
 1 

 
 
 
 

A novel computational complete 
deconvolution method using RNA-seq data 

Kai Kang1, Qian Meng1, Igor Shats2, David M. Umbach1, Melissa Li1, 
Yuanyuan Li1, Xiaoling Li2, Leping Li1* 
 
 
 
1Biostatistics and Computational Biology Branch, NIEHS/NIH 
2Signal Transduction Laboratory, NIEHS/NIH 
*Corresponding Author (li3@niehs.nih.gov) 
 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 14, 2018. ; https://doi.org/10.1101/496596doi: bioRxiv preprint 

https://doi.org/10.1101/496596
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Abstract 
The cell type composition of many biological tissues varies widely across samples. Such 

sample heterogeneity hampers efforts to probe the role of each cell type in the tissue 

microenvironment. Current approaches that address this issue have drawbacks. Cell 

sorting or single-cell based experimental techniques disrupt in situ interactions and alter 

physiological status of cells in tissues. Computational methods are flexible and promising; 

but they often estimate either sample-specific proportions of each cell type or cell-type-

specific gene expression profiles, not both, by requiring the other as input. We introduce 

a computational Complete Deconvolution method that can estimate both sample-specific 

proportions of each cell type and cell-type-specific gene expression profiles 

simultaneously using bulk RNA-Seq data only (CDSeq). We assessed our method’s 

performance using several synthetic and experimental mixtures of varied but known cell-

type composition and compared its performance to the performance of two state-of-the-

art deconvolution methods on the same mixtures. The results showed CDSeq can 

estimate both sample-specific proportions of each component cell type and cell-type-

specific gene expression profiles with high accuracy. CDSeq holds promise for 

computationally deciphering complex mixtures of cell types, each with differing 

expression profiles, using RNA-seq data measured in bulk tissue  (MATLAB code is 

available at https://github.com/kkang7/CDSeq_011).
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Introduction 
Researchers measure gene expression in bulk tissue samples to gain insight into how 

biological processes change through development or under differing experimental 

conditions. A tissue, such as a liver or a tumor, is, however, heterogeneous, comprising 

multiple cell types that vary in their proportional contribution from sample to sample. The 

measured expression of a gene in a bulk sample reflects the expression of that gene in 

each cell in the sample. Consequently, the measured gene expression profile (GEP) of a 

tissue sample is commonly regarded as a weighted average of the GEPs of the different 

component cell types1,2. 

 

The heterogenous nature of bulk tissue samples complicates the interpretation of bulk 

measurements such as RNA-seq. Often researchers are interested in understanding 

whether an experimental treatment targets one particular cell type in a heterogeneous 

tissue or to investigate possible sources of variation among samples3. For example, the 

composition of tumor-infiltrating lymphocytes impacts the tumor growth and patients’ 

clinical outcomes4–9. To those ends, understanding the cell-type composition of each 

sample and the GEP of each constituent cell type becomes important. “Deconvolution” is 

a generic term for a procedure that estimates the proportion of each cell type in a bulk 

sample together with their corresponding cell-type-specific GEPs10,11. Deconvolution can 

be approached experimentally using flow cytometry or single cell RNA sequencing. For 

solid tissues, these techniques require separating individual cells, thereby presenting 

laboratory challenges as well as potentially sacrificing a systems perspective. Single cell 

RNA sequencing is also expensive and requires challenging data handling and analysis 
12,13.  

 

Deconvolution can also be approached computationally using GEP profiles from 

collections of bulk tissue samples10,14. With a wealth of available next generation 

sequencing (NGS) gene expression data, computational methods of deconvolution 

become increasingly desirable. Several deconvolution methods have been developed in 

the past decade. The pioneering work of Venet et al.15 employed an algorithm based on 

matrix factorization to deconvolve a matrix of GEPs (each normalized to sum to 1) into a 
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product of two matrices, one containing the cell-type proportions for each sample and the 

other containing the GEPs for each cell type. The constraints required for each matrix in 

the product (proportions must be non-negative and sum to 1 across cell types; expression 

levels must obey the same constraints across genes) impose technical challenges on 

matrix factorization in this context.  Consequently, most existing methods only perform 

partial deconvolution: either the algorithms require cell-type proportions as input to 

estimate cell-type-specific GEPs1,16–18 or vice versa19–23. These methods generally use 

regression techniques and some also use marker genes3,24,25 to estimate the unknowns 

of interest. Such partial deconvolution approaches have shown important findings9,24, 

however they can suffer if the needed information is unavailable or if the fidelity of 

reference profiles or proportions is questionable. In addition, most deconvolution 

algorithms report cell-type proportions based on the proportion of RNA that each cell type 

contributes to total RNA from the bulk sample; whereas researchers are often more 

interested in the proportion of cells of each type in the bulk sample. These proportions 

are equivalent only when all cell types contribute about the same amount of RNA per cell.  

 

We developed a complete deconvolution algorithm for bulk RNA-seq data from 

heterogeneous tissue samples. Our goal was to improve on partial deconvolution by 

estimating cell-type proportions and cell-type-specific GEPs simultaneously and in an 

unsupervised fashion. Our algorithm was inspired by latent Dirichlet allocation (LDA)26, a 

probabilistic model designed for natural language processing, that also inspired several 

existing partial deconvolution methods 19,20,27. The original LDA model does not, however, 

fully capture the complexity of bulk RNA-seq data. Our proposed model extended the 

original LDA model in two primary ways that would be unnecessary in the context of 

natural language processing but are crucial for RNA-seq data. First, we built in a 

dependence of gene expression on gene length. Second, we accommodated possibly 

different amounts of RNA per cell from cell types whose cells differ in size when estimating 

the proportion of cells of each type in the sample28.  The cell types constructed by our 

algorithm are anonymous and must be identified via comparison to reference cell-type-

specific GEPs. In addition, instead of specifying the number of cell types a priori, we 

provide an algorithm that allows the data to guide selection of the number of cell types. 
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Finally, we proposed a quasi-unsupervised learning strategy that augments the input data 

(GEPs from mixed samples) with additional GEPs from pure cell lines that are anticipated 

to be components of the mixture. We examined whether this strategy can improve the 

algorithm’s performance in some complex situations where a fully unsupervised learning 

strategy yields difficult-to-interpret solutions. 

 

Ideally, we would compare the performance of our complete deconvolution method 

(CDSeq) to other complete deconvolution methods; however, few15,29 have been 

published. Among those, either links to the code provided are outdated15 or the method 

requires generally unavailable information about marker genes for constituent cell types 
29.  Therefore, we tested the performance of CDSeq in comparison to two partial 

deconvolution methods: CIBERSORT23, which estimates cell-type proportions based on 

relative amounts for RNA when cell-type-specific GEPs are provided; and csSAM1, which 

estimates cell-type-specific GEPs when sample-specific cell-type proportions are 

provided. These comparisons encompassed a range of data sets: synthetic mixtures 

created numerically from GEPs of pure cell lines downloaded from the Cold Spring Harbor 

Laboratory (CHSL) website, GEPs measured on heterogenous RNA samples constructed 

in our lab by mixing RNA extracted from pure cell lines in different proportions, the 

experimental expression data that was used to evaluate  csSAM1,  expression data from 

follicular lymphoma samples23, and expression data from samples of peripheral blood 

mononuclear cells (PBMC)23. In all these comparisons, CDSeq performed as well or 

better than competitors in providing accurate estimates of cell-type proportions and cell-

type-specific GEPs from heterogeneous tissue samples.  

 
Results 
 
CDSeq is a complete deconvolution algorithm that takes RNA-seq data (raw read counts) 

from a collection of possibly heterogeneous samples as input and returns estimates of 

GEPs for each constituent cell type as well as the proportional representation of those 

cell types (schematic in Figure 1; details of algorithm in Methods). We evaluated our 

estimation of cell-type proportions in comparison to CIBERSORT23, which requires cell-

type-specific GEPs as input. When GEPs of pure cell lines that constitute the 
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heterogeneous samples were available, we provided them to CIBERSORT. We evaluated 

our estimation of cell-type-specific GEPs in comparison to csSAM1, which requires cell-

type proportions as input. The proportion information provided to csSAM was either 

known in advance or estimated using flow cytometry. To mitigate the differences of 

required inputs between CIBERSORT, csSAM, which are mostly applied for microarray 

data, and CDSeq, which is designed for RNA-seq data, we provided the RPKM 

normalization instead of raw read counts data to CIBERSORT and csSAM. 

