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Abstract  
Aim 
Quantifying abundance distributions is critical for understanding both how communities assemble, and            
how community structure varies through time and space, yet estimating abundances requires considerable             
investment in field work. Community-level population genetic data potentially offer a powerful way to              
indirectly infer richness, abundance, and the history of accumulation of biodiversity within a community.              
Here we introduce a joint model linking neutral community assembly and comparative phylogeography to              
generate both community-level richness, abundance and genetic variation under a neutral model,            
capturing both equilibrium and non-equilibrium dynamics. 

Location 
Global.  

Methods 
Our model combines a forward-time individual-based community assembly process with a rescaled            
backward-time neutral coalescent model of multi-taxa population genetics. We explore general dynamics            
of genetic and abundance-based summary statistics and use approximate Bayesian computation (ABC) to             
estimate parameters underlying the model of island community assembly. Finally, we demonstrate two             
applications of the model using community-scale mtDNA sequence data and densely sampled abundances             
of an arachnid community on La Réunion. First, we use genetic data alone to estimate a summary of the                   
abundance distribution, ground-truthing this against the observed abundances. Then we jointly use the             
observed genetic data and abundances to estimate the proximity of the community to equilibrium. 

Results  

Simulation experiments of our ABC procedure demonstrate that coupling abundance with genetic data             
leads to improved accuracy and precision of model parameter estimates compared with using             
abundance-only data. We further demonstrate reasonable precision and accuracy in estimating a metric             
underlying the shape of the abundance distribution, temporal progress toward local equilibrium, and             
several key parameters of the community assembly process. For the insular arachnid assemblage, we find               
the joint distribution of genetic diversity and abundance approaches equilibrium expectations, and that the              
Shannon entropy of the observed abundances can be estimated using genetic data alone.  

Main Conclusions 
The framework that we present unifies neutral community assembly and comparative phylogeography to             
characterize the community-level distribution of both abundance and genetic variation through time,            
providing a resource that should greatly enhance understanding of both the processes structuring             
ecological communities and the associated aggregate demographic histories. 
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Introduction 

The species abundance distribution (SAD) is a classic summary of the structure of ecological              
communities (McGill ​et al ​. 2007), which is gaining increasing interest in areas of applied ecology and                
biodiversity management (Matthews & Whittaker 2015), community assembly (Fattorini ​et al ​. 2016), and             
biogeography in general (Matthews ​et al ​. 2017). However, unbiased comparative species abundance data             
is often challenging to obtain (Cardoso ​et al ​. 2011). Standardised sampling protocols can be implemented               
to improve comparability within studies (e.g. Emerson ​et al ​. 2017), but these do not account for                
idiosyncratic phenological or microhabitat differences among species that may affect sampling           
probability, potentially skewing estimates of relative abundance. Genetic sequence data retains a record of              
population size changes through time (Griffiths & Tavaré 1994), yet this axis of information has rarely                
been exploited by community ecologists (Vellend 2005; Laroche ​et al ​. 2015), and never at the scale of the                  
full community. Therefore, a model linking abundance and effective population size at the community              
scale could enable a new way to characterize abundance distributions using genetic data alone.              
Additionally, rather than sampling more individuals to increase resolution of community assembly            
inference, sampling sequences may allow discrimination between assembly models that are known not to              
be identifiable with current abundance data alone (Rosindell ​et al. 2012; but see Al Hammal ​et al ​. 2015).                  
Such rapid and cost effective estimation of SADs could greatly enhance understanding of the structure of                
ecological communities, with potential to aid in the design of conservation strategies, and to improve               
forecasts of changes in aggregate population dynamics in the context of global climate change.  

The accumulation of sequence data for non-model organisms from over two decades of             
comparative phylogeographic studies ​(Avise ​et al. 2016), large-scale DNA barcoding initiatives ​(e.g.            
Bucklin ​et al. 2011)​, and forthcoming community-scale genome-wide data ​(Garrick ​et al. 2015)​, presents              
an exciting opportunity for linking abundances and aggregate population genetic data. However, we lack              
a flexible joint model that links existing models in comparative phylogeography ​(Satler & Carstens 2017;               
Xue & Hickerson 2017) with existing biogeographic models of community assembly ​(Rosindell ​et al.              
2012; Rosindell & Harmon 2013)​.  

Despite the potential of comparative phylogeography to leverage the power of aggregated            
demographic histories to answer fundamental questions about community assembly and macroecology           
(Avise et al. 1987; Hickerson ​et al ​. 2010; Avise ​et al ​. 2016), such approaches have generally neglected                 
the growing body of theory from community ecology that seeks to accommodate the relative importance               
of deterministic (Tilman 2004; Maire ​et al ​. 2012) and stochastic processes (MacArthur & Wilson 1963;               
Hubbell 2001; Rosindell ​et al ​. 2012) governing the assembly of communities. For instance, comparative              
phylogeographic approaches that do incorporate community assembly have tended to focus on general             
models of shared demographic histories ​(Burbrink ​et al. 2016; Satler & Carstens 2017)​, rather than               
models that are explicitly parameterized from ecological community assembly theory (but see Bunnefeld             
et al ​. 2018).  

