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Title:	A	mechatronic	system	for	studying	energy	optimization	during	walking.		
	
Abstract:	A	general	principle	of	human	movement	is	that	our	nervous	system	is	able	to	learn	opti-
mal	coordination	strategies.	However,	how	our	nervous	system	performs	this	optimization	is	not	
well	understood.	Here	we	design,	build,	and	test	a	mechatronic	system	to	probe	the	algorithms	un-
derlying	optimization	of	energetic	cost	in	walking.	The	system	applies	controlled	fore-aft	forces	to	
a	hip-belt	worn	by	a	user,	decreasing	their	energetic	cost	by	pulling	forward	or	increasing	it	by	pull-
ing	backward.	The	system	controls	the	forces,	and	thus	energetic	cost,	as	a	function	of	how	the	user	
is	moving.	In	testing,	we	found	that	the	system	can	quickly,	accurately,	and	precisely	apply	target	
forces	within	a	walking	step.	We	next	controlled	the	forces	as	a	function	of	the	user’s	step	frequency	
and	 found	 that	 we	 could	 predictably	 reshape	 their	 energetic	 cost	 landscape.	 Finally,	 we	 tested	
whether	users	adapted	their	walking	in	response	to	the	new	cost	landscapes	created	by	our	system,	
and	found	that	users	shifted	their	step	frequency	towards	the	new	energetic	minima.	Our	system	
design	appears	to	be	effective	for	reshaping	energetic	cost	landscapes	in	human	walking	to	study	
how	the	nervous	system	optimizes	movement.	
	
Introduction	
	
Optimization	is	perhaps	our	most	general	principle	of	coordination.	That	is,	people	prefer	to	move	
in	ways	that	minimize	a	cost	 function	[1],	 [2].	A	cost	 function	 is	a	weighted	sum	of	one	or	more	
variables	related	to	the	movement,	with	the	particular	variables	and	their	weights	depending	upon	
the	task	[1],	[3]–[10].	For	example,	the	cost	function	in	reaching	to	a	target	is	often	modelled	as	a	
weighted	sum	of	error	and	effort	 [6],	 [11].	One	way	 to	study	optimization	 is	 to	determine	 if	 the	
predicted	cost	minimum	correlates	with	people’s	preferences.	Using	reaching	tasks	as	an	example	
again,	minimizing	the	sum	of	the	variance	about	the	target	and	squared	muscle	activations	can	ex-
plain	people’s	preferred	arm	trajectories	[11].	While	preferences	suggest	that	the	nervous	system	
is	concerned	with	optimizing	coordination,	preferences	alone	don’t	provide	insight	into	how	it	is	
accomplished.	To	study	the	nervous	system’s	optimization	algorithms,	it	is	useful	to	manipulate	the	
values	returned	by	 the	nervous	system’s	cost	 function	and	determine	whether,	and	how,	people	
respond.	This	is	best	accomplished	in	tasks	where	the	cost	function	is	well	established,	easy	to	ma-
nipulate,	and	directly	measurable.	
	
Walking	is	a	well-suited	task	to	study	the	nervous	system’s	optimization	mechanisms.	It	has	been	
well	established	that	people	typically	prefer	to	walk	in	ways	that	minimize	metabolic	energetic	cost	
[12]–[18].	For	example,	at	every	given	speed,	people	choose	to	walk	at	the	step	frequency	that	min-
imizes	their	energy	use	[14],	[15].	In	addition	to	the	many	studies	demonstrating	preferences	for	
energy	minimal	gaits	in	familiar	conditions,	recent	research	from	our	lab	by	Selinger	et	al.	found	
direct	evidence	that	the	nervous	system	can	continuously	adapt	these	preferences	to	optimize	en-
ergy	during	walking	[19].	Selinger	et	al.	used	a	knee	exoskeleton	to	manipulate	a	user’s	cost	land-
scape	by	penalizing	certain	step	frequencies,	shifting	the	energy	minimum	away	from	the	originally	
preferred	step	frequency.		We	use	cost	landscape	to	refer	to	the	relationship	between	a	gait	param-
eter	and	its	resulting	metabolic	energetic	cost.	Using	such	purposeful	manipulation,	Selinger	et	al.	
demonstrated	that	the	nervous	system	could	continuously	optimize	movements	to	converge	on	the	
new	 energy	minimal	 gait	within	minutes	 [19].	 Thus,	 energy	 optimization	 in	walking	 is	 a	 useful	
model	system	because	the	nervous	system’s	cost	function	is	unambiguous,	we	can	measure	the	cost	
directly,	we	 can	 directly	manipulate	 the	 values	 returned	 by	 the	 cost	 function	 to	 study	 how	 the	
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nervous	system	solves	it,	and	the	time	course	of	optimization	can	be	rapid	enough	that	we	can	study	
it	in	a	single	experimental	session.		
	
This	prior	exoskeleton	system	allowed	us	to	observe	continuous	optimization,	but	it	was	limited	in	
its	ability	to	probe	the	underlying	mechanisms.	The	exoskeletons	could	only	penalize	users,	and	not	
reward	them	by	decreasing	their	cost	below	their	normal	values.	The	range	of	penalties	were	lim-
ited	to	between	13%	and	41%	of	the	user’s	original	cost	minimum,	achieving	a	maximum	gradient	
of	0.93%	change	in	energetic	cost	for	every	1%	change	in	step	frequency.	In	contrast,	an	ideal	sys-
tem	would	be	able	to	precisely	and	rapidly	prescribe	cost	landscapes	of	any	shape.	Such	control	over	
the	shape	of	the	cost	landscape	would	allow	both	steeper	and	shallower	cost	gradients	to	study	how	
the	nervous	system	detects	cost	savings	through	its	movement	variability	[20]–[22],	the	creation	of	
complex	cost	landscapes	to	study	the	nervous	system’s	optimization	algorithms	[1],	[23],	and	the	
lowering	of	energetic	cost	to	study	whether	the	nervous	system	differentially	values	energetic	pen-
alties	and	rewards	[24],	[25].	Applying	new	costs	rapidly	is	also	important	because	the	nervous	sys-
tem’s	association	of	a	particular	coordination	pattern	with	its	resulting	energetic	cost	may	depend	
upon	the	delay	between	the	movement	and	its	energetic	consequence	[26],	[27].	A	quick	system	can	
always	be	slowed	down	to	study	the	effects	of	delayed	costs,	but	an	inherently	slow	system	cannot	
be	sped	up.		
	