 

Performance on synthetic data We first benchmarked CDSeq on synthetic mixtures 

with known composition that we created numerically from publicly available GEPs from 

CSHL (Methods). In this synthetic numerical experiment, we amplified the potential bias 

between RNA proportions and cell-type proportions by artificially increasing the RNA 

amount of certain cell types before mixing them together to generate the synthetic 

samples.  We generated 40 synthetic samples containing six cell types mixed in differing 

proportions (Methods).  

 

In estimating cell-type proportions, CDSeq outperformed CIBERSORT, showing smaller 

differences between the true and estimated proportions for each cell type and, 

consequently,  smaller root mean square error (RMSE) (Methods) (Figure 2 and 

Supplementary Figure 1). The RMSE of CDSeq was 77% lower than that of 

CIBERSORT, particularly for normal mammary epithelial cells, a cell type where our 

synthetic cells contributed twice the RNA as cells of most other types so that estimates 

of the proportion of cells as provided by CDSeq were expected to deviate from estimates 

of proportion of RNA as provided by CIBERSORT.  

 

In estimating GEPs, CDSeq outperformed csSAM, though performance of each was 

comparable. At low expression levels (log2 (RPKM)<5) neither method provided estimates 

that were accurate and precise; however, at higher expression levels, CDSeq estimates 

tended to be somewhat closer to true expression level than csSAM estimates, resulting 

in lower RMSE values for CDSeq estimates of expression in every cell type (Figure 2 

and Supplementary Figure 1).   
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Figure 1 Schematic of the CDSeq approach. Heterogeneous samples consist of different 
cell types.  The cell size of each cell type may differ across types, as the green cell 
depicted is bigger and consequently produces more RNA than the other cell types. The 
bulk RNA-seq profile from biological samples represents a weighted average of the 
expression profiles of the constituent cell types. CDSeq takes as input the bulk RNA-seq 
data for a collection of samples and performs complete deconvolution that outputs 
estimates of both the cell-type-specific expression profiles and the cell-type proportions 
for each sample. To identify the estimated cell types, one can compare the estimated 
GEPs to reference GEPs (Methods). This figure depicts a simple scenario of six biological 
samples comprising four cell types, each with gene expression measurements on eight 
genes.  
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Figure 2 Deconvolution of synthetic mixtures. We used expression data for six pure cell lines downloaded from CSHL to 

produce data from 40 synthetic mixtures with known cell-type proportions for testing the performance of CDSeq. 

(Supplementary Table 1). To artificially amplify the confounding factor of cell size differences, we multiplied the cell line 

read counts by a predefined vector to double RNA-seq read counts in the normal B lymphocyte and normal mammary 

epithelial breast components (chosen at random). We ran: CDSeq with six cell types, !	= 5, # = 0.5 and 700 MCMC runs; 

CIBERSORT with the default settings to estimate proportions while providing pure cell line expression profiles as input; and 

csSAM with the default settings to estimate cell-type-specific GEPs while providing true sample-specific cell-type proportions 

as input. (a) Difference (“residual”) between estimated and true cell-type proportion plotted against true proportion for 

CDSeq (green) and CIBERSORT (red). Each plotted point represents the value for a single sample. Lowess smooth was 

added to aid comparison. (b) Radar plot of RMSE for estimates of sample-specific cell-type proportions. CDSeq (green); 

CIBERSORT (red). Total RMSE summing over cell types is 77% smaller for CDSeq compared to CIBERSORT. (c) 

Difference (“residual”) between estimated and true log2 gene expression level [(log2(RPKM)] plotted against true log2 gene 

expression level for CDseq (green) and csSAM (red). Each plotted point represents a single gene, 22498 genes total. (d) 

Radar plot of RMSE for gene expression levels (RPKM). CDSeq (green); csSAM (red). Total RMSE of gene expression 

(summing over cell types) is 64% smaller for CDSeq compared to csSAM. 
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Performance on RNA extracted from cultured cells and mixed. Our second 

performance evaluation used data from a designed experiment that created 32 mixture 

samples using known RNA proportions isolated from four pure cell lines (Methods).  In 

this experiment, we employed CDSeq to estimate RNA proportions instead of cell 

proportions because we mixed RNA, not whole cells. 

 

With these data, CDSeq and CIBERSORT both provided accurate estimates of sample-

specific cell-type proportions. The total RMSE of CDSeq was 17% smaller than that of 

CIBERSORT, reflecting smaller cell-type-specific RMSEs for three out of four individual 

cell types (Figure 3 and Supplementary Figure 2). For gene expression levels, both 

CDSeq and csSAM performed similarly, though CDSeq had uniformly lower RMSE 

across the 4 cell types (Figure 3 and Supplementary Figure 2). CDSeq also 

outperformed csSAM by having 16% lower total RMSE for gene expression levels. 
 

Dissecting mixtures of liver, lung, and brain cells We next evaluated CDSeq using 

the experimental data set designed for csSAM1. The microarray data set consists of 11 

mixtures (each with 3 replicates) of liver, brain and lung cells with varying known RNA 

proportions and included GEPs of pure liver, brain and lung. We compared the cell-type-

specific GEPs estimation and the sample-specific cell-type proportion estimation of 

CDSeq to those of csSAM and CIBERSORT: the RMSE of CDSeq estimation is 44% 

lower than that of CIBERSORT; Cell-type-specific GEPs estimation provided by CDSeq 

and csSAM are quite close where csSAM has 1% lower RMSE than CDSeq. A detailed 

description of the results is given in Figure 4 and Supplementary Figure 3. 
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Figure 3 Deconvolution of mixed RNA from cultured cell lines. We cultured four pure cell lines, extracted RNA from each, 
and mixed the cell-type-specific RNA to create distinct 32 mixed samples with known cell-type proportions (Supplementary 
Table 2). We ran: CDseq with 4 cell types, a = 5, b = 0.5 and 700 MCMC runs; CIBERSORT with the default settings to 
estimate proportions while providing pure cell line expression profiles as input; and csSAM with the default settings to 
estimate cell-type-specific GEPs while providing true sample-specific cell-type proportions as input. (a)  Difference 
(“residual”) between estimated and true cell-type proportion plotted against true proportion for CDSeq (green) and 
CIBERSORT (red). Each plotted point represents the value for a single sample. Lowess smooth was added to aid 
comparison. (b) Radar plot of RMSE for estimates of sample-specific cell-type proportions. CDSeq (green); CIBERSORT 
(red). Total RMSE summing over cell types is 17% smaller for CDseq compared to CIBERSORT. (c) Difference (“residual”) 
between estimated and true log2 gene expression level [(log2(RPMK)] plotted against true log2 gene expression level for 
CDseq (green) and csSAM (red). Each plotted point displays the expression value of a single gene, 19653 genes in total. 
(d) Radar plot of RMSE for gene expression levels. CDSeq (green); csSAM (red). Total RMSE of gene expression (summing 
over cell types) is 16% smaller for CDseq compared to csSAM.
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Figure 4 Deconvolution of mixtures of liver, brain and lung cells. The microarray data consist of 33 mixture samples with 
known proportions and GEPs for the three constituent pure cell lines. We ran: CDSeq by specifying three cell types, α = 10, 
β = 5, and 700 MCMC runs; CIBERSORT with default settings to estimate the proportions while providing pure cell line 
expression profiles as input; and csSAM with default settings to estimate cell-type-specific GEPs while providing true 
sample-specific cell-type proportions as input: (a) Difference (“residual”) between estimated and true cell-type proportion 
plotted against true proportion for CDSeq (green) and CIBERSORT (red). Each plotted point represents the value for a 
single sample. Lowess smooth added to aid comparison. (b) Radar plot of RMSE for estimates of sample-specific cell-type 
proportions. CDSeq (green); CIBERSORT (red). Total RMSE summing over cell types is 44% smaller for CDSeq compared 
to CIBERSORT. (c) Difference (“residual”) between estimated and true gene expression level (log2(gene expression) where 
sum of gene expression levels across all genes equals to 1 and scaled to 108) plotted against true gene expression level 
for CDSeq (green) and csSAM (red). Each plotted point displays the expression value of a single gene, 31099 genes in 
total. (d) Radar plot of RMSE for gene expression levels. CDSeq (green); csSAM (red). Total RMSE of gene expression 
(summing over cell types) is 1% larger for CDSeq compared to csSAM. 
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Evaluation using leukocyte subtypes To test the performance of CDSeq on some 

extreme cases, we applied CDSeq to a set of GEPs from pure cell lines. We chose LM2223, 

designed by Newman et al.23, which comprises 22 human hematopoietic cell phenotypes 

including seven T-cell types, naïve and memory B cells, plasma cells, natural killer (NK) 

cells and myeloid subsets. Accordingly, we have 22 samples, each regarded as from a 

pure cell type; consequently, when running CDSeq, we set the number of cell types to be 

22 exactly.  