Ecological theory has been fundamental for understanding processes underlying spatial patterns           
of biodiversity as typically quantified by regional SADs and species area relationships (McGill ​et al ​.               
2007). However, ecological models of community assembly tend to view communities as static pools              
with an ahistorical focus on equilibrium expectations (Weiher ​et al ​. 2011). Although there have been               
efforts to incorporate non-equilibrium history in models of community assembly (Clark & McLachlan             
2003), as well as a long tradition of incorporating phylogenetic information (Webb ​et al ​. 2002; Jabot &                 
Chave 2009) at also accommodates non-equilibrium historical dynamics (Pigot & Etienne 2015; Manceau             
et al ​. 2015), there has only been limited, yet promising, effort in considering intraspecific genetic               
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polymorphism within a dynamic non-equilibrium assembly framework (Vellend ​et al ​. 2014; Laroche ​et             
al​. 2015) or within statistical models of macro-ecology (Smith ​et al ​. 2017; Pelletier & Carstens 2018).                
These efforts in bridging the gap between ecological models and population genetics have focused on               
characterizing the correlation between species diversity and genetic diversity in ecological communities            
(the species-genetic diversity correlation: Vellend 2005; Papadopoulou ​et al ​. 2011; Vellend et al. 2014,              
Laroche ​et al ​. 2015) while other efforts have looked at the relationships between adaptive genetic               
diversity and community dynamics (Hughes ​et al ​. 2008; Becks ​et al ​. 2010; Schoener 2011). 

Despite these important efforts to unify our understanding of ecological and evolutionary            
dynamics, a community-scale model linking species abundances and genetic diversities under a dynamic             
model of assembly has yet to be proposed. Here we describe, test, and demonstrate a joint inferential                 
framework that bridges ecological neutral theory with population genetics in order to make joint              
predictions of community-wide distributions of species abundances, genetic diversities, and genetic           
divergences under a ​dynamic non-equilibrium model of assembly​. The unified framework we present             
combines a forward-time model of community assembly with a backward-time coalescent model, linking             
abundance and colonization history with aggregated population genetic samples from multiple taxa.  

We use simulation experiments to validate the power and accuracy of our method using an               
approximate Bayesian computation framework (ABC; ​Csilléry ​et al. 2012) for estimating model            
parameters. Similar to Jabot & Chave (2009), who used phylogenetic information to estimate parameters              
of a neutral community assembly model with ABC, we merge population genetics and a similar neutral                
ecological model in an ABC context. After using simulations to validate the method, we demonstrate an                
application to a sample of community-wide mitochondrial DNA sequence data and corresponding densely             
sampled abundance estimates obtained from an assemblage of 57 spider species from the island of               
Réunion ​(Emerson ​et al. 2017)​. Using only the sequence data, we accurately estimate the Shannon               
entropy of the observed SAD, and additionally obtain an estimate of the equilibrium state of the                
community. The joint model, implemented in Python, and all ipython notebooks for reproducing             
simulations and analysis are freely available on GitHub: https://github.com/isaacovercast/gimmeSAD. 

 

Materials and Methods 
Model Overview - ​​First, forward-time community assembly simulations are performed using an            
island/mainland metacommunity model following Rosindell & Harmon (2013). This individual-based          
neutral model unifies MacArthur and Wilson’s equilibrium theory of island biogeography (ETIB) with             
Hubbell's unified neutral theory of biodiversity (UNTB) to generate time-dependent non-equilibrium and            
equilibrium predictions of local richness and abundances (MacArthur & Wilson 1963; Hubbell 2001). We              
use these predicted temporal changes in abundance distributions and colonization times to parameterize a              
multi-species model of aggregate population genetic data backwards in time under the coalescent             
(Rosenberg & Nordborg 2002). The former allows for inference about the time series progression of               
community change while the latter links predicted changes in community population genetic data to this               
community assembly process (see Fig. 1 & Box S1).  

Forward-Time Model - Forward-time simulations of community assembly follow the spatially implicit            
neutral model of ​Rosindell & Harmon (2013) that unifies the ETIB with the UNTB whereby abundance                
distributions, and immigration and extinction rates proceed under a birth/death/colonization process in the             
biogeographical context of a focal local community and a regional source pool (metacommunity). In this               
model the carrying capacity (​K ​) of the local community is fixed and of finite size. The colonization rate is                   
modeled as a single parameter (​c ​) that specifies the probability of a colonization event. Colonizing species                
are sampled from a metacommunity composed of species with abundances that are independently and              
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identically distributed according to the logseries distribution (Fisher ​et al. ​1943), and which is static with               
respect to the timescale of local assembly. At each time-step one individual is randomly sampled for                
removal from the local community. With probability 1 - ​c​, this individual is replaced by the offspring of a                   
randomly sampled individual from the local community. With probability ​c​, the individual is replaced by               
a randomly sampled member of the metacommunity, where the probability of sampling from any given               
species is weighted by the relative metacommunity abundance (​A ​meta​; Table S1).  

 
Figure 1. Schematic version of the model parameters, processes, and response variables 
Directed acyclic graph (DAG) depicting the conditional dependencies underlying the joint model’s set of 
adjustable parameters, response variables, data, and associated summary statistics (under model 
configuration ). For simplicity, the components of the source metacommunity are elided from theM AMI  
figure, but are described fully in the text.  
 