Here	we	present	a	new	mechatronic	system	designed	to	probe	optimization	mechanisms	during	
walking.	Based	on	data-driven	simulations,	the	system	uses	controlled	horizontal	fore-aft	forces	ap-
plied	near	the	center	of	mass	of	the	user	to	change	energetic	cost	landscapes.	This	system	can	gen-
erate	a	wide	range	of	cost	gradients	because	energetic	costs	during	walking	depend	strongly	on	
horizontal	forces	[28].	It	can	also	provide	both	energetic	penalties	with	backward	forces	and	ener-
getic	rewards	with	forward	forces.	It	uses	a	series	elastic	actuator	to	apply	these	controlled	forces	
precisely	and	rapidly	[29].	 In	the	following	sections,	we	first	develop	the	high-level	design	using	
simulations	that	leverage	literature	data	and	then	describe	the	construction	of	the	system.	Next,	we	
evaluate	system	performance	including	a)	how	well	it	controls	forces,	b)	how	well	the	measured	
energetic	costs	match	the	predictions	generated	during	design,	and	c)	how	users	adapt	their	walk-
ing	in	response	to	new	cost	landscapes	created	by	our	system.	
	
System	Design	
	
We	designed	a	system	to	manipulate	the	energetic	cost	of	human	walking.	We	achieve	this	by	ap-
plying	controlled	horizontal	fore-aft	forces	to	the	user	as	a	function	of	one	or	more	measured	gait	
parameters.	In	this	paper,	we	use	a	single	parameter,	step	frequency,	for	ease	of	comparison	with	
prior	work	[14],	[19],	[28].	For	an	individual	walking	at	a	constant	speed,	there	is	an	energetic	cost	
associated	with	each	step	frequency,	with	the	minimal	cost	occurring	at	their	preferred	step	fre-
quency.	We	term	this	their	originally	preferred	step	frequency.	Our	system	applies	a	backward	or	
forward	pulling	force	at	each	measured	step	frequency.	Thus,	the	final	energetic	cost	experienced	
by	the	user	is	the	sum	of	the	energetic	cost	associated	with	that	step	frequency	and	the	energetic	
penalty	(or	reward)	from	the	applied	force.	This	new	association	between	step	frequency	and	ener-
getic	cost	is	the	new	cost	landscape.	In	this	manner,	we	can	shift	the	energetic	optimum	higher	or	
lower	 than	 the	 originally	 preferred	 step	 frequency.	We	 then	measure	 users’	 preferred	 step	 fre-
quency	in	the	new	cost	landscape	to	determine	their	new	preferred	step	frequency.	
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As	a	first	test	of	our	design,	we	simulated	the	system’s	effect	on	a	user’s	energetic	cost.	We	used	
literature	data	of	the	energetic	cost	associated	with	various	walking	step	frequencies	when	no	force	
is	applied,	where	step	frequency	is	measured	as	percent	of	the	individual’s	preferred	step	frequency	
[14].	We	also	used	literature	data	for	the	energetic	cost	of	walking	at	the	preferred	step	frequency	
while	a	range	of	forces	are	applied,	where	the	forces	are	measured	as	percent	body	weight	of	the	
individual	[28].	We	then	combined	these	two	data	sets	to	obtain	the	energetic	cost	of	walking	at	
various	step	frequencies	over	a	range	of	applied	horizontal	forces.	Constraining	the	range	of	step	
frequencies	to	±15%	of	preferred,	and	the	range	of	horizontal	forces	to	±15%	of	body	weight,	we	
estimated	that	our	system	could	vary	a	user’s	energetic	cost	of	walking	from	-45%	to	+230%	relative	
to	their	original	energetic	minimum.	
	
Based	on	these	initial	simulations,	we	built	a	mechatronic	system	to	apply	rapid,	accurate,	and	pre-
cise	forces	as	a	function	of	the	user’s	measured	step	frequency	(Fig.	1).	In	this	system,	users	walk	on	
a	single-belt	treadmill	(Trackmaster	TMX425C,	Full	Vision	Inc.,	Kansas,	USA)	while	wearing	a	hip-
belt	(Osprey	Isoform4	CM)	that	places	them	in	a	closed	loop	with	the	actuator.	The	hip-belt	is	tai-
lored	with	extended	belt	 loops	 in	the	 front	and	back	to	which	we	attach	 long	 inextensible	nylon	
cables.	The	long	lengths	(~409	cm	in	front	and	~197	cm	in	back)	help	ensure	that	the	forces	on	the	
user	remain	nearly	purely	in	the	fore-aft	direction	despite	the	within-stride	vertical	and	medio-lat-
eral	movements	of	the	center	of	mass	during	walking.	These	cables	pass	through	nylon	pulleys	with	
bearings	(McMaster-Carr	Nylon	Pulley	3434T16)	on	either	end	and	meet	the	actuator	located	be-
hind	the	user	(Fig.	1).	We	use	light	weight	pulleys	with	low	friction	bearings	to	ensure	low	reflected	
inertia	and	minimal	loss	of	forces	during	transmission.	We	use	a	series	elastic	actuator	designed	by	
Yobotics	to	produce	the	required	force	[29].	 It	consists	of	a	70	Watt	brushless	DC	motor	(BN23-
23PM-03LH,	Moog	Inc.)	that	rotates	a	custom	molded	lead	ball	screw	to	maintain	a	set	of	four	com-
pression	springs	(McMaster-Carr	Compression	Spring	9434K147;	spring	stiffness	=	33	lbs./in)	at	
the	required	compression	as	determined	by	the	commanded	force.	We	measure	the	actual	compres-
sion	of	the	springs	using	a	linear	optical	encoder	(LIN-120-32,	US	Digital,	Vancouver,	WA,	USA)	and	
maintain	their	position	with	a	proportional-integral	controller	implemented	with	a	motor	driver	
(Accelnet	panel	ACP-090-36,	Copley	Controls)	 that	commands	 the	motor	using	a	15	kHz	center-
weighted	pulse-width-modulated	 signal.	The	 required	 spring	 compression	 is	 commanded	 to	 the	
motor	driver	from	a	real-time	controller	(ds1103,	dSPACE	GmbH,	Paderborn,	Germany).	
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Figure 1: Mechatronic system. An actuator pulls backwards or forwards on a walking user via long tensioned cables attached 
to a hip belt. The cables are routed through pulleys, so that they attach on either side of the same linear actuator. Backward 
forces provide an energetic penalty, raising the cost of walking relative to normal. Moderate forward forces provide an energetic 
reward, lowering energetic cost. Force transducers between the cables and belt measure the forces applied to the user. Step 
frequency is measured from IMUs attached to the feet. Output forces from the motor are controlled using real-time custom 
designed control hardware and motor driver. Metabolic energetic cost is measured using indirect gas calorimetry.		