 

CDSeq identified most of the 22 samples as nearly pure examples of a single cell type, 

with minimal mixing except for closely related types (Figure 5 and Supplementary 
Figure 5). When CDSeq reported nominally pure samples as mixed, the confusion was 

between closely related cell types; for example, naïve B cells were estimated as a mixture 

of naïve and memory B cells (and vice versa); and activated MAST cells were estimated 

as a mixture of activated and resting MAST cells (Figure 5 a). We also ran CIBERSORT 

on this data set by providing LM22 itself as reference profiles (Figure 5 and 

Supplementary Figure 5). The CIBERSORT recovered the true cell-type proportions 

even more accurately than did CDSeq, possibly owing to the simplicity of the problem 

where the inputs of mixtures and reference GEPs were identical.  

 

Since this data set contained only pure cell lines, we did not compare to csSAM; when 

the input proportions for all cell types are either one or zero as in this example, csSAM 

will invariably return the true GEP for each cell type.  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 14, 2018. ; https://doi.org/10.1101/496596doi: bioRxiv preprint 

https://doi.org/10.1101/496596
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

a.  

B ce
lls 

na
ive

B ce
lls 

mem
ory

Plas
ma c

ells

T ce
lls 

CD8

T ce
lls 

CD4 n
aiv

e

T ce
lls 

CD4 m
em

ory
 re

stin
g

T ce
lls 

CD4 m
em

ory
 ac

tiva
ted

T ce
lls 

fol
licu

lar
 he

lpe
r

T ce
lls 

reg
ula

tor
y (

Treg
s)

T ce
lls 

ga
mma d

elt
a

NK ce
lls 

res
tin

g

NK ce
lls 

ac
tiva

ted

Mon
oc

yte
s

Mac
rop

ha
ge

s M
0

Mac
rop

ha
ge

s M
1

Mac
rop

ha
ge

s M
2

Den
dri

tic 
ce

lls 
res

tin
g

Den
dri

tic 
ce

lls 
ac

tiva
ted

Mas
t c

ells
 re

stin
g

Mas
t c

ells
 ac

tiva
ted

Eos
ino

ph
ils

Neu
tro

ph
ils

Cell Types

B cells naive
B cells memory

Plasma cells
T cells CD8

T cells CD4 naive
T cells CD4 memory resting

T cells CD4 memory activated
T cells follicular helper

T cells regulatory (Tregs)
T cells gamma delta

NK cells resting
NK cells activated

Monocytes
Macrophages M0
Macrophages M1
Macrophages M2

Dendritic cells resting
Dendritic cells activated

Mast cells resting
Mast cells activated

Eosinophils
Neutrophils

C
D

Se
q 

ES
tim

at
es

CDSeq estimated proportions

0.07

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.05

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.01

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.01

0

0

0

0

0.03

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.04

0.03

0

0.02

0.01

0

0

0

0

0

0

0

0

0

0

0

0.01

0

0

0

0

0.03

0.03

0.03

0

0.01

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.01

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.01

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.03

0.07

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.01

0.01

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.01

0

0

0

0

0

0

0

0.01

0

0

0.01

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.01

0

0

0.01

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.01

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.01

0

0.01

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.01

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.01

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.72

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.01

0

0.01

0

0

0

0

0

0.02

0

0

0.94

0.91

0.98

0.9

0.95

0.95

0.93

0.96

0.97

0.91

0.96

0.91

0.96

0.96

0.98

0.97

0.96

0.97

0.95

0.26

0.96

0.97
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 14, 2018. ; https://doi.org/10.1101/496596doi: bioRxiv preprint 

https://doi.org/10.1101/496596
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

b.  

B ce
lls 

na
ive

B ce
lls 

mem
ory

Plas
ma c

ells

T ce
lls 

CD8

T ce
lls 

CD4 n
aiv

e

T ce
lls 

CD4 m
em

ory
 re

stin
g

T ce
lls 

CD4 m
em

ory
 ac

tiva
ted

T ce
lls 

fol
licu

lar
 he

lpe
r

T ce
lls 

reg
ula

tor
y (

Treg
s)

T ce
lls 

ga
mma d

elt
a

NK ce
lls 

res
tin

g

NK ce
lls 

ac
tiva

ted

Mon
oc

yte
s

Mac
rop

ha
ge

s M
0

Mac
rop

ha
ge

s M
1

Mac
rop

ha
ge

s M
2

Den
dri

tic 
ce

lls 
res

tin
g

Den
dri

tic 
ce

lls 
ac

tiva
ted

Mas
t c

ells
 re

stin
g

Mas
t c

ells
 ac

tiva
ted

Eos
ino

ph
ils

Neu
tro

ph
ils

Cell Types

B cells naive
B cells memory

Plasma cells
T cells CD8

T cells CD4 naive
T cells CD4 memory resting

T cells CD4 memory activated
T cells follicular helper

T cells regulatory (Tregs)
T cells gamma delta

NK cells resting
NK cells activated

Monocytes
Macrophages M0
Macrophages M1
Macrophages M2

Dendritic cells resting
Dendritic cells activated

Mast cells resting
Mast cells activated

Eosinophils
Neutrophils

CI
BE

RS
O

RT
 E

St
im

at
es

CIBERSORT estimated proportions

0.01

0.01

0

0

0

0

0

0

0

0

0.01

0

0

0

0

0

0

0

0

0

0

0

0.02

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.84

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.01

0

0

0

0

0.01

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.01

0

0

0.01

0

0

0

0

0

0

0

0

0.01

0

0

0

0

0

0

0.06

0

0.01

0

0

0

0

0

0.01

0

0

0.02

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.01

0

0

0

0

0

0

0.01

0.01

0

0

0

0

0

0

0

0

0

0

0

0

0.01

0

0

0

0

0

0

0

0

0

0

0

0

0.02

0

0

0

0

0.01

0

0.01

0.01

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.01

0

0

0

0

0

0

0

0

0

0.01

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.83

0

0

0

0

0

0

0

0

0.01

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.01

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.01

0

0

0

0

0.01

0

0

0

0

0

0

0

0

0

0

0

0

0

0.01

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.01

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.01

0

0

0

0.01

0

0

0

0.06

0

0.01

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.89

0.01

0

0

0

0

0

0

0

0

0

0

0

0

0.01

0

0

0

0

0

0

0.02

0.03

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.98

0.98

0.99

0.98

0.97

0.99

0.98

0.99

1

0.96

0.1

1

0.99

0.93

0.99

0.99

0.97

0.96

0.98

0.97
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 14, 2018. ; https://doi.org/10.1101/496596doi: bioRxiv preprint 

https://doi.org/10.1101/496596
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

c.  