Given that the forward-time process follows a Moran model, we will refer to one birth/death               
event as a time-step, with one generation encompassing ​K time-steps. Information about the state of the                
community in the forward-time simulation model is recorded at regular time-intervals of arbitrary length,              
with the default interval length being equal to 100000 time-steps. Model state can be described by a                 
vector of = { } containing the time since colonization (in generations) for species ​i ​in  T  

i  , …,  ττ  
1    

Slocal
             

the local community as well as a jointly associated vector ​= { } that contains the           A 
i   , ...,  AA 

1    
Slocal

    
associated abundances for species ​i ​in the local community​. ​The history of abundance changes for species                
i ​going back in time generations is contained by a vector ​= { } such that ​j =     τ  

i        Aj
i   , ... , AAi

τ − 0 i   i
τ −  τ i  i      

decreases going back in time at prior time intervals until . The counts of0τ  i −             ττ  i −   i     
post-colonization migration events are accumulated per species in the vector = { } (Table          M  , ... mm1  Slocal

  
S1). Two emergent pseudo-parameters (model response variables) are then c' (effective colonization rate)             
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and † (effective extinction rate) which are defined as the realized number of colonization and extinction                
events per generation, respectively (Table S2).  

Scaling forward-time model to backward-time coalescent model - For the ​i​-th local species that is               
extant at the ​j-th time interval with an abundance of , there exists the history of changes in abundance          Aj

i          
over time since colonization , from a source species in the metacommunity. To relate raw sample-based    τ  

i             
abundances with the effective population sizes that parameterize the backward-time coalescent process of             
the gene tree lineages, we make the assumption of a random spatial distribution of individuals that is                 
predicted to lead to a simple scaling relationship whereby the sample-based and regional-based abundance              
distributions have the same functional form (Green & Plotkin 2007). To approximate this expectation, we               
incorporate a rescaling that is based on the assumption that the observed local abundances from direct                
sampling are proportional to regional abundances and thus current effective population sizes.  

To this end we rescale the time-dependent abundance of each species ( ) into a time-dependent           Aj
i     

effective population size ( ) using the scaling factor such that . This is equivalent to   N j
i      σ    σAj

i = N j
i      

assuming the abundance counts actually record the number of demes, each of size , over time per    Aj
i           σ     

species. Across all species sampled genetically at the ​j- ​th time interval, this yields time dependent vectors                
of the effective population sizes for species ​i ​( ), the associated times since colonization in units of        N j

i          
generations = { }, and temporally static effective population size vectors for the T  

i  , …,  ττ  
1    

Slocal
          

corresponding source metacommunity species ( ). Under this assumption, each local species consists    N meta         
of a metapopulation consisting of demes of size with strong migration conditions that reduce to the     Aj

i     σ         
temporally dynamic predictions of a panmictic effective population of size . Under this assumption,         σAj

i     
the “collecting phase” is predicted to dominate the entire history of ancestry thereby approaching the               
standard panmictic coalescent expectations of a time dependent effective population size ( ) as           σAj

i = N j
i   

the number of demes become large (Wakeley & Aliacar 2001; Wakeley 2001; Wakeley 2004).              
Importantly, this rescaling is based on the assumption that the observed abundances from direct sampling               
are proportional to actual abundances and current effective population sizes, although these relationships             
are known to be complex (Luikart ​et al ​. 2010). However, how changes the timescale of both forward           σ        
and backward processes is not determined in our model and therefore it is critical to determine if a chosen                   

value results in a model that can generate the observed data. As a check, one should assess the abilityσ                     
of the model to generate the data by statistical goodness of fit tests or model evaluation ​(Gelman 2003;                  
Lemaire ​et al. 2016)​. Alternatively, could be treated as an unknown parameter and estimated given the      σ            
data. 

Given the parameters of the backward-time model (Tables S1 & S2), we use the ​msPrime               
coalescent simulator program ​(Kelleher ​et al. 2016) to generate genetic polymorphism data matching an              
arbitrary sampling regime of the local and/or metacommunity species pair sample sizes (with respect to               
numbers of individuals sampled at a mtDNA locus of length ​L​). Instead of parameterizing the coalescent                
simulations of the ​i​th species following the stochastic changes in effective population sizes since       τ i

τ  i         
colonization according to ​= { }, we use , the harmonic mean of each species’   N j

i   , ... , NN i
τ − 0 i   i

τ −  τ i  i    N ei        
effective population size across all time steps indicated by the elements within (Karlin 1968;          τ i

τ  i    N j
i    

Pollak 1983). One gene genealogy is simulated for each sampled species pair corresponding to a 570bp                
segment of the mitochondrial COI gene, and mutations are applied under an infinite-sites model given an                
assumed invertebrate mitochondrial divergence rate (1.1% per species per million years; e.g. ​Brower             
1994)​.  

Initial Conditions - ​​We implement two different starting conditions to simulate volcanic versus             
continental island formation. Our initial conditions under the volcanic model deviate from those of              
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Rosindell & Harmon (2013), in that at time zero they assume that one initial colonizing lineage consumes                 
all available space in the community, thereby saturating ​K​. In our model we select the most abundant                 
species in the metacommunity and introduce one individual into the unpopulated local community. This              
initial condition is both biologically more realistic, and also avoids the assumption that volcanic island               
carrying capacity is saturated at time zero, which could generate unrealistic quantities of genetic diversity               
in the initial colonizing lineage. Continental islands are initially populated by making ​K independent              
random samples from the metacommunity proportional to their relative abundances. Here we are             
modelling a community of panmictic species that are simultaneously and instantaneously isolated from             
the metacommunity at time zero. Because we assume panmixia prior to isolation, the vector of               
colonization times ( ) are initially identical across the entire local community. Following subsequent  T i

0            
local extinction and replacement by new colonizing species, the vector of colonization times , becomes             T j

i   
heterogeneous. 

