-related pathways. We think that the 349 

striking correlated trait shifts seen in this textbook adaptive radiation are due to pleiotropic 350 

regulators, rather than genomic clustering of adaptive mutations. We expect this view to be 351 

corroborated or challenged by genomic data to emerge in years to come. 352 
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Materials and Methods 353 

Species sampling 354 

Specimens were sampled from the living collections of the Universities of Vienna (Austria) 355 

and Heidelberg (Germany) and in the Botanical Gardens of Rio de Janeiro (Brazil), Lyon 356 

(France), Porrentruy, and Geneva (both Switzerland). Information on morphological 357 

characters, habitats, and natural distributions of the studied accessions is provided in Fig. 1 358 

and SI Table 1.  359 

 360 

DNA extraction and whole genome sequencing (WGS) 361 

For each sample, 30mg  of leaf material was dried in silica gel before DNA extraction with a 362 

QIAGEN DNeasy® Plant Mini Kit, following supplier’s instructions. After shearing of 1µg 363 

of DNA with either a Covaris® or Bioruptor®  instrument, sequencing libraries were 364 

prepared with the Illumina TruSeq® DNA PCR-Free Library Prep Kit. Libraries were 365 

sequenced paired-end 2x150bp or 2x125bp in seven different lanes of an Illumina HiSeq3000 366 

sequencer. 367 

 368 

WGS data processing and variant calling 369 

Reads were trimmed with condetri v2.2
41

 using 20 as high-quality threshold parameter. The 370 

Tillandsia adpressiflora sample with the highest number of reads (SI Table 1) was used to 371 

build a pseudo-reference genome following an iterative mapping strategy described in de La 372 

Harpe et al. (2018)
42

 , using the annotated A. comosus reference genome
35

 as a starting point. 373 

The 28 samples and A. comosus were mapped to the pseudo-reference using Bowtie2 v2.2.5
43

 374 

with the very-sensitive-local option. SNPs were called using GATK UnifiedGenotyper using 375 

the EMIT_ALL_SITES and –glm SNP options, after realignment around indels and base 376 

recalibration with GATK v3.3
44

. Positions were filtered with vcftools v0.1.13
45

 before 377 

subsequent analyses retaining only positions with quality >20, read depth >3 and a maximum 378 

of 50% of missing data. Read number, coverage and mapping statistics were calculated using 379 

bedtools v2.24.0
46

 and vcftools v0.1.13
45

. 380 

 381 

 382 
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Phylogenomic analysis 383 

In order to reconstruct evolutionary relationships among the target species, we used ASTRAL 384 

v5.6.1
47

, a summary method based on the multispecies coalescent, to infer a species tree (Fig. 385 

1; SI. Fig.1), complemented by maximum likelihood analysis in RAxML v8.228
48

. A 386 

phylogenetic network was constructed using the neighbour-net method implemented within 387 

SplitsTree
20

 using an identity-by-descent distance matrix obtained with PLINK
49

. 388 

 389 

Carbon isotope phenotyping 390 

We assessed the carbon isotope ratio (
13

C/
12

C) for all species used in the present study (Fig. 391 

1) using 1 gram of silica-dried material per sample. The measurements were carried out at the 392 

Institute of Earth Surface Dynamics (Faculty of Geosciences and Environment, University of 393 

Lausanne, Switzerland) following Spangenberg et al. (2006)
50

. This approach makes use of 394 

flash combustion on an elemental analyser connected to a ThermoQuest/Finnigan Delta S 395 

isotope ratio mass spectrometer via a ConFlo III split interface. The carbon isotope ratios 396 

values (δ) correspond to the per mille (‰) deviation relative to the Vienna-Pee Dee belemnite 397 

standard (V-PDB).  398 

 399 

Targeted metabolite analysis 400 

Dry silica samples were collected in the Bromeliaceae research greenhouses at Department of 401 

Botany and Biodiversity Research, University of Vienna, in July 2017 at distinct time points, 402 

namely at 1AM and 11AM, following the same day/night sampling scheme also used for 403 

gene expression profiling based on RNA-seq (above). We sampled green tissue from mature 404 

leaves, where possible from the exact same specimen also used for whole genome sequencing 405 

(WGS) and RNA-seq. In four cases for which the exactly same species were not available in 406 

the greenhouse, we sampled species known to be very closely related to the actual target taxa. 407 

These are denoted with an asterisk (*) in Fig. 1. All samples were processed at the Vienna 408 

Metabolomics Center (VIME, Department of Molecular Systems Biology, University of 409 

Vienna). All analysis steps including plant metabolite extraction, sample derivatization, and 410 