B ce
lls 

na
ive

B ce
lls 

mem
ory

Plas
ma c

ells

T ce
lls 

CD8

T ce
lls 

CD4 n
aiv

e

T ce
lls 

CD4 m
em

ory
 re

stin
g

T ce
lls 

CD4 m
em

ory
 ac

tiva
ted

T ce
lls 

fol
licu

lar
 he

lpe
r

T ce
lls 

reg
ula

tor
y (

Treg
s)

T ce
lls 

ga
mma d

elt
a

NK ce
lls 

res
tin

g

NK ce
lls 

ac
tiva

ted

Mon
oc

yte
s

Mac
rop

ha
ge

s M
0

Mac
rop

ha
ge

s M
1

Mac
rop

ha
ge

s M
2

Den
dri

tic 
ce

lls 
res

tin
g

Den
dri

tic 
ce

lls 
ac

tiva
ted

Mas
t c

ells
 re

stin
g

Mas
t c

ells
 ac

tiva
ted

Eos
ino

ph
ils

Neu
tro

ph
ils

Cell Types

B cells naive
B cells memory

Plasma cells
T cells CD8

T cells CD4 naive
T cells CD4 memory resting

T cells CD4 memory activated
T cells follicular helper

T cells regulatory (Tregs)
T cells gamma delta

NK cells resting
NK cells activated

Monocytes
Macrophages M0
Macrophages M1
Macrophages M2

Dendritic cells resting
Dendritic cells activated

Mast cells resting
Mast cells activated

Eosinophils
Neutrophils

C
D

Se
q 

Es
tim

at
es

Correlations: true GEPs vs CDSeq estimated GEPs

0.53

0.13

0.17

0.13

0.03

0.12

0.13

0.05

0.01

0.04

0.04

-0.03

0

0

-0.01

-0.02

-0.01

0

0.03

0.02

0.57

0.15

0.17

0.15

0.04

0.13

0.15

0.06

0

0.04

0.03

-0.02

-0.01

0.01

0

-0.03

-0.02

-0.02

0.03

0.02

0.53

0.57

0

-0.02

-0.03

-0.03

0.01

-0.01

-0.03

-0.04

-0.04

-0.03

-0.03

-0.01

-0.03

-0.03

-0.03

-0.03

-0.03

-0.02

-0.05

0.14

0.16

0

0.39

0.63

0.6

0.7

0.54

0.42

-0.03

-0.03

0.01

-0.07

-0.06

0.03

-0.03

0

0

0

0.16

0.17

-0.02

0.36

0.3

0.14

0.12

0

0

-0.01

-0.04

-0.04

0.05

-0.03

-0.04

0.01

0.03

0.13

0.15

-0.03

0.4

0.45

0.27

0.22

-0.01

-0.01

-0.02

-0.04

-0.04

0.03

-0.03

-0.03

0.02

0.01

0.03

0.04

-0.03

0.41

0.39

0.44

0.45

0.48

0.35

0.37

0.53

-0.02

-0.02

0.05

-0.02

-0.04

0.05

-0.01

0.27

0.05

-0.02

0.12

0.14

0.01

0.61

0.43

0.3

0.17

0.12

-0.03

-0.04

-0.05

-0.05

-0.06

-0.05

-0.02

-0.03

0.02

-0.03

0.13

0.15

-0.01

0.58

0.46

0.31

0.21

0.21

-0.03

-0.04

-0.02

-0.02

-0.05

0.01

-0.03

-0.04

0

-0.01

0.06

0.06

-0.03

0.3

0.46

0.34

0.31

0.32

0.67

0.11

-0.03

0.04

-0.02

-0.03

0.01

-0.01

0.09

0.04

0.06

0.01

0

-0.04

0.55

0.13

0.28

0.37

0.17

0.21

-0.01

-0.03

0.03

-0.04

-0.05

0

-0.01

0.12

0.01

0

0.04

0.04

-0.04

0.44

0.12

0.23

0.53

0.13

0.22

0.67

-0.01

-0.02

0.07

-0.02

-0.03

0.02

0

0.35

0.06

0

0.04

0.04

-0.03

-0.03

0

-0.01

-0.02

-0.03

-0.02

0.11

-0.01

-0.01

0.18

0.04

0.35

0.2

0.02

0.01

0.06

0.23

0.52

-0.03

-0.02

-0.03

-0.03

0

0

-0.02

-0.04

-0.04

-0.03

-0.03

-0.02

0.18

0.06

0.56

0.33

0.16

0.01

0.22

0.15

0.23

0

-0.01

-0.02

0.01

-0.01

-0.02

0.05

-0.05

-0.02

0.04

0.03

0.07

0.04

0.06

0.08

0.03

0.54

-0.02

0.1

0.05

0.04

0

0.01

-0.03

-0.07

-0.04

-0.04

-0.02

-0.05

-0.02

-0.02

-0.05

-0.01

0.34

0.56

0.08

0.42

0.13

0.02

0.15

0.15

0.18

-0.01

0

-0.03

-0.06

-0.04

-0.04

-0.03

-0.06

-0.05

-0.03

-0.05

-0.03

0.2

0.34

0.03

0.42

0.24

0

0.06

0.11

0.13

-0.02

-0.03

-0.03

0.03

0.05

0.03

0.05

-0.05

0.01

0.01

0

0.03

0.02

0.16

0.54

0.12

0.24

-0.01

0.07

0.07

0.02

-0.01

-0.02

-0.03

-0.03

-0.03

-0.03

-0.01

-0.02

-0.03

-0.01

-0.01

0

0.03

0.01

-0.02

0.02

0

-0.02

0.58

0.12

0.03

0

-0.03

-0.03

-0.02

-0.04

-0.04

0.21

-0.04

-0.04

0.06

0.09

0.29

0.05

0.18

0.07

0.13

0.04

0.05

0.16

0.06

0.04

0.04

-0.01

0.01

0.03

0.04

0.06

0.03

0.01

0.04

0.01

0.06

0.22

0.15

0.05

0.15

0.1

0.07

0.12

0.16

0.29

0.03

0.02

-0.04

0

0.04

0.01

-0.02

-0.03

-0.01

0.06

0

0

0.52

0.23

0.04

0.18

0.13

0.02

0.01

0.07

0.29

0.99

0.9

0.91

0.99

0.99

0.99

0.74

0.84

0.72

0.99

0.89

0.75

0.71

0.81

0.89

0.99

0.76

0.72

0.99

0.75

0.76

0.99

0.77

0.71

0.73

0.77

0.99

0.72

0.99

0.82

0.8

0.99

0.84

0.85

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99 0.76

0.97

0.99

0.99

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 14, 2018. ; https://doi.org/10.1101/496596doi: bioRxiv preprint 

https://doi.org/10.1101/496596
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

d.  
 

Figure 5 Deconvolution of LM22 data set.23 We ran: CDSeq with 22 cell types, a = 5, b = 
0.5 and 700 MCMC runs; CIBERSORT with the default settings to estimate proportions 
while providing pure cell line expression profiles (i.e. LM22) as input. (a) the heatmap of 
proportion estimation of 22 cell types by CDSeq; (b) the heatmap of proportion estimation 
of 22 cell types by CIBERSORT; (c) the heatmap of correlations between CDSeq-
estimated GEPs and true GEPs (heatmap of correlations of true GEPs is given in 
Supplementary Figure 4); and, (d) Radar plot shows the RMSE of CDSeq (green) and 
CIBERSORT (red). Total RMSE is 0.33 for CDSeq and 0.2 for CIBERSORT. Notice that 
in figures (a) and (b) the sums of proportions along the rows are not always equal to 1 
owing to the fact that we rounded off all the proportions to 2 decimal places for better 
visual presentation and some precisions are lost.  
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Immune cell analysis of lymphoma data with comparison to flow cytometry We 

evaluated CDSeq against flow-cytometry measurements of leukocyte content in solid 

tumors. Data comprised GEPs from 14 bulk follicular lymphoma samples and 

corresponding flow-cytometry measurements23. Our goal is to estimate the proportions of 

B cells (naïve B cell and memory B cell) and T cells (CD8 T cell, CD4 naïve T cell, CD4 

memory resting T cell, CD4 memory activated T cell, follicular helper T cell, regulatory T 

cell) in those 14 samples using CDSeq. We set the number of cell types to be eight (the 

number of all B cell and T cell subtypes in our reference file).  