	
This	real-time	controller	measures	step	frequency,	performs	online	calculations,	and	sends	the	re-
sulting	force	commands	to	the	motor	driver.	It	is	built	in	Simulink	(Mathworks,	NA,	USA),	and	once	
compiled,	runs	at	1	kHz	on	the	controller	hardware.	The	controller	receives	analog	signals	 from	
inertial	measurement	units	(IMU)	placed	near	the	heel	of	each	foot	and	estimates	the	step	frequency	
by	identifying	foot	ground	contact	events	using	characteristic	zero	crossings	in	angular	velocity.	To	
reduce	error,	it	filters	the	analog	signals	using	a	10	Hz,	2nd	order	low-pass	Butterworth	filter	and	
requires	that	consecutive	zero-crossings	arise	from	alternate	feet.	The	implementation	of	this	con-
dition	requires	the	controller	to	divide	this	value	by	two	to	obtain	step	frequency.	It	passes	this	step	
frequency	 through	a	control	 function	 that	determines	 the	 force	 to	be	 commanded	depending	on	
whether	we	want	to	reward	or	penalize	the	measured	step	frequency	and	by	how	much.	We	then	
use	a	pre-determined	calibration	function	to	estimate	the	spring	compression	required	to	produce	
the	commanded	force.	The	calibration	function	was	obtained	by	measuring	force	output	for	a	range	
of	commanded	spring	compressions.	Finally,	the	controller	commands	the	estimated	spring	com-
pression	to	the	motor	driver.	We	designed	the	controller	to	accept	inputs	from	a	MATLAB	2013b	
(Mathworks,	NA,	USA)	script	for	parameters	such	as	the	user’s	mass.	We	use	dSPACE	ControlDesk	
5.2	(dSPACE	GmbH,	Paderborn,	Germany)	to	monitor	and	record	the	data.	
	
We	also	use	the	dSPACE	board	to	monitor	and	record	the	forces	and	the	signals	required	to	calculate	
energetic	cost	measures.	We	calculate	the	actual	net	force	applied	to	the	user	as	the	sum	of	forces	
measured	by	the	two	load	cells	(LCM201,	Omega	Engineering)	attached	to	the	cables	at	the	front	
and	back	of	the	user’s	hip-belt.	The	forces	are	transmitted	as	analog	signals	to	the	dSPACE	board	
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where	they	are	filtered	using	a	30	Hz,	2nd	order	low-pass	Butterworth	filter.	To	calculate	energetic	
cost,	 the	dSPACE	board	records	 from	oxygen,	carbon	dioxide,	and	 flow	sensors,	mounted	on	the	
mask	worn	by	the	user	(Vmax	Encore	Metabolic	Cart,	Viasys,	Pennsylvania,	USA).	
	
System	Performance	
	
We	evaluated	system	performance	at	four	levels.	First,	we	considered	open	loop	control	of	constant	
forces	when	there	is	no	user	present	in	the	system.	Second,	we	tested	open	loop	control	of	constant	
forces	while	a	user	walked	in	the	system.	Third,	we	closed	the	force	control	loop	using	our	controller	
and	evaluated	the	control	of	forces	when	the	commanded	force	changed	with	each	walking	step.	
Finally,	we	measured	the	effect	of	the	system	on	the	user’s	energetic	cost	and	gait	adaptation.	All	
walking	trials	were	at	a	constant	speed	of	1.25	ms-1.	All	protocols	with	human	users	were	approved	
by	the	Simon	Fraser	University’s	Office	of	Research	Ethics,	and	all	users	gave	their	written,	informed	
consent	before	participation.	
	
We	first	evaluated	open-loop	force	control	performance	to	determine	whether	our	system	could	
change	between	target	forces	within	a	walking	step.	We	measured	this	responsiveness	as	rise	time—
time	taken	for	the	measured	force	to	reach	90%	of	the	way	towards	a	new	commanded	value	from	
an	original	commanded	value.	To	accomplish	this,	we	replaced	the	hip-belt	with	a	wooden	plank	
attached	rigidly	to	the	treadmill	frame.	We	measured	the	force	applied	on	the	plank	when	we	man-
ually	commanded	step	changes	in	force	between	0N	and	either	-49	N	or	+49	N.	We	repeated	each	
step	change	20	times,	and	each	step	lasted	4	seconds.	We	choose	these	force	levels	to	match	10%	of	
the	body	weight	of	our	primary	system	tester,	who	happens	to	weigh	50	kg.	By	design,	the	magni-
tude	of	these	step	changes	is	conservatively	large—when	under	closed-loop	control,	users	would	
normally	not	make	a	large	step-to-step	adjustment	in	step	frequency,	and	thus	would	not	experience	
a	step-to-step	change	in	force	as	large	as	we	tested	here.	We	found	an	average	rise	time	of	85	ms.	
Even	assuming	a	high	walking	step	frequency	where	each	step	takes	only	400	ms,	this	easily	allows	
for	force	changes	within	a	single	walking	step	[30](Fig.	2).	
	