Quantifying Equilibrium - ​​Equilibrium is commonly defined as the dynamic balance between            
colonization and extinction rates that emerges over time, eventually leading to a stationary distribution              
where the two rates are expected to be equal ​(MacArthur & Wilson 1963)​. However, under certain                
conditions, species richness and abundances may fail to equilibrate simultaneously, in which case the              
classic definition of equilibrium is insufficient (see Rosindell & Harmon 2013). To address the need for a                 
more robust concept we follow Rosindell & Harmon (2013) in defining equilibrium as the point at which                 
the starting conditions of the model are no longer detectable in the state of the system. In addition to                   
colonization/extinction rate balance, this auxiliary definition guarantees that both richness and the SAD             
have reached their expected equilibrium values. Here we define a new term to measure the fraction of this                  
equilibrium obtained by the community and treat it as an emergent parameter that can be estimated by                 

sampling the prior and posterior distribution (Λ; Table S2). This quantity is defined as Λ = / ​K​,                ∑
K

i=1
Ei   

where ​K is the carrying capacity and ​E is the boolean vector of length ​K such that ​E​i for ​i ​= {1, …, ​K​}                         
indicates the colonization status of each individual in the local community. The value of Λ therefore                
ranges from 0 to 1 with small values indicating early assembly history, and larger values indicating later                 
assembly history and approach to equilibrium. When all individuals present in the local community are               

descended from a lineage that colonized during the simulation then ​E​i = ​K and Λ = 1. Our model of          ∑
K

i=1
Ei            

community assembly is inherently stochastic, so the amount of time for any given simulation to reach                
equilibrium is a random variable given the distribution under the model. For each forward-time simulation               
we track elapsed time, local community composition (both abundances and richness), and colonization             
times for all local species. We are interested in equilibrium and non-equilibrium dynamics, so we poll this                 
information at regular intervals of arbitrary duration.  

Summary Statistics - At each time interval we extract the simulated sequences from a sample of the local                  
community and calculate nucleotide diversity as the average number of pairwise differences ( ; Tajima            π   
1983) within the local community for each sampled species given ( = { }). We then          Slocal  πi  , ... ππ1  n    
summarize the distribution of genetic variation by constructing a one dimensional histogram of local            Υ)(    
community genetic diversity such that: 

Slocal = ∑
k

i=1
Υi  

where ​k is the number of bins (with ​k​=10 for all simulation and empirical analyses), and bin width max(                  
)/​k ​. We term this summary of local community diversity the one dimensional species genetic diversityπi                

distribution (1D-SGD; Fig. S1). Next, we calculate absolute divergence (D​xy​; ​Nei 1987) between samples              
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from each local-metacommunity sister pair (D​xy_i = {D​xy_1​, … D​xy_n​}). The values of and D​xy_i are             πi     
aggregated across all species-pairs sampled from the community within each time-point and summarized             
as a ​k ​ x ​k​ joint frequency histogram  with equal-width bins such that:X)(  

     X  Slocal = ∑
k

i=1
 ∑

k

j=1
 i,j  

The upper bound for each dimension of the histogram is fixed to the maximum values of and D​xy                π    
within a given simulation. We term this joint summary of community diversity/divergence as the two               
dimensional species genetic diversity distribution (2D-SGD; Fig. S2). The 1D and 2D-SGD are simple              
histograms that collapse the full distribution of community genetic diversity into a summary             
representation. Additionally, at each time interval we record the rank abundance curve (RAC), the SAD,               
and Shannon entropy calculated for the community ​(H'; Boltzmann 1872; Shannon 1948; Hill 1973),              
which is: 

- log(p )∑
Slocal

i=1
pi i  

where ​p​i is the proportional abundance of species ​i​. Given an observed sample of ​species sampled              Slocal    
from an empirical community, the simulated summary statistics are filtered to match the observed              
sampling configuration. As an additional method of comparison with the H' derived from the SAD, we                
also calculated the Shannon entropy derived for both the 1D-SGD (π), and distribution of D​xy per                
sampling time point and notate this as H' ​π​ and H' ​Dxy  ​respectively.  

Simulation Study Design - To characterize the joint temporal dynamics of the SAD and 2D-SGD under                
non-equilibrium and equilibrium community assembly, we simulated assembly histories for both           
continental and volcanic islands, under a range of parameter values using a range of local community                
sizes (​K = 1000, 5000, 10000) and colonization rates (​c = 0.0001, 0.001, 0.01). We generated 10,000                 
replicated simulations for each combination of origin type, local community size, and colonization rate,              
resulting in 180,000 total simulated community histories. All forward-time simulations were run for twice              
the mean time to turnover equilibrium (​Λ) for the largest local community with the smallest colonization                
rate (5x10​9 generations). We then summarized the temporal changes in H', π, D​xy​, H' ​π​, and H' ​Dxy ​by                 
calculating the mean and standard deviation of each of these metrics for each parameterization across               
replicate sets of simulations at five values of ​Λ (0.1, 0.25, 0.5, 0.75, 1)​. For this initial set of exploratory                    
simulation experiments, we calculated H' on the entire set of species while π, D​xy​, H' ​π​, and H' ​Dxy ​were                  
likewise calculated on this entire set of ​species given samples of 10 individuals per species in the       Slocal            
local community and associated metacommunity source populations. 