 

To match the anonymous cell types identified by CDSeq to actual B cell or T cell subtypes, 

we compared the GEPs estimated by CDSeq with the GEPs of the eight relevant B and 

T cell subtypes from LM22 using correlation. We considered an anonymous CDSeq-

identified cell type to match one of the B cell or T cell subtypes if the Pearson correlation 

of their GEPs exceeded 0.6. (Thus, a CDSeq-identified cell type could match none or 

multiple leukocyte subtypes and vice versa.) We found that three CDSeq-identified cell 

types (cell type 1, 3, 7 in Supplementary Figure 6) matched no leukocyte subtypes, one 

CDSeq-identified cell type (cell type 5 in Supplementary Figure 6) matched only memory 

B cells, and four CDSeq-identified subtypes (cell type 2, 4, 6, 8 in Supplementary Figure 
6) matched both naïve and memory B cells. No CDSeq-identified cell types matched any 

T cell subtypes (Supplementary Figure 6). Thus, CDSeq was not fully successful at 

resolving subtypes of either B cells or T cells:  CDSeq-identified cell types could be 

matched to B cells, the majority cell type in the lymphoma samples determined by flow 

cytometry, but could not be matched to the lower abundance T cells.  

 

This lack of success with low abundance cell types could have several sources. First, 

because of differences in tumor microenvironment across samples, a cell type embedded 

in a solid tumor may exhibit quite a different GEP from sample to sample, and a different 

GEP than it might exhibit in pure culture. Second, CDSeq estimates may represent some 

average effects of the underlying signals, mathematically, the output may correspond to 

local optima owing to a complex posterior distribution of the parameters. To overcome 

this difficulty with low abundance cell types, we propose augmenting the input data from 
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mixed samples with GEPs from pure lines of the cell types likely to be in the mixed 

samples.  We call this strategy a quasi-unsupervised learning strategy (Methods). The 

idea is, without introducing labels, to provide the algorithm some guidance in searching 

for cell-type-specific signals in solid tumors. In this example, we appended 8 B cells and 

T cells lymphocyte GEPs from LM22 to the bulk measurements as input to CDSeq.  

 

To see whether the quasi-unsupervised strategy could improve detection of T cell 

subtypes, we compared the estimated GEPs from quasi-unsupervised CDSeq to the 

reference GEPs of eight B cell and T cell subtypes via correlations as before. With the 

quasi-unsupervised strategy and the 0.6 correlation threshold, performance of CDSeq 

improved for T cell subtypes (Figure 6).  Two CDSeq-identified cell types (cell type 6 and 

8 in Figure 6) matched either all six or five of six T cell subtypes but no B cell subtypes; 

five CDSeq-identified cell types (cell type 1, 3, 4, 5 and 7 in Figure 6) matched one or 

both B cell subtypes but no T cell subtypes; and one CDSeq-identified cell type (cell type 

2) matched none of the eight lymphocyte subtypes. Nevertheless, CDSeq still could not 

fully resolve subtypes among B cells and T cells. Consequently, we decided to estimate 

relative proportions of B cells and T cells in each sample regardless of subtype by 

summing the relevant subtype proportions while ignoring the estimated proportions of 

unmatched estimated cell type 2, then renormalizing the relative proportions to sum to 

one. The resulting estimated relative proportions were statistically significantly correlated 

with corresponding flow cytometry measurements (p < 0.05) (Figure 6).  

 

We did not apply csSAM since we had no ground truth for cell-type-specific GEPs 

available for accessing the accuracy and comparison between csSAM and CDSeq.  
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Figure 6 Deconvolution of B cells and T cells in lymphoma. We applied CDSeq on 
lymphoma data set23 employing the quasi-unsupervised strategy (Methods) by appending 
the B cells and T cells GEPs to the GEPs of 14 solid tumor samples.  We ran CDSeq with 
the number of cell types set at 8, ! = 0.5, ' = 0.5. In (b) and (c), the black solid line is the 
linear regression line; the black dashed line is the x=y line, R is the correlation coefficient, 
and P is the p-value for testing the null hypothesis of no correlation. (a) Correlations 
between CDSeq-estimated cell-type-specific GEPs and GEPs for B cell and T cell 
subtypes provided by LM22; and (b) CDSeq-estimated proportions of B cells (blue dots) 
and T cells (red dots): the first panel displays the estimated relative proportions for both 
B cells and T cells, the second and third panels present B cells and T cells separately; 
and (c) CIBERSORT-estimated relative proportions of B cells (blue dots) and T cells (red 
dots) with the three panels providing analogous information to those in Figure 6b.  

 
CDSeq on deep deconvolution Deep deconvolution refers to the problem of using a 

whole blood or PBMC sample to estimate the proportions and expression profiles of a 

greater number of cell subtypes, going further down into the hematopoietic tree10. To 

assess CDSeq’s performance on deep deconvolution, we used a set of 20 PBMC 

samples23. To evaluate performance, we also used information provided in the LM22 

dataset23: namely, flow-cytometry measurements for nine of the 22 leukocyte sub-types 

(the only sub-types with flow cytometry available). That LM22-provided GEPs of about 

half of these nine sub-types were highly collinear (Supplementary Figure 4) should 

challenge CDSeq’s ability both to find the corresponding GEPs of those nine sub-types 

in the 20 PMBC samples and to accurately estimate their proportions. We first ran CDSeq 

in fully unsupervised mode and set the number of cell types to be 22. In comparing the 

estimated GEPs to the GEPs of LM22, we found that CDSeq could not uncover the nine 

sub-types (Supplementary Figure 7), possibly because collinearity of GEPs among sub-

types.  

 

To improve estimation by reducing complexity, we turned to the quasi-unsupervised 

strategy when running CDSeq by appending the 22 GEPs of LM22 to the 20 samples, 42 

samples in total. Using the 0.6 correlation threshold to match CDSeq-identified cell types 

to the corresponding 22 leukocyte sub-types, we found that the quasi-unsupervised 

strategy improved CDSeq’s performance (Figure 7): one CDSeq-identified cell type 

matched both naïve and activated B cells; another matched both resting and activated 

mast cells; two CDSeq-identified cell types did not match any of the 22 LM22 known sub-
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types; the remainder matched only one LM22 sub-type each. When comparing CDSeq-

estimated cell-type relative proportions to flow-cytometry measurements for the nine sub-

types, we combined the proportions of naïve B cells and memory B cells as one overall 

B cell sub-type because the estimated GEPs of these two were highly correlated (Figure 
7 and Supplementary Figure 7). In restricting attention to the resulting eight sub-types, 

we renormalized their proportions to sum to one for comparison with corresponding flow 

cytometry measured proportions. For six of the eight sub-types, the CDSeq-estimated 

relative proportions were significantly correlated (p<0.05) with the flow-cytometry-based 

relative proportions. The correlations with activated memory CD4 T cells and () T cells 

were not significant (p=0.31 and 0.07, respectively). The CIBERSORT estimated relative 

proportions were significant correlated (p<0.05) with the corresponding flow-cytometry-

based relative proportions for all sub-types except ()  T cells (p=0.19). In an overall 

comparison of CDSeq and CIBERSORT estimates, however, the total RMSE of CDSeq 

was about 6% lower than that of CIBERSORT. On the other hand, the estimated relative 

proportions by both CDSeq and CIBERSORT showed systematic bias in departing from 

equality with the flow-cytometry-based proportions. Besides the possible technical issues 

of flow cytometry and the fidelity of the LM22 reference profiles, another possible reason 

for this systematic bias with this microarray data is that flow cytometry reports relative cell 

proportions whereas CDSeq and CIBERSORT report relative RNA proportions. Though 

CDSeq is capable of reporting either RNA proportions or cell proportions from RNA-seq 

raw counts, it can report only RNA proportions with microarray data.   
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c.  

 

Figure 7   Deep deconvolution of PBMC data. We applied CDSeq using quasi-supervised 
learning strategy to the 20-sample PBMC data set after appending 22 LM22 GEPs, 42 
samples in all. We ran CDSeq with 22 cell types, ! = 50, & = 20. In (b), the black line is 
the linear regression line; the dashed line is the x=y line; R is the correlation coefficient; 
and P is the p-values for testing the null hypothesis of no correlation: (a) Correlations 
between CDSeq estimated cell-type-specific GEPs and LM22 GEPs (heatmap of 
correlations of true GEPs is given in Supplementary Figure 4); (b) Upper panel CDSeq-
estimated proportions for eight cell types (green dots); lower panel is   CIBERSORT-
estimated proportions for eight cell types (red dots); and, (c) Radar plot for RMSE of 
CDSeq (green) and CIBERSORT (red). 
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Estimating the number of cell types present from the data We have been applying 

CDSeq by fixing the number of cell types at the correct number, since we know it in 

advance. CDSeq can, however, estimate the number of constituent cell types in a 

collection of samples, if necessary, by maximizing the posterior distribution (Methods). 