	
Figure 2: Open loop force control - Responsiveness. Time taken for the measured force (red) to reach a new commanded 
value from an original commanded value (black). Data shown here were averaged over 20 step changes. Each step was a change 
of 10% body weight—the original commanded value was always 0 N while the final value was ±10% body weight (body 
mass=50kg; acceleration due to gravity=9.81 ms-2). 
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We	next	evaluated	the	system’s	accuracy	and	precision	in	applying	the	commanded	force	to	a	walk-
ing	user.	We	quantified	accuracy	as	the	steady	state	error	between	the	commanded	force	and	the	
measured	force	and	precision	as	the	steady	state	variability	in	force	about	the	steady	state	force.	We	
measured	the	force	applied	to	our	system	tester	as	they	walked	at	their	self-selected	step	frequency	
for	two	six-minute	trials.	During	this	time,	we	manually	commanded	step	changes	in	force	between	
0N	and	±10%	body	weight	(body	mass=50	kg,	acceleration	due	to	gravity=9.81	ms-2).	Importantly,	
the	force	commands	were	in	open-loop—they	did	not	depend	upon	the	user’s	step	frequency.	Each	
condition	lasted	one	minute,	and	each	non-zero	force	was	preceded	by	the	zero	force	condition.	We	
allowed	35	seconds	for	the	self-selected	step	frequency	to	approach	steady	state	[31],	[32]	and	per-
formed	our	analyses	on	the	remaining	25	seconds.	We	first	averaged	the	force	over	each	step,	ob-
taining	a	single	force	value	per	step,	and	then	averaged	this	value	over	the	25	seconds.	We	deter-
mined	steady	state	error	as	the	difference	between	this	averaged	force	and	the	commanded	force	
for	that	condition.	We	found	that	our	system	can	match	a	commanded	force	with	an	average	steady	
state	error	of	0.13%	body	weight	 (Fig.	3).	The	average	steady	state	variability	 for	 this	user	was	
0.39%	body	weight	when	calculated	between	steps	(root-mean-squared	error).	The	force	variability	
within	a	step	was	considerably	higher	at	2.64%	body	weight.	We	were	not	concerned	about	 the	
magnitude	of	this	within-step	variability	since	our	controller	is	designed	to	manipulate	the	ener-
getic	cost	only	at	each	new	step	since	it	applies	force	as	a	function	of	step	frequency.	Similarly,	the	
exoskeleton	of	Selinger	et	al.	[19]	had	considerable	within	step	variability	in	the	torque	it	applied	
to	the	knee.	Because	the	applied	horizontal	forces	affect	energetic	cost,	any	inaccuracies	or	impre-
cision	in	applied	forces	will	result	in	inaccuracies	and	imprecision	in	the	cost	landscapes	created	by	
our	system.	Based	on	our	modelling	during	system	design	and	the	identified	force	control	perfor-
mance	described	here,	we	predict	steady	state	energetic	cost	errors	of	~1.3%	and	steady	state	en-
ergetic	cost	variability	of	~3.8%,	relative	to	the	average	minimum	energetic	cost	of	regular	walking	
[14].	One	consequence	of	this	step-to-step	energetic	cost	variability	is	that	it	is	necessary	to	average	
over	several	walking	steps	to	accurately	estimate	the	steady	state	energetic	cost	generated	by	the	
controlled	 forces.	This	 is	not	a	major	practical	 concern	 for	 the	experimenter	as	 the	significantly	
greater	variability	in	breath-to-breath	measures	of	energetic	cost	[33]	normally	requires	averaging	
energetic	cost	over	2-3	minutes,	or	about	200-300	steps.		
	

	
Figure 3: Open loop force control - Accuracy and Precision. The measured force (red) has a steady-state-error of 0.13% 
body weight when averaged over a step. The RMS error is 2.64% body weight within a step and 0.39% body weight when the 
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force is averaged over a step. Data were collected from one user (body mass=50 kg; acceleration due to gravity=9.81 ms-2) 
walking at 1.25 ms-1 while attached to our system, with a constant force being commanded (black). 

	
At	the	third	level	of	evaluation,	we	applied	the	forces	to	a	walking	user	as	a	function	of	their	step	
frequency.	We	only	evaluated	precision	at	this	level	because	there	was	no	steady	state	force—the	
commanded	force	depended	on	the	user’s	execution	of	step	frequency.	We	measured	the	net	force	
applied	to	one	user	as	they	matched	an	audio	metronome	that	played	seven	frequencies	spanning	
±15%	of	their	originally	preferred	step	frequency.	Each	step	frequency	condition	lasted	one	minute,	
and	the	measured	net	force	was	first	averaged	over	a	step,	and	then	over	the	last	25	seconds	of	that	
condition.	We	repeated	this	with	two	control	functions	where	a	control	function	defines	the	rela-
tionship	between	measured	step	frequency	(𝑠𝑓)	and	commanded	force	(𝐹):	
	 𝐹	 = 𝑓(𝑠𝑓)	 (1)	
Both	control	functions	were	linear	with	zero	offset,	but	one	had	a	slope	(k)	of	+1	thereby	penalizing	
low	step	frequencies,	while	the	other	was	-1	penalizing	high	step	frequencies.	
	 𝐹 = 𝑘 ∙ 𝑠𝑓,			𝑘 = +1,−1	 (2)	
We	averaged	the	steady	state	variability,	calculated	as	root-mean-squared	error,	across	all	14	trials	
and	found	it	to	be	0.59%	body	weight	(user’s	body	mass=50	kg,	acceleration	due	to	gravity=9.81	
ms-2)	(Fig.	4).	This	results	in	a	predicted	steady	state	energetic	cost	variability	of	~5.7%,	which,	as	
described	in	the	previous	paragraph,	is	not	of	practical	concern	for	the	experimenter	when	estimat-
ing	steady	state	energetic	cost.	
	

	
Figure 4: Closed loop force control. Measured force averaged over each step (dots) as a function of step frequency while 
walking at 1.25 ms-1 for a single trial by a single user. The user matched an audio metronome played at seven different step 
frequencies ranging from -15% to +15%. Red and blue lines illustrate that we used these forces to create two different cost 
landscapes—one that penalized low step frequencies (red), and the other that penalized high step frequencies (blue). 