Bias and Accuracy in Estimating ​​Parameters - ​​Next, we evaluated the suitability of H' and the relative                 
bin magnitudes of the SGD as summary statistics for parameter estimation using ABC by conducting a                
suite of leave-one-out cross-validation experiments under various configurations (Table 1) whereby           
parameters of known values are estimated (​Csilléry ​et al. 2012​). We focus on evaluating accuracy and                
precision in estimating the following community-wide model parameters and pseudo-parameters: local           
community size (​K ​), parameterized colonization rate (​c ​), fraction of equilibrium (Λ), realized colonization             
rate (​c' ​), extinction rate (†), and Shannon entropy (H'). We additionally explored estimation of              
community-wide parameters given various sequence and abundance data availability configurations (see           
Table 1). For example, given only the DNA sequence data sampled from a focal local community, the                 
relative bin magnitudes of the observed 1D-SGD can be used as the summary statistic vector and both H'                  
and ​Λ can be estimated, along with the other model parameters such as ​c​, and ​† ​(ABC configuration ;                  M I  
Table 1).  
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Table 1. ABC Model Configurations 
An overview of the five different model configurations explored, indicating summary statistics derived 
from available observed data ( , D​xy​, and/or H') and the parameters to be estimated under our ABCπ  
framework. These scenarios arise from various combinations of observed abundances (A), 
community-scale nucleotide diversity (I), and local-metacommunity divergence (M). The Shannon 
entropy (H') can be configured either as a summary statistic or as an estimated pseudo-parameter, 
depending on whether densely sampled abundances are available for the community of interest. Other 
pseudo-parameters ) can be estimated under all ABC configurations.c, c , K, †, Λ(  ′     

Model Configuration Summary Statistic Vectors Estimated Pseudo-Parameters 

M A  -- -- H' , c , K, †, Λc  ′     

 M I  π  -- -- H', , c , K, †,c  ′    Λ  

M AI  π  -- H' , c , K, †, Λc  ′     

 M MI  π  D​xy -- H', , c , K, †,c  ′    Λ  

M AMI  π  D​xy H' , c , K, †, Λc  ′     

 

To construct the reference table for the cross-validation analyses, we performed 1,000,000            
community assembly simulations, sampling parameter values of ​K​, ​c​, and Λ according to uniform prior               
distributions (​K ​= ~U(1,000-10,000), ​c = ~U(0.0001-0.01), and Λ = ~U[0, 1); see Table S1 for all                 
simulation parameters). We then conducted ABC leave-one-out cross-validation using the ​cv4abc           
function of the ​abc R package (​Csilléry ​et al. 2012​). For the ABC procedure we used simple rejection                  
sampling and a tolerance sufficient to retain 1000 samples from the prior to construct the posterior                
estimate for each parameter of interest. We performed 100 leave-one-out cross-validation replicates per             
data configuration for each estimated parameter, and quantified accuracy of parameter estimation by             
calculating root-mean-square error (RMSE) and the coefficient of determination (R​2​) for sampled and             
estimated parameter values. 

Empirical Application - Following our simulation experiments demonstrating that the ABC model can             
effectively estimate parameters, we perform an empirical analysis on a published dataset from a              
community of spiders from the island of Réunion, an overseas department of France located in the Indian                 
Ocean approximately 900 km east of Madagascar. In the original study, using a standardized protocol               
spiders were sampled from 10 lowland rainforest plots distributed across the island and sorted into 57                
presumed biological species ​using a protocol combining morphological sorting and mtDNA sequencing            
(570bp Cytochrome Oxidase c Subunit I; ​Emerson ​et al. 2017)​. The dense and standardized sampling               
allows us to use both the H' calculated from the observed SAD as well as the 1D-SGD calculated from the                    
observed sequence data for estimating assembly model parameters. Therefore, we use model            
configuration to estimate H', and , , and ​to alternatively estimate ​Λ (Table S1). Under M I      M A  M I   M AI         
all model configurations we estimate parameters c’ and †. For the ABC inference procedure, we simulated                
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1,000,000 samples by drawing parameter values from the same prior distribution used for the              
cross-validation analysis, and used the same rejection method to accept the closest 1,000 data sets to                
sample from the posterior distribution. When calculating for each island taxon we used sample sizes       π         
with respect to numbers of individuals matching the observed spider data exactly with respect to numbers                
of individuals and length of DNA sequence. Simulations for the empirical analysis were run on a 40 core                  
Intel Xeon 2.20GHz workstation with 256GB of main memory and were completed in approximately 1               
week. 