The framework of CDSeq is built for RNA-seq raw count data, therefore, raw count data 

is required for estimating the number of cell types. Consequently, we did not apply this 

feature for microarray data. 

 

Applying this method to the synthetic data and to the data on mixed RNA described above 

correctly estimated number of cell types in each case (Figure 8).   

a.

 

b.

 
 

Figure 8 Estimating the number of cell types. The maximum of the log posterior provides 
an estimate of the number of cell types. (a) synthetic data; (b) mixed RNA data.  In each 
data set, the method estimated the true number of cell types correctly.  

 

Discussion  

We present CDSeq for deciphering heterogeneity in RNA-seq data measured on 

biological samples. CDSeq, as a complete deconvolution method, exhibits substantial 

advantages over existing deconvolution methods, such as csSAM1 and CIBERSORT23, 

as it only requires expression data from mixtures and outputs estimates of both cell-type-

specific GEPs and sample-specific cell-type proportions. In addition, we argue that our 
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probabilistic model is of conceptual advance over methods using matrix 

decomposition15,18 or regression techniques.1,23 First, our generative model explicitly 

considers how reads are generated and is able to estimate cell proportions instead of 

RNA proportions whereas matrix decomposition or regression based methods are not. 

Second, our model employs multinomial random variable to capture the stochastic nature 

of reads and therefore inherently imposes the constraint that proportions are nonnegative 

and sum to one on the parameters of interest; whereas matrix decomposition or 

regression-based methods need to impose additional constraints on the parameter space 

that can impose additional technical challenges for numerical procedures. 

 

We assessed CDSeq using both synthetic and real experimental data and saw generally 

good estimation performance. Often complete deconvolution by CDSeq was as or more 

accurate than partial deconvolution by CIBERSORT to estimate cell-type proportions or 

by csSAM to estimate GEPs. 

 

CDSeq, an unsupervised data mining tool, is fully data-driven and allows simultaneous 

estimation of both cell-type-specific GEPs and sample-specific cell mixing proportions. In 

some real data analyses when constituent cell types had highly correlated GEPs, the cell 

types found by CDSeq lacked a one-to-one correspondence with the known component 

cell lines. To ameliorate this problem, we proposed a quasi-unsupervised approach. It 

involves augmenting the available GEPs from heterogeneous samples with GEPs from 

pure cultures of the cell types anticipated to be constituents. We showed that this quasi-

unsupervised approach can improve CDSeq’s performance in lymphoma and deep 

deconvolution examples.  

 

A limitation of current CDSeq model is the impossibility of fine tuning the hyperparameters 

to obtain optimal results without ground truth. In practice, we suggest setting ! = 5, & =
0.5. When heterogenous samples are likely dominated by one or two cell types, setting 

! < 1 may help; when cell-type-specific GEPs are likely to have relatively high correlation, 

setting  & > 1  may help – though we cannot specify a definitive threshold for high 

correlation. From a practical point of view, the higher the correlations are, the fuzzier 
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discovered signal would be. Another potentially helpful technique is the quasi-

unsupervised strategy. Efforts at enabling CDSeq to self-adjust hyperparameter based 

on given data are underway. Another possible extension for current model is that the 

fundamental multinomial model used for gene expression imposes a certain negative 

correlation between expression counts at different loci. However, it is conceivable that, 

because genetic pathways can be regulated as units, the counts could be positively 

correlated among certain subsets of genes. The current CDSeq model cannot handle that 

kind of correlation structure. In addition, we suggest excluding unnecessary genes 

(depending on the application) to reduce the running time of CDSeq by consuming less 

memory. 

 

We expect that CDSeq will prove valuable for analysis of cellular heterogeneity on bulk 

RNA-seq data. It provides a practical and promising alternative to methods that require 

expensive laboratory apparatus and extensive labor yet entail possible loss of a system 

perspective by isolating individual cells from heterogeneous samples. Application of 

CDSeq will aid in deciphering complex genomic data from heterogenous tissues. 

 

Methods 

Synthetic mixtures We generated synthetic gene expression profiles for 40 synthetic 

mixture samples using gene expression profiles for six pure cell lines.  We downloaded 

expression profiles from the CSHL website for: normal fetal lung fibroblast, normal B-

lymphocyte (blood), normal mammary epithelial cells (mammary gland), normal umbilical 

vein endothelial cells (blood vessel), breast epithelial carcinoma, and normal CD14-

positive cells from human leukapheresis production. To artificially amplify the confounding 

factor of differences in cell-type-specific RNA quantity, we multiplied the cell line reads 

count by a predefined vector to rescale the RNA amounts. Specifically, we randomly 

chose to double RNA-seq reads count of the normal B lymphocyte and normal mammary 

epithelial breast cell lines. We then randomly generated mixing proportions 

(Supplementary Table 1) that specified the proportion of cells of each type in each 

synthetic sample using a Dirichlet distribution with a parameter vector having all six 

entries equal to 5.  
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Experimental mixtures and gene expression profiling MCF7 cells were obtained from 

Duke University Cell culture facility and cultured in DMEM medium supplemented with 

10% fetal bovine serum (FBS). Namalwa cells were a gift from Dr. Sandeep Dave, Duke 

University, and were cultured in RPMI medium supplemented with 10% FBS. Hs343T and 

hTERT-HME1 (ATCC) were cultured in HuMEC Ready medium (Thermo Fisher 

Scientific). 

 

In brief, total mRNA was prepared from Namalwa (Burkitt’s lymphoma), Hs343T 

(fibroblast line derived from a mammary gland adenocarcinoma), hTERT-HME1 (normal 

mammary epithelial cells immortalized with hTERT), and MCF7 (estrogen receptor 

positive breast cancer cell line). mRNA samples were diluted to 100	ng/0l and mixed in 

different proportions (Supplementary Table 2). Global mRNA abundance of the four pure 

cell lines and of the mixed RNA samples was profiled by RNA-sequencing. 

Sequencing libraries were prepared using TruSeq RNA sample preparation kit v2 

(Illumina). 75-bp single end sequencing was performed on the NextSeq sequencer 

(Illumina). After obtaining the fastq data, we first ran cutadapt (version 1.12) for trimming 

adapter sequences. Secondly, we mapped reads to the genome using STAR (version 

020201). Lastly, we used featureCounts (version 1.5.1) to generate raw read counts data 

as the input for our algorithm. The code for processing the fastq data using cutadapt, 

STAR and featureCounts are available at https://github.com/kkang7/CDSeq_011. 

 

Based on RNA-sequencing, we found contamination in the pure cell lines by examining 

the gene expression of KRT5. KRT5, a marker specific to HME-hTERT, should be 

completely absent from cancer-associated fibroblasts (CAFs); however, it was present in 

CAF samples at about 20% of the levels found in hTERT-HME1. This contamination is 

possibly attributable to CAFs being derived from tumors so that they were probably 

contaminated with a small portion of tumor tissue. In vitro, this small portion of tumor cells 

had huge growth advantage and, thus, became significant. In summary, CAF samples 

were not pure but contained about 20% RNA from HME-like cells. We are not certain if 

the contamination comes from hTERT-HME1 cells or other cancer cells which express 

endogenous TERT. To alleviate this problem, we considered the proportions of CAF 
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(given in Supplementary Table 2) to be 80% of CAF and 20% of HME and adjusted the 

proportions accordingly in the comparisons (Figure 3). 

 

Overview of CDSeq We developed a novel statistical model which aims at extracting 

cell-type-specific information using bulk RNA-seq data from heterogeneous samples. The 

proposed method performs complete deconvolution. Using only bulk RNA-seq expression 

data for multiple samples as input, it provides estimates of both cell-type-specific GEPs 

and sample-specific cell-type proportions simultaneously, in an unsupervised fashion. 