	
In	the	fourth	level	of	evaluation,	we	created	a	new	energetic	cost	landscape	with	our	system	and	
compared	it	to	our	predictions.	Specifically,	we	measured	how	the	metabolic	energetic	cost	changed	
for	one	user	as	they	walked	in	the	system	with	a	controller	that	commanded	a	force	as	a	function	of	
their	step	frequency.	We	tested	the	same	two	control	functions	described	above.	We	designed	them	
to	create	very	steep	cost	landscapes	that	shifted	the	cost	landscape	minimum	in	different	directions.	
First,	we	measured	the	user’s	resting	energetic	cost	during	a	5-minute	standing	trial.	Next,	the	user	
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walked	on	the	treadmill	without	the	hip-belt,	and	unattached	to	the	cables,	for	12	minutes.	We	av-
eraged	the	step	frequency	over	the	last	three	minutes	to	determine	their	originally	preferred	step	
frequency.	 Then,	 for	 each	 control	 function,	 the	 user	walked	 at	 seven	 step	 frequencies	 spanning	
±15%	of	their	originally	preferred	step	frequency.	We	enforced	the	step	frequencies	using	a	metro-
nome	and	presented	them	in	random	order.	To	determine	energetic	cost,	we	measured	the	volume	
of	oxygen	consumed	and	volume	of	carbon	dioxide	produced	using	a	respiratory	gas	analysis	system	
(Vmax	Encore	Metabolic	Cart,	Viasys,	Pennsylvania,	USA).	We	divided	these	volumes	by	the	meas-
urement	period	to	determine	the	rate	of	oxygen	consumption	(𝑉̇01)	and	carbon	dioxide	production	
(𝑉̇201).	We	applied	the	standard	Brockway	equation	[34]	to	obtain	the	gross	metabolic	power:	
	 𝑃456,789:: = (16.48 ?	:

4@	01
𝑉̇01) + (4.48

?	:
4@	201

	𝑉̇201)	 (3)	
We	define	metabolic	energetic	cost	as	the	energy	used	per	unit	time	normalized	for	the	person’s	
body	mass	(W/kg).	This	user’s	body	mass	was	66	kg.	Each	trial	 lasted	 five	minutes	of	which	we	
allowed	the	first	three	minutes	for	the	respiratory	gases	to	reach	steady	state	[35],	and	performed	
our	analyses	on	the	remaining	two-minute	measurement	period.	To	compare	with	the	user’s	origi-
nal	cost	of	walking	on	a	treadmill,	we	also	measured	their	energetic	cost	at	the	same	step	frequen-
cies	while	they	walked	on	the	treadmill	without	wearing	the	hip-belt	or	being	unattached	to	the	
cables.	We	subtracted	the	user’s	resting	energetic	cost	for	each	condition	and	present	here	the	net	
energetic	cost.	In	accordance	with	our	predictions,	we	could	manipulate	this	users’	energetic	cost	
of	walking	by	as	much	as	-49%	to	+230%	of	their	original	minimum	(Fig.	5).	This	is	more	than	a	5-
fold	increase	in	the	magnitude	of	applied	penalty	when	compared	to	our	exoskeletons,	and	unlike	
with	our	exoskeletons,	our	current	system	can	provide	an	energetic	reward	by	lowering	cost.	
	

	
Figure 5: Simulated vs measured energetic costs. Metabolic cost measures (dots) for a single trial by a single user walking 
at 1.25 ms-1, when force changed as a function of step frequency as shown in Fig. 4. Grey curves illustrate the original cost 
landscape of the user while the red and blue curves illustrate cost landscapes that penalized low and high step frequencies 
respectively. Light colored curves illustrate our predicted results from simulations, and dark colored curves illustrate quadratic 
fits to measured data. 

	
Next,	we	evaluated	the	ability	of	the	nervous	system	to	adapt	gait	towards	the	minima	of	new	cost	
landscapes	created	by	our	system.	To	do	so,	we	closely	matched	the	cost	landscapes	and	protocol	
used	in	our	prior	exoskeleton	experiment,	as	that	design	was	sufficient	to	generate	continuous	en-
ergy	optimization	during	walking	[19].	We	used	the	following	control	function	designed	to	penalize	
high	step	frequencies	and	shift	 the	new	cost	 landscape	minimum	to	step	frequencies	 lower	than	
originally	preferred:	
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	 𝐹 = A−0.07 ∙ 𝑠𝑓 − 1.49, 𝑠𝑓 ≤ −5
−0.19 ∙ 𝑠𝑓 − 1.98, 𝑠𝑓 > −5	 (4)	

However,	while	prior	studies	parameterized	the	change	in	step	frequency	as	percent	deviation	from	
the	originally	 preferred	 step	 frequency,	 here	we	used	 step-to-step	 variability	 in	 step	 frequency,	
measured	in	standard	deviations	(SD).	This	allows	us	to	understand	the	shift	in	preferred	step	fre-
quency	relative	to	the	probability	of	it	occurring	by	random	chance.	A	1SD	shift	was	nevertheless	
comparable	to	a	1%	shift	as	we	found	that	the	average	standard	deviation	of	our	participants	was	
1.04%±0.12%	(N=20).		
	
Each	participant	completed	three	protocols	on	the	same	day.	The	purpose	of	the	first	protocol	was	
to	quantify	each	participant’s	originally	preferred	step	frequency,	as	well	as	the	variability	about	
the	preferred	step	frequency	(Fig.	6A).	To	accomplish	this,	each	participant	walked	on	the	treadmill	
without	the	hip-belt	for	12	minutes.	To	parameterize	step	frequency	in	future	trials,	we	calculated	
the	average	and	standard	deviation	of	step	frequency	during	the	last	three	minutes.		
	

	
Figure 6: Experimental Protocol. A) and B) represent average measures from 8 participants while C) is from a single repre-
sentative participant since the order of the metronome frequencies was different for each participant. A) Average originally 
preferred step frequency in the original landscape. B) Participants’ average step frequency time series during the protocol when 
we tested for gait adaptation. When the controller came on (green bar at the bottom) participants walked in a new cost landscape 
(Fig. 7) created by our system. Following the first five minutes of self-selected step frequency, they matched an audio metro-
nome (orange bar) that either held them at a high step frequency (higher cost) or low step frequency (lower cost) relative to 
their originally preferred step frequency (black line) in the new cost landscape. C) Step frequency time series from a single 
representative participant during the third protocol when we measured their new cost landscape. Participants matched seven 
audio frequencies (orange bar) when walking in the new cost landscape (Fig. 7) while we measured their energetic cost. 