We evaluated the overall goodness of fit of our posterior estimate to the observed data in two                 
ways. First, we quantified the absolute Euclidean distances between the retained and observed summary              
statistics. Additionally, we performed a prior predictive check by projecting the retained simulated SGD,              
along with the observed SGD into principal component (PC) space. A good fit of the model to the data                   
should generate simulated summary statistics sufficiently similar to those of the observed data as to be                
indistinguishable in the PC analysis. 

Results 
The Joint SAD and SGD Through Time ​​- The classically lognormal-like shape of the SAD, with most                 
species of low abundance, is mirrored by the distribution of genetic diversities (Fig. 2). The shape of the                  
joint spectrum of community genetic diversity (π) and genetic divergence (D​xy​) generally widens over              
time as richness increases, while the corresponding H' of the SAD generally increases over the same time                 
intervals (Figs. 2 & 3). We find that most species display low amounts of standing genetic diversity, as                  
characterized by average pairwise differences (π), although there are important temporal dependencies as             
these characteristics only accrue with time as Λ progresses. On the other hand, time has a reduced impact                  
on the distribution of D​xy​, which obtains the lognormal-like shape even at very early stages of assembly,                 
although with greater variability, as expected given that the final waiting times in the larger ancestral                
population will predict a large variance in this summary statistic, regardless of colonization time 
(Takahata & Nei 1985).                                                            ​. 

Different colonization rates and local community sizes leave different signatures through time on             
both the SAD and the 2D-SGD. Overall, higher colonization rates tend to increase the species richness in                 
the community, predominantly by increasing the proportion of rare species, as well as species with lower                
π. Higher colonization also increases local extinction rates (Tables S4 & S5), and this increase in turnover                 
decreases average divergence times, with a subsequent reduction in both π and D​xy​. In a similar fashion,                 
under reduced colonization rates, turnover is lower, the proportion of rare species is reduced, divergence               
times are longer on average, and π is increased on average (Table S4 & S5). Additionally, the correlation                  
between π and abundance is dependent on Λ, increasing as Λ increases, and finally becoming strong as Λ                  
approaches 1. A powerful feature of our joint model is that it does not assume this correlation between                  
genetic variation and abundance, and indeed the dynamics of how this correlation changes over time               
provides some of the information for the estimation of model parameters.           
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Figure 2. 2D-SGD and corresponding rank abundance at varying stages of community assembly 
Panel 1) Summed aggregations of the 2D-SGD across 1x10​4​ replicated simulations at varying stages of 
community assembly. All simulations were conducted with intermediate values of community size and 
colonization rate (K=5000, c=0.03). Each point in the plot is a joint frequency bin for values of local 
nucleotide diversity (π) and absolute divergence between the local community and the metacommunity 
(D​xy​). The color of each bin indicates the number of species it contains, with cooler colors signifying 
fewer species and warmer colors signifying more species. Panel 2) Corresponding rank abundance plots 
of the 1x10​4​ simulated communities. Values of  depicted capture multiple stages of communityΛ  
assembly from early (0.05, 0.1), through middle (0.25, 0.5), to late (0.75, 1).  
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Figure 3. ​​ ​Shannon entropy at varying stages of community assembly 
Histograms of Shannon entropy (H') for four different community parameterizations including low and 
high colonization, and small and large community sizes. 1x10​4​ independent simulations were performed 
for five  values for each parameter combination. Depicted are a) Low colonization rate, smallΛ  
community size; b) High colonization rate, small community size; c) Low colonization rate, large 
community size; d) High colonization rate, large community size. A range of  values were used toΛ  
capture multiple stages of community assembly from early (0.05, 0.1), through middle (0.25, 0.5), to late 
(0.75, 1). 
 
Bias and Accuracy in Estimating ​​Parameters - ​​Broadly speaking, cross-validation indicated reasonable            
accuracy and limited bias in estimating all parameters under all ABC model configurations (Table S6).               
The notable exception being estimation under ABC configuration , which is the most data deficient         M A        
model, as well as when attempting to estimate ​K ​under all ABC configurations, potentially because the                
absence of a joint estimate of ​K and Λ creates identifiability issues. Under ABC model configuration ,                M I  
ABC cross-validation indicated a strong signal in the data for estimating H' using only the 1D-SGD bin                 
values as the summary statistic vector (Fig. 4; RMSE=0.26, R​2​=0.96), with little added value when               
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additionally including D​xy ​under (Fig. S4; RMSE=0.27, R​2​=0.95). Likewise, Λ could be estimated    M AI           
well using ABC model configuration and (R​2​=0.68-72), yet using only H' as the lone summary     M I   M AI           
statistic ( ) resulted in poor conditions for estimating Λ (Fig. S4; RMSE=0.28, R​2​=0.05). Our joint M A               
framework additionally demonstrated accurate estimation of other ecologically important parameters          
governing assembly such as community-wide extinction rate (​†​), and effective colonization rate (​c’ ​), with              
R​2 ​between estimated and true values ranging from 0.61-0.89 under ABC model configurations ,             M I  

,  , ​ and  (Table S6; Figs. S4-S7).M AI M MI  M AMI   

 
Figure 4. ABC cross-validation for model parameters 
100 ABC cross-validation replicates for comparison of true vs estimated model parameters using only the 
1D-SGD as data ( ). The red line shows the linear least-squares regression between true and estimatedM I  
values. Results are shown for estimating carrying capacity (​K ​), colonization rate (​c ​), fraction of 
equilibrium (Λ), effective colonization rate (​c' ​), extinction rate (​†), and Shannon entropy (H'). 
 