GC-TOF-MS (gas chromatography coupled with time-of-flight mass spectrometry) were 411 

carried out as previously described
51

. Data analysis was performed using ChromaTof (Leco) 412 

software. Briefly, representative chromatograms of different samples were used to generate a 413 

reference peak list, and all other data files were processed against this reference list. 414 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495812doi: bioRxiv preprint 

https://doi.org/10.1101/495812


15 
 

Deconvoluted mass spectra were matched against an in-house mass spectral library. Peak 415 

annotations and peak integrations were checked manually before exporting peak areas for 416 

relative quantification. Metabolite amounts are given in arbitrary units corresponding to the 417 

peak areas of the chromatograms. Data were analyzed using Partial Least Squares (PLS) 418 

Discriminant Analysis (DA) using the the COVAIN toolbox for metabolomics data mining
52

. 419 

 420 

Positive selection on coding sequences 421 

We tested for positive selection acting on the WGS data using the non-synonymous to 422 

synonymous substitution rate ratio (ω = dN/dS) tests using codeml in PAML version 4.8a
53

. 423 

We filtered out gene alignments with less than 300bp, more than 50% missing data, and 424 

multiple stop codons. Additionally, individual sequences with more than 90% missing data 425 

were removed from the codon alignment. We inferred gene phylogenies for each codon 426 

alignment using PhyML version 3.3.20170119
54

 with HKY and GTR substitution models and 427 

GAMMA shape parameter. We computed a Likelihood Ratio Test (LRT) to select the best 428 

reconstruction for codeml analyses. We ran the cladeC model containing five estimated 429 

parameters denoted: p0, p1, p2 (p2= 1 – p0 – p1) for the proportion of sites in a site-class, 430 

and dN/dS parameters ω0, ω1 fixed to 1, ω2 background (C3 plants), and ω2 foreground 431 

(CAM plants). This model tested whether selection has occurred in all branches leading to 432 

species with CAM metabolism (H1). The null model corresponded to the M2a-rel
55

 with four 433 

parameters, where ω2 background and foreground are fixed to be equal. Each model was run 434 

three times to overcome convergence issues, and the best likelihood run was used for model 435 

comparison and ω estimates. Model fit was compared using the corrected Akaike Information 436 

Criteria (AICc) with a significance threshold delta-AIC of 10 between M2a-rel and H1. For 437 

genes preferring H1, we used the standard errors (SE) of ω estimates to determine the 438 

deviation from neutrality (ω=1 is nearly neutral, therefore genes were discarded when ω ± SE 439 

included 1), and considered only genes with signatures of positive selection in any CAM 440 

lineage (ω2 in CAM > 1). Genes with dN/dS estimates close to the optimization bound in the 441 

three replicates (i.e. parameter estimates close to 999) and SE larger than 10 were discarded.  442 

 443 

Inference of gene family evolution 444 

Copy number variants were detected in 15 high-coverage individuals (Fig. 3) based on 445 

relative read-depth differences in exons using CNVkit
56

. Illumina reads were aligned to the 446 
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Tillandsia pseudo-reference as above and filtered using SAMtools v.0.1.19
57

 to remove 447 

duplicates (rmdup) and ambiguously mapping reads with mapping quality less than 10 (-q 448 

10). To avoid conflating lack of mappability with gene loss, we only retained exons with a 449 

mean read coverage of at least five in five individuals for further analysis. We first called 450 

copy number (CN) status in Al. trepida by profiling against A. comosus as a reference. For 451 

CNV detection within the genus Tillandsia, we then used A. trepida as the reference sample 452 

since it better reflects the observed mapping biases against the pseudo-reference genome with 453 

the remaining Tillandsia samples (lack of coverage outside coding regions, systematic 454 

variation in coverage along the genome). CNVkit was run with an average antitarget size of 455 

5000 and an accessibility mask of 2 kb generated based on the A. comosus hardmasked 456 

reference sequence available from CoGe (https://genomevolution.org/CoGe/GenomeInfo.pl? 457 

gid=25734). Gene gains and losses were called requiring consistent signal across at least four 458 

tiles (gainloss -m 4). Log2 ratios per gene were then filtered according to coverage-459 

dependent, empirically determined thresholds for lower and upper bounds (Supplementary 460 

Text). Log2 ratios above and below the respective thresholds were then translated into 461 

numbers of alleles by exponentiation and multiplication with the inferred allele number in A. 462 

trepida, divided by two and rounded to the next integer in order to calculate CNs per gene. 463 

We consider CNs to be an approximate and relative measure of CN variation with the genus 464 

Tillandsia rather than absolute estimates. 465 

Homolog clusters in the pineapple were identified using MCL clustering of the A. 466 

comosus predicted proteins with MCL-edge
58

, based on an all-vs-all BLASTp search with an 467 

e-value cutoff of 1e
-5

 and an inflation value of 3. Inferred CNs for each gene in a cluster were 468 

summed to obtain family-level gene pseudocounts across the high-coverage dataset for 469 

analysis of gene family evolution with CAFÉ v4.1
25

. We pruned species not included in the 470 

CNV analysis from the RAxML tree and used the Penalized Likelihood method with cross 471 

validation implemented in the program r8s
59

 to obtain an ultrametric tree for analysis with 472 

CAFÉ. All CAFÉ models were run with species-level error models inferred using the error 473 

model estimation script supplied with CAFÉ. Error estimates by species ranged between 0 in 474 