	
The	purpose	of	the	second	protocol	was	to	determine	the	step	frequency	that	participants	preferred	
in	the	new	cost	landscape	(Fig.	6B).	To	accomplish	this,	participants	wore	the	hip-belt	and	walked	
continuously	for	47	minutes	while	attached	to	our	system.	In	the	first	30	seconds,	no	force	was	ap-
plied,	allowing	the	treadmill	to	reach	the	prescribed	speed,	and	the	participants	to	approach	their	
originally	preferred	step	frequency.	Over	the	following	60	seconds,	the	force	was	slowly	ramped	up	
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to	match	the	force	that	participants	experience	at	their	originally	preferred	step	frequency	in	the	
new	cost	landscape.	This	ensured	that	participants	were	not	perturbed	by	a	sudden	force	when	we	
engaged	the	controller.	The	force	was	then	held	constant	for	30	seconds,	following	which	we	en-
gaged	the	controller,	placing	participants	in	the	new	cost	landscape.	Participants	then	alternated	
between	periods	of	walking	with	a	self-selected	step	frequency	and	walking	to	an	audio	metronome	
played	at	a	prescribed	frequency,	with	each	period	lasting	five	minutes.	The	metronome	frequency	
alternated	between	+5SD	and	-10SD,	to	allow	the	participant	to	experience	both	higher	and	lower	
energetic	costs	relative	to	the	cost	of	walking	at	their	originally	preferred	step	frequency	in	the	new	
cost	landscape.	We	determined	participants’	new	preferred	step	frequency	in	this	new	cost	land-
scape	as	the	average	self-selected	step	frequency	over	the	final	three	minutes	of	this	protocol.	
	
The	purpose	of	the	third	protocol	was	to	quantify	the	new	cost	landscape	experienced	by	each	par-
ticipant	(Fig.	6C).	This	was	necessary	since	our	hypothesis	of	observing	adaptation	towards	the	new	
energy	optimum	is	conditional	upon	the	new	cost	landscape	having	an	energy	optimum	different	
from	 the	 original	 cost	 landscape.	We	 first	 measured	 the	 energetic	 cost	 of	 standing	 still	 for	 six	
minutes	for	each	participant.	Next,	participants	walked	in	the	system	while	under	the	same	control	
function	with	the	same	force	ramp	up	as	described	earlier.	Participants	matched	seven	step	 fre-
quencies	(-15SD,	-10SD,	-5SD,	-2.5SD,	0SD,	+5SD,	and	+10SD)	produced	by	an	audio	metronome	and	
played	in	random	order.	We	measured	each	condition	for	six	minutes.	This	was	a	minute	 longer	
than	what	we	did	with	the	previous	control	function	(Eqn.	3)	because	we	designed	this	cost	land-
scape	to	be	shallower.	An	extra	minute	of	measurement	provided	us	with	more	breath-by-breath	
samples	of	the	energetic	cost	associated	with	each	measured	step	frequency,	and	thus	greater	con-
fidence	in	our	cost	estimates	for	each	condition	for	each	user.	We	subtracted	resting	energetic	cost	
from	each	walking	condition	to	obtain	net	energetic	cost.	Importantly,	this	was	always	the	last	trial	
that	each	participant	performed,	to	ensure	that	it	did	not	influence	their	gait	adaptation.	
	
Before	analyzing	our	results,	we	tried	to	ensure	that	we	had	collected	data	from	sufficient	number	
of	participants	to	effectively	test	for	adaptation.	We	were	primarily	concerned	with	two	issues.	The	
first	issue	was	that	participants	vary	in	the	amount	they	shift	their	preferred	step	frequency	in	re-
sponse	to	new	energetic	cost	landscapes—the	larger	the	variability,	the	greater	the	number	of	par-
ticipants	required	to	confidently	detect	a	significant	shift.	To	estimate	the	required	number,	we	first	
needed	to	estimate	the	between-participant	variability	in	self-selected	step	frequencies	in	new	cost	
landscapes.	To	accomplish	this,	we	conducted	a	pilot	study	with	seven	participants	in	a	new	cost	
landscape	and	found	that	the	variability	between	participants	in	their	self-selected	step	frequencies	
was	1.6SD.	Using	a	power	analysis	for	a	one-tailed	t-test,	we	determined	that	eight	participants	were	
required	to	detect	a	reduction	of	2SD	in	their	new	preferred	step	frequency	relative	to	their	origi-
nally	preferred	step	frequency	(𝛽	>	0.90,	𝛼	<	0.05).		
	
The	second	issue	was	that	individuals	have	different	energetic	responses	to	the	same	applied	forces	
resulting	in	cost	landscapes	that	vary	between	individuals.	This	variability,	when	combined	with	a	
control	function	designed	to	create	small	changes	to	the	original	cost	landscape,	results	in	some	new	
cost	landscapes	that	do	not	shift	the	new	minimum	cost	to	lower	step	frequencies.	And	we	can	only	
test	the	effectiveness	of	our	system	in	causing	adaptation	to	lower	step	frequencies	when	the	new	
cost	landscapes	have	a	new	energetic	minimum	at	a	lower	step	frequency.	We	operationalized	this	
constraint	by	requiring	that	an	individual’s	new	cost	landscape	meet	three	criteria—the	cost	at	the	
new	minimum,	-2.5SD,	and	-10SD	should	all	be	more	than	3SD	lower	than	the	cost	measured	at	the	
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originally	preferred	step	frequency.	We	calculate	this	3SD	value	from	the	variability	in	breath-to-
breath	energetic	cost	measured	during	the	last	three	minutes	of	walking	at	0SD.	The	first	condition	
ensures	that	the	new	minimum	provides	a	cost	saving	to	the	nervous	system;	the	second	ensures	
that	there	is	a	cost	gradient	at	the	originally	preferred	step	frequency	to	direct	the	nervous	system	
towards	the	new	minimum;	the	third	ensures	that	the	nervous	system	experiences	a	cost	saving	
during	the	metronome-enforced	experience	period.	We	performed	a	preliminary	analysis	of	the	cost	
landscapes	of	our	first	eight	participants	and	estimated	that	we	would	need	to	collect	from	a	total	
of	20	participants	to	have	eight	that	met	all	three	criteria.	After	collecting	from	20	participants,	we	
screened	 the	cost	 landscapes	and	 indeed	 found	only	eight	 that	met	 the	criteria.	 Importantly,	we	
screened	for	these	conditions	prior	to	testing	for	gait	adaptation	in	order	to	not	bias	our	results	
towards	a	positive	finding.	Our	subsequent	analysis	is	of	these	eight	participants.		
	