Estimating Parameters for the Réunion Spider Community - For an empirical application, we chose              
to use only the 1D-SGD as observations to estimate H' calculated from the observed SAD ( ). In this               M I    
configuration the bin magnitudes of the 1D-SGD are treated as the summary statistic vector, and H' is                 
treated as the parameter to be estimated. However, we also have the observed H' calculated from the                 
samples for direct comparison to the estimate of H' under the ABC configuration . In this case, our             M I      
ABC mode estimate of H' = 1.816 (Fig. 5a; 95% HPD: ​1.171-2.822​) came remarkably close to the                 
observed H' of ​2.246 ​calculated from the sampled abundance data. This good fit of the posterior estimate                 
to the observed H' indicates that the observed distribution of genetic diversity contains sufficient              
information about the community history of effective population size trajectories across island species             
with regards to predictions of the contemporary SAD under a neutral model of assembly (Fig. 4). Our                 
simulation study demonstrates this possible dynamic as both H' and the SGD are predicted to increase                
over time under most conditions, such that our ABC model could potentially estimate the former with the                 
latter given the strongly temporal features of our assembly model. Given the coupled dynamic of H' and                 
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the SGD as a progressive function of ​time in our simulation study, it follows that our ABC procedure has                   
potential to estimate the degree of equilibrium parameter (Λ), as shown in our cross-validation              
experiments. W​e estimated ​Λ for the spider community using three different ABC model configurations              
configurations representing different combinations of H' and the 1D-SGD as summary statistics ( ,            M A  

, and ). Given the mode estimate of ​Λ was 0.51 but with a diffuse posterior distributionM I   M AI   M A               
(Fig. 5b; 95% HPD: 0.05-0.93). In sharp contrast, ABC configurations and yielded mode          M AI   M I    
estimates and HPDs that were both relatively clustered around high values of ​Λ (Fig. 5c & 5d; posterior                  
mean 0.89; 95% HPD: 0.69-1). Additionally, ABC estimates of ​c' ​(Fig. 5e; posterior mean 0.001; 95%                
HPD: 0.0007-0.0017) and ​† (Fig. 5f; posterior mean 0.001; ​95% HPD: 0.0009-0.0012) under model ,              M AI  
were broadly concordant. More formal goodness-of-fit analysis with both the prior predictive check with              
principal components and Euclidean distances between retained and observed summary statistics           
corroborate the good fit of the model (Figs. S8 & S9).  

Discussion 

Similar to efforts that merge phylogenetic frameworks with community assembly models ​(Jabot            
& Chave 2009; McPeek 2008; Webb et al. 2002)​, recent important progress has been made toward linking                 
community ecology models with population genetics ​(Vellend 2005; Baselga ​et al. 2015; Laroche ​et al.               
2015​). However, current theory either lacks an explicitly population genetic foundation (Vellend 2005),             
or considers genetic variation only of a focal taxon (Laroche ​et al. 2015). A focus on genetic diversity at                   
the community scale offers an opportunity for ecological theory to further incorporate the potentially              
powerful dimension of flexible comparative phylogeographic models (Satler & Carstens 2017; Xue &             
Hickerson 2017). This should be facilitated by the increasing availability of genome-scale            
phylogeographic data that allows exploration of evolutionary models of increasing complexity and            
explanatory power ​(Schraiber & Akey 2015)​, yet such approaches have seen limited use to infer the                
temporal and spatial dynamics at play at the community level (but see Bunnefeld ​et al ​. 2018). On the                  
other hand, while many classic comparative phylogeographic studies attempted to infer histories of             
Pleistocene community assembly and diversification (Bermingham & Moritz 1998; Hewitt 2000) by            
examining combined results of multiple single-taxon phylogeographic studies within a region (Emerson ​et             
al​. 2011), most of these endeavors were not grounded in ecological assembly theory. 