A. trepida, T. sphaerocephala and T. hitchcockiana to a maximum of 0.03 in T. juncea and T. 475 

leiboldiana. We estimated separate rates of gain () and loss (µ) in either a global model with 476 

a single set of parameters across the entire tree or a two-rate model with different sets of rate 477 

parameters for species in the subgenus Tillandsia and the rest of the tree (Fig. 3). The two-478 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495812doi: bioRxiv preprint 

https://genomevolution.org/CoGe/
https://doi.org/10.1101/495812


17 
 

rate model fit significantly better than the global model (delta-AIC 1727) and was the basis 479 

for inference of gene gains and losses along branches and ancestral copy numbers. 480 

To test for associations between CN changes and evolution of CAM photosynthesis 481 

and correlated traits we ran a permutation ANOVA
60

. Branch-wise turnover rates were 482 

calculated from ancestral CN estimates for each family and branches were labelled according 483 

to photosynthetic strategy. Empirical P-values were determined from 1000 permutations of 484 

branch label swapping and corrected for multiple testing to control the False Discovery 485 

Rate
61

.  486 

 487 

RNA sequencing 488 

All four species were kept under identical greenhouse conditions for at least 10 days prior to 489 

sampling (°C: min=16.6, max=39.0, mean=25.7 and %rF min= 30.8, max=95.9, mean=67.5). 490 

Three different specimens were used for each species to serve as biological replicates, except 491 

for Tflor for which only two replicates were available. For each sample and time point, up to 492 

30mg fresh leaf tissues were stabilized in RNAlater® immediately after sampling and kept at 493 

-20°C. Total RNA was carefully extracted under a sterilized fume hood with the QIAGEN 494 

RNeasy® Mini Kit following the supplier's protocol. RNA libraries were prepared with the 495 

Illumina TruSeq® Stranded mRNA Library Prep Kit before sequencing pair-end 2x150bp on 496 

an Illumina HiSeq3000 sequencer.  497 

Sequence quality was validated with FastQC v0.11.2 (https://www.bioinformatics. 498 

babraham.ac.uk/projects/fastqc/README.txt), and reads were trimmed with condetri v2.2
41

 499 

using 20 as high-quality threshold parameter. Reads were mapped to a Tillandsia 500 

adpressiflora pseudo-reference genome (described below) with TopHat v2.1.0
62,63

 using --b2-501 

very-sensitive mapping parameters. Only uniquely mapped reads were kept for further 502 

analyses.  503 

 504 

Differential expression  analysis of RNA-seq data 505 

The number of reads mapping to reference genes was quantified with HTSeq-count in default 506 

mode
64

, producing the gene count data (27,024 genes in total) for the DE analyses. We 507 

filtered the database by removing genes with 1 and 0 counts, resulting in a database of 23,737 508 

genes. We used edgeR v.3.12.1
65 

for DE analysis. After filtering out lowly expressed genes 509 
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(cpm < 2) we constructed a General Linearized Model (GLM) with species and time point as 510 

factors to implement the following tests: (1) “Intraspecific day/night” to detect genes with DE 511 

between day (11AM) and night (1AM) time points within each species, and (2) “Interspecific 512 

C3/CAM” to detect DE genes between CAM and C3 species at the day and night time points 513 

respectively. Significance was tested using likelihood ratio tests and P-values were corrected 514 

for multiple testing using the FDR. To avoid potential complications arising from copy 515 

number variation, we removed genes with evidence for copy number variants (CNVs; above) 516 

before further analysis unless otherwise noted. Gene Ontology (GO) terms were extracted for 517 

20'165 genes (74.61% of the annotated genes) with Blast2GO
66

 in April 2017. GO 518 

enrichment analyses were performed with the R package topGO v.2.22.0
67

 using Fisher's 519 

exact test and the weight01 algorithm. GOplot
68

 was used to graphically represent the 520 

significantly enriched GO terms and visualize enrichment for the ´biological processes´ 521 

domain by calculating the z-score as z = (up−down)/ √count).  522 

 523 
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 713 

Figure 1. Coalescent-based phylogeny of 28 whole-genome sequenced accessions for 25 714 
tillandsioid bromeliad species and Ananas comosus outgroup. Annotations display grouping 715 
into C3 (green stars) and CAM (yellow stars) species according to carbon isotope (δ