Finally,	we	determined	the	step	frequency	that	minimized	energetic	cost	in	the	new	cost	landscape,	
and	whether	our	participants	adapted	towards	this	new	minimum.	To	determine	the	step	frequency	
that	minimized	cost,	we	used	a	linear	mixed	effects	model	to	fit	a	quadratic	relationship	between	
step	frequency	and	energetic	cost	to	our	measurements	from	all	eight	participants[36].	We	chose	
this	method,	over	fitting	each	participant’s	costs	individually,	because	breath	by	breath	measures	
of	energetic	cost	are	quite	variable,	and	this	variability	can	dominate	the	differences	in	actual	ener-
getic	cost	between	different	step	frequencies,	causing	noise	to	dominate	when	fitting	individual	cost	
landscapes.	This	method	yields	a	value	for	the	step	frequency	that	minimizes	energetic	cost,	but	not	
the	confidence	in	the	location	of	this	minimum.	We	used	Monte	Carlo	simulations	to	determine	the	
95%	confidence	interval	in	this	location.	We	resampled	with	replacement	from	the	residuals	of	the	
linear	mixed	effects	model	and	added	it	back	to	the	average	fit	from	the	model.	Each	resampling	
yielded	one	simulated	energetic	cost	for	one	step	frequency	for	one	simulated	participant.	We	ob-
tained	56	(8	participants	by	7	step	frequencies)	such	values	to	simulate	one	experiment	and	used	a	
mixed	effects	model	to	fit	these	simulated	values.	We	simulated	1000	such	experiments	and	deter-
mined	the	location	of	the	minimum	in	each	case.	We	found	that	the	average	energetic	minimum	at	-
5.7SD	would	have	reduced	the	cost	of	walking	by	6.1%,	and	the	95%	CI	of	the	location	of	the	mini-
mum	spanned	from	-6.8SD	to	-4.8SD	(Fig.	7).	To	compare,	in	the	study	by	Selinger	et	al.	with	the	
exoskeletons,	we	observed	energy	optimization	in	new	cost	landscapes	where	the	energetic	mini-
mum	reduced	the	cost	by	8.1%	±	7.0%	(mean±SD)	[19].	Using	a	one-tailed	paired	Student’s	t-test,	
we	found	that	in	our	new	cost	landscape,	participants	shifted	their	preferred	step	frequency	away	
from	their	originally	preferred	step	frequency	and	towards	the	energetic	minimum	by	an	average	
of	-1.27SD	(p=0.005)	(Fig.	6B).	This	reduced	their	average	energetic	cost	by	3.4%.	
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Figure 7: New cost landscape. The average new cost landscape where the energy optimal step frequency is shifted lower than 
the participants’ originally preferred step frequency (0SD). The green square shows the average and 95% CI of participants’ 
new preferred step frequency in the new cost landscape. This reduced their energetic cost by 3.4% relative to the cost their 
originally preferred step frequency. Each dot represents the steady-state energetic cost measured from a participant at the step 
frequency that they executed. Each color corresponds to one participant. The blue curve illustrates a 2nd order linear mixed 
effects model of these data. The shaded region illustrates the 95%CI of the model, while the blue square at the bottom shows 
the minimum predicted by the fit, and the 95% CI of this minimum obtained using the Monte Carlo simulations. Left-hand y-
axis values are normalized to the average energetic cost of 4.07 W/kg measured at 0SD. 

	
Discussion	
	
Our	system	meets	our	performance	requirements	for	studying	energy	optimization	during	walking.	
It	can	apply	a	large	range	of	forces	within	the	duration	of	a	typical	walking	step.	These	forces	are	
applied	accurately	and	precisely	even	when	the	commanded	force	changes	as	a	function	of	the	user’s	
walking	step	frequency.	These	features	together	allow	us	to	accurately	manipulate	the	energetic	
costs	associated	with	every	walking	step.	The	system	can	apply	forces	that	both	reward	and	penalize	
the	energetic	cost	of	walking,	relative	to	the	user’s	original	cost	landscape.	We	can	also	accurately	
predict	the	average	energetic	cost	landscape	that	the	system	creates	for	users	for	a	given	control	
function.	The	new	cost	landscapes	created	by	our	system	caused	users	to	adapt	their	walking	gait	
towards	the	new	energetic	minimum,	reducing	their	energetic	cost	by	3.4%.	Interestingly,	most	us-
ers	did	not	fully	converge	on	the	new	optimum,	which	would	have	reduced	their	energetic	cost	by	
an	additional	2.7%	on	average.	
	
One	candidate	explanation	for	this	incomplete	energy	optimization	is	that	the	optimization	process	
is	slow,	particularly	in	our	system.	One	factor	that	can	slow	optimization	is	measurement	noise—
the	greater	the	variability	in	energetic	cost,	the	greater	the	challenge	for	the	nervous	system	to	de-
tect	 its	gradient	and	assess	the	direction	of	the	energetic	minimum.	This	effect	 is	especially	pro-
nounced	near	the	minimum	where	the	gradient	is	typically	shallow,	yet	the	noise	is	unchanged.	The	
force	variability	in	our	system	contributes	to	a	noisy	energetic	cost	gradient.	For	one	user,	we	meas-
ured	a	between-step	force	variability	of	~0.6%	body	weight	resulting	in	a	steady	state	energetic	
cost	variability	of	~6%.	To	confidently	detect	the	gradient	in	the	presence	of	this	variability,	the	
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nervous	system	may	need	to	average	cost	over	longer	periods	of	time,	much	like	we	do	in	our	ex-
perimental	methods,	thus	slowing	down	optimization.	Indeed,	learning	tasks	such	as	walking	on	a	
split-belt	treadmill,	crawling	on	hands	and	knees,	and	ergometer	rowing	can	continue	across	many	
days	of	exposure	[37]–[40].	
	