Our model was inspired by latent Dirichlet allocation (LDA)26, a probabilistic model 

designed for natural language processing. LDA was designed to use text corpora as input 

and extract essential structure, namely, the topics that constitute the content of 

documents in the corpus. The problem of deriving abstract yet meaningful topics from a 

corpus of documents shares a fundamental similarity with the problem of extracting cell-

type-specific information from bulk RNA-seq data. The original LDA model cannot, 

however, fully capture the complexity of bulk RNA-seq data. For example, different cell 

types may produce different amounts of RNA, a circumstance that may bias estimates of 

cell-type proportions. Our model extends LDA model in the following ways: first, the 

random variable that models cell-type-specific GEPs depends on gene length; second, 

the probability of having a read from a cell type depends on both the proportion of that 

cell type present in a sample and the typical amount of RNA produced by cells of that 

type. Some existing methods are based on the LDA model19,20,27; however, those 

methods were designed for partial deconvolution and require cell-type-specific GEPs as 

input. 

 

To describe our model and the statistical inference scheme, we first introduce the notation. 

Let M denote the number of samples and T denote the number of cell types comprising 

each heterogeneous sample. We model the vector containing the cell-type-specific 

proportions for sample 2, denoted 34 = (34,6, 34,7, ⋯ , 34,9) ∈ <9, where <9 denotes a (T-1)-

simplex, as a Dirichlet random variable with hyperparameter ! = (!6, … , !9) ∈ >?9 . Next, 

let G denote the number of genes in the reference genome to which reads are mapped. 

We denote the GEP of pure cell type @, a vector of gene expression values for the entire 
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genome normalized to sum to 1, as AB = CAB,6, AB,7, ⋯ , AB,DE ∈ <D , where <D denotes a 

(G-1)-simplex and model it as a Dirichlet random variable with hyperparameter  & =
(&6, … , &D) ∈ >?D. With T cell types in all M samples, the matrices 3 = [36,⋯ , 3G] and A =
[A6,⋯ ,A9] encapsulate all the features that we seek to estimate from the data based on 

our model. 

 

We denote the true GEP of heterogeneous sample 2 by  Φ4 = 	 (A4,6, A4,7, ⋯ , A4,D) ∈ <D. 

Φ4	is a weighted average of the pure cell-type GEPs with weights given by the sample-

specific cell-type proportions, namely, Φ4 = ∑ 34,BABB
BK6 . This random variable controls the 

rate of generating RNA copies from genes. 

 

We do not observe the true A4 directly but instead observe reads from each sample and 

the read assignments to genes.  Assume that the length of every sequenced read, 

denoted L, is the same. Let categorical random variable M4,N ∈ {1,⋯ , 4Q} denote read S 

from sample 2, and let categorical random variable T4,N ∈ {1,⋯ ,U} denote the gene or 

transcript assignment of read M4,N. Both VM4,NW4K6,NK6
G,D  and VT4,NW4K6,NK6

G,D  are observed for every 

heterogenous sample. In transcript X, the number of positions in which a read can start is 

ℓZ[ = 	ℓZ − L + 1  where ℓZ is the length of transcript X. The adjusted length ℓ̂Z is called 

the effective length of transcript X. If the reads are mapped to genes instead of transcripts 

isoforms, then we need to consider the effective length of gene, denoted by ℓ̂_, which is 

total length of all the transcripts comprising the gene after projection into genomic 

coordinates. Different cell types may generate different amounts of RNA owing to their 

varying sizes, therefore we employ a Poisson random variable with parameter `B to model 

the number of reads generated from cell type t. Let ` = (`6, … , `9). Parameter ` can be 

estimated from RNA-seq read counts from pure cell types using the unweighted sample 

mean, a maximum likelihood unbiased estimator. If such information is not available, 

CDSeq will treat ` as a unit vector indicating no differences in cell sizes.  
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Finally, to complete specification of our model, we need to be able to assign reads in the 

heterogenous sample to individual cell types; thus, we introduce a latent categorical 

random variable a4,N ∈ {1, … , b} that is the cell type indicator of read M4,N. 

 

Our model specifies that RNA-seq reads from bulk tissues are generated as follows: 

1. Generate gene expression profiles for different cell types, i.e., AB ∼ d2M(&) for cell 

type @,@ = 1,⋯ , b. 
2. Choose 34 ∼ d2M(!) which denotes the mixture proportion of different cell types in 

the sample 2, 2 = 1,⋯ ,e. 

3. For each of the f4 RNA-seq reads in sample 2, where f4 denotes the total reads of 

sample 2 

(a) Choose a cell type ag ∼ Lhi@2jkL2li	C(3, `)E , where j = 1,⋯ ,f4  and the 

notation (3, `) means the multinomial distribution depends on both parameters. 

(See Supplementary Materials on statistical inference for details.)  

(b) Choose a gene Tg ∼ m(⋅ |ag, &, A) = Lhi@2jkL2li(Apq) 

(c) Generate a read sequence Mg ∼ m(⋅ |Tg, ℓ̂_q) where ℓ̂_q is the effective length of 

transcript Tg.  

 

To this end, a graphical model of CDSeq is presented in Figure 9 depicting the stochastic 

process of generating RNA-seq data. 

 
Figure 9 Graphical representation of CDSeq probabilistic model. The cell-type-specific 
GEPs A are modeled by a Dirichlet distribution with hyperparameter &, namely, the gene 
expression profile for cell type @, AB ∼ d2M(&). Our model assumes the vector of sample-
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specific cell-type mixing proportions 3  is characterized by another Dirichlet random 
variable for sample 2 34 ∼ d2M(!). A read is then generated as a consequence of the 
following three consecutive steps: determine the cell type a4,N from which the read M4,N will 
be produced based on a multinomial distribution with parameter 34; select a gene T4,N	to 
which the read M4,N maps according to a multinomial distribution governed by AB; generate 
read M4,N from gene T4,N with probability determined by the length of gene ℓ_, and Poisson 
random variables parameters ` = {`B}BK69 (cell size model). The light blue nodes denote 
the hyperparameters that are assumed to be known. The dark blue nodes denote the 
values of observable random variables (either measured in the study or established in 
previous studies) whereas the white nodes are unobservable random variables that need 
to be inferred from data. The outer box represents samples where M is the sample size, 
and the inner box denotes the RNA-Seq data of a sample where N is the total number of 
reads from the sample. 

 
Statistical inference Based on our model, given the hyperparameters, reads alignment, 

effective length of the mapped genes and the estimated value of `, the joint distribution 

of the parameters of interest is given in the following, 

																				m(A, 3, a, M, T|!, &, `, ℓ) 

																			=sm(AB|&)s(m(34|!)smCa4,Nt34, `EmCM4,N, T4,NtA, ℓ̂, a4,NE
uv

NK6

)
G

4K6

9

BK6

 

	=sm(AB|&)ssmCM4,N, T4,NtA, ℓ̂, a4,N)swm(34|!)smCa4,Nt34, `E
uv

NK6

x
G

4K6

uv

NK6

G

4K6

9

BK6

(1) 

Integrating out 3 and A, we have 

					m(a, M|!, &, `, ℓ, T) 

= y sm(AB|&)ssmCM4,N, T4,NtA, ℓ̂, a4,N)zA
uv

NK6

G

4K6

9

BK6{|}}}}}}}}}}}}}}~}}}}}}}}}}}}}}�
ÄÅM, TÇa, &, ℓ̂É

wys(m(34|!)smCa4,Nt34, `E
uv

NK6

G
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xz3
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(2)
 

Our goal is to evaluate mCatM, !, &, `, ℓ̂, TE = ÅmCa, M, Tt!, &, `, ℓ̂EÉ /C∑ mCa, M, Tt!, &, `, ℓ̂Ep E; 

however, we can only evaluate this quantity up to a normalizing constant, i.e., 

∑ m(a, M, T|!, &, `, ℓ̂)p . Therefore, we employed a Gibbs sampler30, a Markov chain Monte 

Carlo (MCMC) method, to draw samples from m(a|M, !, &, `, ℓ̂, T), the posterior distribution  

of cell type assignments, and then use the cell-type assignment information to estimate 

3 and A. The Gibbs sampler runs on the space of all possible cell-type assignments for 
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all reads from all the samples. After running MCMC iterations, one can take the value 

from last MCMC iteration as the cell-type assignment for each read for estimating the 

model parameters (see Supplementary on statistical inference for details). 