13
C) 716 

phenotypes. Measured carbon isotope ratios, night-time malate and citrate concentrations 717 
from targeted metabolite analysis, and differences in six other putatively adaptive plant traits 718 
are indicated in the legend box on the right. Samples used for RNA-seq expression profiling 719 
are indicated by a circle, samples with an asterisk represent species for which a close relative 720 
was used in the metabolite analysis.  721 
 722 
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 723 
Figure 2. Partial Least Squares – Discriminant Analysis (PLS-DA) of targeted metabolite 724 
data. GC-TOF-MS analysis of green tissue sampled during the day (11 AM) and night (1 725 
AM). A, PLS-DA score plot, C3/CAM day and night affiliation indicated in legend. B, 726 
Loadings. C, Boxplots of photosynthesis-relevant metabolites measured in C3 and CAM 727 
plants at 1AM. The y-scale was truncated at a z-score of 3 for better visibility of interquartile 728 
ranges (boxes) and medians (solid lines). 729 
 730 
 731 
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 732 
Figure 3. High-coverage samples included in analysis of copy number (CN) variants. Bar 733 
plots indicate inferred numbers of duplications (red) and losses (blue) by CAFÉ

24
 and 734 

numbers of families evolving at significantly different rates (P<0.01) compared to the 735 
genomic background (orange), all scaled by the lengths of the respective branches. Genome-736 
wide rates of duplication () and loss () are given for subgenus Tillandsia  (2, 2, grey 737 

shading) and the rest of tree (1, 1). Coloring on branches indicates whether branches are 738 
CAM (green) or C3 (black). The right panel illustrates estimated CNs and coverage 739 
distributions for AtXCT homolog Aco019534, one of the six gene families whose rates of 740 
duplication and loss showed significant association with the CAM phenotype (Table 1). 741 
 742 
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 743 
 744 
Figure 4. A, Transcriptome-wide analysis of differential gene expression (DE) between three 745 
CAM Tillandsia species and a C3 reference taxon. Top: Venn chart depicting overlap in DE 746 
patterns for each of the three CAM taxa relative to the C3 reference taxon during the day 747 
(11AM, numbers in light half-circles) and during the night (1AM, numbers in grey-shaded 748 
half-circles). Bottom: Heatmaps illustrating expression changes for the 233 and 336 749 
transcripts with DE in all three CAM species at day and night, respectively, compared to the 750 
same set of transcripts at the respective alternative sampling time point (night and day). The 751 
similarities in expression patterns of most DE transcripts between day and night are clearly 752 
visible. B, GO enrichment analysis on the subsets of overlapping  significant genes during the 753 
day (GO terms n° 1 to n° 8), during the night (n°2, n°7, and n° 9 to n° 15), and a subset of 754 
night-specific genes after pruning out the day-overlapping genes. For each subcategory (day, 755 
night, and night only) we depict the 8 most significantly enriched GO terms, with emphasis 756 
on the photosynthesis-related day-specific (bold, n°3) and night-specific (bold; n°10 to n°12) 757 
ones. Rosette plots highlight the relative contribution of up- and downregulated genes to each 758 
term and the overall trend (middle circle).  759 
 760 
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 761 

 762 
 763 
Figure 5. Heatmap of 35 A. comosus (pineapple) candidate genes and homologs. Exemplary 764 
heatmaps depicting DE patterns for homologue clusters of genes with known or suspected 765 
involvement in CAM photosynthesis based on evidence from A. comosus (Acomo)

18,33
. 766 

Species identities, abbreviations, and color codes are as in Fig. 2. A, DE for homologue 767 
clusters surrounding Acomo core CAM pathway genes for intraspecific day / night tests, 768 
including expression information for Acomo for the same time points

18
. B, DE for the same 769 

homologue clusters in interspecific C3 / CAM tests for the day and night sampling time 770 
points. C, DE for homologue clusters surrounding genes for malate transport and vacuolar 771 
proton pumps for intraspecific day / night tests, including expression information for Acomo 772 
for the same time points

18
. D, DE for the same homologue clusters in inter-specific C3/CAM 773 

tests for the day and night sampling time points. 774 
775 
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Table 1. Gene families with putative association to CAM/C3 correlated trait syndrome 776 
 777 

Cluster F 
P-value 

(FDR 

adj.) 
Annotation Direction 

cluster_759 5.7640 0.0000 Ypt/Rab-GAP domain of gyp1p superfamily protein Loss 

cluster_1286 4.6867 0.0000 Galactinol synthase 1 Gain 

cluster_7372 4.4536 0.0000 XAP5 CIRCADIAN TIMEKEEPER Gain 

cluster_392 3.4649 0.0000 Thioredoxin Gain 

cluster_2314 6.3453 0.0243 F-box family protein Loss 

cluster_1521 5.6398 0.0483 TCP family transcription factor Gain 
 778 
 779 
 780 
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