Our	system	may	be	modified	to	reduce	this	force	variability.	We	studied	this	in	pilot	experiments	by	
first	using	closed-loop	control	of	the	forces	applied	to	the	torso,	as	measured	with	the	force	trans-
ducers,	rather	than	the	original	design	of	maintaining	a	constant	spring	compression.	We	used	pro-
portional-integral-derivative	 control	 to	 drive	 the	 error	 between	 measured	 force	 and	 the	 com-
manded	within-step	force	to	zero.	This	appeared	to	successfully	reduce	the	within	and	between	step	
force	variability,	but	we	 found	 that	 the	controller	gains	were	highly	user-sensitive	and	required	
tuning	specifically	for	each	user.	The	tuning	process	required	users	to	walk	for	~10	minutes	some	
of	which	time	was	spent	feeling	perturbed.	This	had	several	undesirable	consequences	including	
that	users	felt	less	safe	in	our	system,	that	the	nervous	system	had	to	discriminate	between	many	
different	controllers	in	learning	how	to	adapt,	and	that	users	were	no	longer	naïve	to	the	presence	
of	a	relationship	between	step	 frequency	and	the	applied	system	forces.	 It	 is	possible	 that	 these	
limitations	may	be	overcome,	but	we	decided	to	continue	with	the	original	approach	at	the	possible	
expense	of	incomplete	optimization.	An	alternative	to	closed-loop	force	control	is	to	add	compliance	
in	series	with	the	forward	and	backward	pulling	cables.	We	piloted	this	with	three	users	and	found	
them	to	adapt	between	1SD	and	3SD	towards	the	new	minimum,	similar	to	the	magnitude	of	adap-
tation	we	found	in	our	original	group	of	participants.	While	we	suspect	that	the	speed	and	complete-
ness	of	optimization	may	increase	with	reduced	force	variability,	we	do	not	think	it	is	necessary	to	
eliminate	it	entirely.	This	is	because	not	only	was	it	present	in	the	study	by	Selinger	et	al.	where	we	
did	observe	what	appeared	to	be	complete	energy	optimization,	but	such	variability	is	also	charac-
teristic	of	everyday	walking.	
	
A	second	candidate	explanation	for	incomplete	optimization	in	our	system	is	that	it	may	be	manip-
ulating	contributors	to	the	nervous	system’s	cost	function	other	than	simply	energetic	cost.	Our	sys-
tem	applies	physical	forces	to	a	user	that	change	as	a	function	of	how	they	walk.	It	seems	possible,	
if	not	likely,	that	our	system	changes	the	stability	of	walking	along	with	energetic	cost.	We	noted	in	
the	introduction	that	the	nervous	system’s	cost	function	can	be	the	weighted	sum	of	one	or	more	
variables,	with	the	particular	variables	and	their	weights	depending	upon	the	task.	If	stability	nor-
mally	contributes	to	the	nervous	system’s	cost	function	during	walking,	or	if	the	nervous	system	
increases	the	contribution	of	stability	to	the	cost	function	when	walking	in	our	system,	the	minimum	
of	this	cost	function	may	not	necessarily	coincide	with	the	minimum	of	our	new	energetic	cost	land-
scape—it	may	even	be	located	at	the	step	frequencies	to	which	our	participants	adapted.	Consistent	
with	the	possible	contribution	of	stability	to	the	cost	function,	pilot	testing	found	that	in	steeper	cost	
landscapes,	the	step	to	step	changes	in	forces	are	perceptible	and	make	walking	uncomfortable.	This	
means	that	while	we	can	create	cost	landscapes	of	a	wide	range	of	gradients,	and	quickly	apply	these	
cost	changes	within	a	walking	step,	we	may	be	required	to	trade-off	between	these	two	factors.	We	
explored	this	in	pilot	experiments	by	designing	a	steep	cost	landscape	but	averaging	step	frequency	
over	multiple	steps	before	inputting	into	the	control	function	that	calculates	the	required	force	com-
mand.	Since	steep	cost	landscapes	require	large	force	changes	between	steps,	the	averaging	reduces	
the	effect	these	force	changes	have	on	stability	by	applying	them	over	multiple	steps.	This	may	be	
an	advantage	to	the	nervous	system	for	optimization	as	there	are	larger	steady-state	differences	in	
energetic	cost	between	steady-state	step	frequencies.	Or,	it	may	instead	be	a	disadvantage	as	the	
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nervous	system	may	find	it	more	difficult	to	associate	variability	in	step	frequency	with	the	resulting	
changes	in	energetic	cost.	Thus,	for	the	larger	experiment	we	presented	here,	we	chose	to	average	
step	frequency	only	over	a	single	stride	and	keep	the	cost	landscape	relatively	shallow.	We	did	de-
sign	and	pilot	a	cost	landscape	three	times	steeper	than	the	one	used	here	where	the	step	frequen-
cies	were	more	heavily	filtered	through	a	three	step	mean	filter.	We	tested	two	users	and	found	that	
they	were	not	noticeably	uncomfortable	with	the	force	changes	and	shifted	their	step	frequency	by	
~2SD	towards	the	new	minimum.	This	could	be	studied	more	systematically	and	is	worth	future	
research.	
	
Were	we	to	build	our	system	again,	there	are	several	things	we	would	change.	First,	we	would	con-
sider	using	a	different	actuator.	As	described	above,	the	series	elastic	actuator	provided	sufficient	
control	of	forces.	But	it	was	expensive,	often	required	maintenance,	and	perhaps	most	importantly,	
it	had	limited	travel.	Due	to	this	last	limitation,	we	had	to	disqualify	several	pilot	subjects	who	hit	
the	limits	while	walking.	We	would	replace	the	series-elastic	actuator	with	a	rotary	motor,	which	
would	provide	the	system	with	unlimited	travel.	In	our	new	design,	the	motor	is	housed	off-board	
allowing	one	to	use	large,	high-powered	motors	with	high	performance	control	of	applied	forces	
[41].	We	suspect	that	this	would	allow	us	better	control	of	 the	forces	within	and	between	steps.	
Second,	we	found	that	it	was	important	to	ensure	a	high	degree	of	user	comfort	in	the	system.	To-
wards	this	end,	we	would	now	prefer	to	use	a	wider	and	longer	treadmill.	This	would	help	the	user	
feel	more	comfortable	when	walking	with	potentially	perturbing	forces	applied	to	them.	 	
	
Our	system,	in	its	present	form,	is	a	robust	tool	for	manipulating	the	energetic	costs	of	walking	in	
real-time.	Here	we	focused	on	studying	the	performance	of	our	device	in	healthy	users	that	experi-
enced	shallow	and	simple	cost	landscapes	which	only	penalized	gait.	Our	system	can	also	reduce	
the	energetic	cost	of	walking	by	as	much	as	50%	allowing	future	studies	to	determine	if	the	nervous	
system	treats	energetic	rewards	and	penalties	differently.	The	ability	to	create	cost	landscapes	of	
various	shapes	will	help	study	the	nervous	system’s	optimization	algorithms,	including	if	they	are	
speeded	up	by	steeper	cost	gradients.	Finally,	reshaping	cost	 landscapes	based	on	rehabilitation	
goals	may	allow	the	nervous	system’s	internal	drive	to	reduce	energetic	cost	to	aid	gait	rehabilita-
tion	in	patients	recovering	from	injuries	and	disorders	[42].		
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