Even the comparative phylogeographic models that globally operate at the assemblage level have             
yet to be grounded in ecological theory that can account for stochastic and deterministic forces underlying                
community assembly (Prates ​et al ​. 2016; Gehara ​et al ​. 2017). Fortunately, the community assembly              
models that generate expectations for temporally dynamic SADs ​(Missa ​et al. 2016) and             
speciation/colonization rates ​(Rosindell & Harmon 2013) could have an identifiable relationship with            
population genetic parameters like divergence times, admixture, expansion, colonization times, and           
changes in effective population sizes. Unifying the parameters of these two modeling frameworks could              
provide a new way of testing an array of competing assembly models with genetic data as well as                  
estimating the relative strength of various deterministic forces underlying the assembly models such as              
niche filtering and competition. By linking ecological and micro-evolutionary processes whose dynamics            
and equilibrium expectations can occur on different time-scales, our new joint approach potentially allows              
for improved resolution and statistical power for estimating  parameters as well as improved potential for  
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Figure 5. ABC posterior estimates of colonization/extinction rates, H' and Λ 
ABC posterior estimates of colonization and extinction rates, and H' and Λ for the spider community 
dataset from the island of Réunion. ​(a) ​​Using only the 1D-SGD as the summary statistic vector ( ), theM I  
mode estimate of H' was 1.816 (95% HPD: ​1.171-2.822; red dashed lines ​). The true value of H' as 
calculated from the observed abundance data was ​2.246 ​(red solid line). Posterior estimates of Λ using 
three different model configurations: ​(b) ​​ only H' as data ( ); ​(c) ​​ only the 1D-SGD as data ( ); andM A M I  
(d)​​ both H' and the 1D-SGD as data ( ). Posterior estimates of colonization rate and extinction rateM AI  
using model  are depicted in panels ​(e) ​​ and ​(f) ​​, respectively. In all panels the red dashed linesM AI  
indicate the 95% HPD, and the blue line illustrates the prior distribution.  
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testing and fitting a number of different neutral and non-neutral community assembly models. Likewise,              
understanding whether or not communities tend toward stable equilibria remains an unanswered question             
(Harmon & Harrison 2015; Rabosky & Hurlbert 2015; Valente ​et al. 2017) that can now be addressed                 
with our joint approach that makes generative predictions of richness, abundance, and the spectrum of               
genetic diversity under both ecological and evolutionary time scales.  
Assembly of the Réunion Spider Community - The joint data of mitochondrial polymorphism and              
abundance structure from > 50 spider species on the volcanic island of Réunion affords us the opportunity                 
to compare the estimate of the Shannon entropy (H') using only the genetic data (i.e. ABC model                 
configuration ) with the H' calculated from the observed abundance distribution. In this case, the M I               
posterior distribution of H' under was able to successfully recover the observed H'. If this is a general     M I               
feature of our approach it would be encouraging given that estimating species abundances directly from               
field surveys can be difficult and problematic for some taxa (Kunin ​et al ​. 2000; Petrovskaya ​et al ​. 2012).  

Using the distributions of abundance and genetic diversity jointly ( ) also allowed us to gain         M AI       
insight into the stage of progression towards equilibrium of this spider assemblage under our ecologically               
neutral model, yet the distribution of genetic diversity alone may have been sufficient ( ). This was not             M I     
the case of using the distribution of abundances alone ( ), indicating there is little information about         M A         
equilibrium state (​Λ) in H'. This result is in agreement with the ABC cross-validation findings suggesting                
that estimation under ABC configuration improves accuracy and reduces bias in the estimation of ​Λ​.     M AI            
It is notable that both ABC configurations including local genetic data ( and ) strongly indicate           M I   M AI    
that this isolated spider community is consistent with an ecologically neutral assembly that is approaching               
or has reached equilibrium. Additionally, this assessment is supported by the similar mode estimates and               
largely overlapping HPD of ​c' and † which hews to the more traditional consideration of equilibrium as                 
the dynamic balance of colonization and extinction. Indeed, Réunion island emerged from a classic              
volcanic hotspot formation approximately five million years ago (Lénat ​et al ​. 2001), and this is likely                
sufficient time for equilibrium expectations of species richness, and community wide distributions of             
abundance and genetic diversity to have accumulated.  

Outlook - The simple neutral model we introduce can be used as a candidate null hypothesis against                 
which to test comparative population genomic/phylogeographic data, while the flexibility of the            
framework can accommodate various particular ecological contexts. For example, the model could            
incorporate ​in situ local speciation either as instantaneous events or as a protracted process ​(Rosindell ​et                
al. 2010)​. Furthermore, it could incorporate non-neutral processes by including trait parameters for             
differential niche-filtering or dispersal limitation across species that result in variable colonization rates.             
In this case variation in colonization probabilities would be a proxy for non-neutral processes such as                
trait-dependent environmental filtering ​(Pigot & Etienne 2015)​. Along these lines, the model could also              
accommodate deterministic processes such as resource-limited colonization probabilities or priority          
effects while retaining the stochastic dynamics of ecological drift underlying our joint model in the spirit                
of stochastic assembly theory ​(Tilman 2004)​. In this case the magnitude of deviation from neutral               
expectations of colonization time, abundances, and genetic diversities could be modeled as a free              
parameter within our joint assembly model.  

The increased complexity of these different modelling strategies would all benefit from the             
increased information content of higher resolution data types such as RADseq ​(Andrews ​et al. 2016)​, or                
whole genomes (Bunnefeld ​et al ​. 2018). Additionally, the widespread availability of mitochondrial and             
environmental DNA data also makes our approach amenable to model the assembly of complex microbial               
systems ​(Li & Ma 2016) with time-series information ​(Ridenhour ​et al. 2017)​. Such time series data could                 
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introduce an additional axis of information allowing increased power to test hypotheses about the process               
of community assembly within a historical perspective.  

From a practical standpoint, our model makes it possible to fit assembly models and estimate               
abundances from a sample of DNA sequence data from a community for which comparable abundance               
data could be logistically challenging to collect. Taxa with high dispersal potential such as spiders are                
ideally suited for the estimation of SADs because their genetic samples are more likely to have arisen                 
from a panmictic coalescent process. While taxa with elevated levels of population structure or more               
complex assembly histories might be more challenging for parameter estimation under our simple model,              
it could potentially be extended to explicitly model spatial processes, or the more complex assembly               
histories which may be inherent on real island systems. Our model thus provides a flexible framework                
that can, even in the absence of comparable species abundance data, allow researchers to use the vast                 
amounts of available mitochondrial DNA sequence data to test competing models of island community              
assembly.  
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