 

Determine the number of cell types using the data. The number of cell types present in a 

heterogenous sample may not be known in advance. Our model allows the number of 

cell types to be inferred from the data. We formulate this inference as a problem of model 

selection30,31. Based on our statistical model, assuming that the hyperparameters !, & 

and the reads mapping information are known, the joint probability distribution of the cell-

type-specific GEPs, the sample-specific cell-type proportions in all samples, and the 

mapped reads is given in eqn.(3) (see Supplementary on statistical inference for details):  
					log mCM, 3, At!, &, `, ℓ̂, TE 

=ÜÜ(&á − 1) logCAB,áE +	ÜÜ(!B − 1) logC34,BE +	ÜÜj4,á log àÜ
34,B`B

∑ 34,Z`Z9
ZK6

	
AB,á	ℓ̂á

∑ AB,Zℓ̂ZD
ZK6

â

äK6

ã(3)
D

áK6

G

4K6

9

BK6

G

4K6

D

áK6

		
9

BK6

 

Then, we run CDSeq for a sequence of different numbers of cell types (b, in eqn. 3) and 

choose the one that maximizes log posterior of eqn.(3). Notice that the minimum number 

of cell types is two instead of one since one cell type indicates a trivial case of cell type 

assignment of RNA-seq reads and domain of posterior m(a|M, !, &, `, ℓ̂, T) will shrink to a 

single point.  

 

Cell type association. The output of CDSeq reports cell types that are anonymous -- in 

the sense of not being identified with actual cell types.  To match the CDSeq-identified 

cell types to actual cell type, a list of reference cell-type-specific GEPs and metric of 

similarity (for example, Pearson’s correlation coefficient or Kullback-Leibler divergence) 

is required. We employed Pearson’s correlation coefficient as the similarity measurement. 

Ideally, each estimated cell type will have a high correlation (say exceeding 0.6) with 

exactly one reference cell type so that the matching is straightforward. In practice, the 

CDSeq-identified cell types cannot always be uniquely assigned to actual cell types. In 

such cases, the Munkres algorithm32 can be employed to yield one-to-one cell type 

associations. In some cases, one-to-one cell type association is not immediate (Figure 6, 

Figure 7), because a CDSeq-identified cell type may highly correlated with multiple actual 
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cell types. Then, the sample-specific proportion for an actual cell type can be estimated 

by combining all the proportions of the CDSeq-identified cell types that are highly 

correlated (say greater than 0.6 or other user defined threshold) with that cell type. We 

adopted root mean square error (RMSE) as the performance assessment measurement 

which is defined as  

>e<ç(éè	, é) = ê∑ (éè4 − é4)7g
4K6

j
(3) 

where éè denotes the estimated parameter, é denotes the true parameter and j denotes 

the dimension of the parameter. In all the comparisons, we computed the RMSE of 

estimated GEPs in the original RPKM scale instead of log2 scale.  

 

A quasi-supervised learning strategy CDSeq is an unsupervised learning method that 

aims at discovering the latent pattern from data without any labeling or prior knowledge. 

The advantage of unsupervised learning framework is that it may unveil some novel 

information, whereas a limitation is that, when data are too complex and involve sources 

of variation that are not considered in the model, solution space may be multi-modal. In 

such cases, CDSeq may find only local optima and the solutions may be hard to interpret 

biologically. Such scenarios have less impact in a field like text mining than they do in 

biological research. In text mining, the topics that LDA identifies are abstract notions 

without any corresponding ground truth. The major task for LDA is to extract latent 

information that can describe the documents -- there is no basis for deciding whether a 

topic identified by LDA is actually a “true” topic or not. Instead, in biology, cell types do 

exist as entities in the mixtures and represent a ground truth that we want to discover. As 

we showed in our examples, the cell types identified by CDSeq often correspond 

unambiguously to pure cell lines with matches derived by high correlation between the 

two GEPs. Sometimes, however, the GEPs of the CDSeq-identified cell types are not 

highly correlated with any GEPs of the pure cell line GEPs.  This issue may arise because 

multicollinearity among the GEPs of multiple pure cells complicates the deconvolution 

problem and renders CDSeq less able to definitively separate cell types. To mitigate this 

kind of problem, we developed a quasi-unsupervised learning strategy. The idea is to 

provide CDSeq some guidance that leads the algorithm to more biologically meaningful 
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latent information. The guidance consists of appending a set GEPs of pure cell lines to 

the original input GEPs of heterogenous samples. The choice of GEPs appended should 

reflect pure cell lines that are believed to constitute the samples. We showed that, using 

this quasi-unsupervised strategy, CDSeq provided more informative estimates than those 

obtained using the fully unsupervised mode (Figure 6, Figure 7, Supplementary Figure 

6 and Supplementary Figure 7). We call this learning strategy quasi-unsupervised 

because, although we do not incorporate any labeling information within CDSeq algorithm 

itself, we do inject strong signals about likely relevant cell types into the input data. In 

short, CDSeq is not explicitly aware of such labeling information (pure cell line GEPs 

appended to input) unlike traditional semi-supervised methods where the labeling 

information is explicitly taken into account by the algorithms. 

 

A data dilution strategy to speed up the algorithm Often data sets of RNA-seq raw 

counts are large; the total reads across all samples could range from millions to billions. 

Since CDSeq’s Gibbs sampler is running on the space of all the raw reads, excessively 

large data sets could dramatically slow the algorithm or even kill it if memory requirements 

exceed capacity. To address this issue, we propose a data dilution strategy: we divide all 

the read counts by a positive constant and round them to integer values (since CDSeq 

requires positive integers as input). We showed that our dilution strategy can speed up 

the algorithm while retaining the accuracy of estimation. Specifically, we tested this 

dilution strategy on the synthetic data set by dividing read counts by a sequence of 

positive integers (100 to 5000 with increment 50). We started from 100 instead of 1 

because the original data, which requires around 70GB memory, exceeded the capacity 

of our hardware and because we wanted to start with a data set that could run in hours 

instead of days. Dividing by 100 yielded data that took less than 3 hours to run and 

provided accurate results. We recorded the running time and the correlations between 

estimated GEP and true GEP (Supplementary Figure 8). As we observed, the running 

time dropped dramatically as the divisor increased from 100 to 500 while the correlations 

remain relatively close to 1. Taking advantage of this strategy, we could speed up the 

running time with little compromise in accuracy.  
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Deconvolution methods for comparison We compared our results to those of csSAM1 

and CIBERSORT23, two state-of-the-art computational deconvolution methods. csSAM 

assumes that expression value of a gene in bulk tissue is the weighted sum of the gene 

expression in each component within the bulk tissue plus a random error, then given the 

proportions, i.e., the weight for each component, csSAM fits the linear model by a 

standard least-square regression of the bulk tissue expression levels on the given 

proportions to yield the estimated gene expression of each component. We downloaded 

the csSAM R package and used the default settings for all simulations and comparisons. 

On the other hand, CIBERSORT, based on the same linearity argument, applies a 

support vector regression method, called ë −support vector regression33. It takes as input 

the gene expression profile of the bulk tissue samples and a gene expression profile for 

each possible cell type that comprises the bulk tissue; it outputs an estimate of the cell-

type proportions for each sample. In addition, to study the fractions of immune cells, a 

gene expression signature profile for 22 cell types, named LM22, was proposed by 

CIBERSORT. We requested the source code for CIBERSORT from the authors and ran 

all comparisons with default settings. Note that CDSeq is not the first method that related 

to LDA, the methods proposed by 19,20,27 are also based on LDA, however, their methods 

require pure cell line GEPs as input and allow the cell-type-specific GEPs to vary across 

samples. Therefore, those methods essentially perform partial deconvolution instead of 

complete deconvolution. 
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Supplementary Figures and Tables 

Supplementary Table 1. Randomly generated sample-specific cell-type proportions (%) 
used to create synthetic data. 

 Cell types 

Sample 

Number 

Breast 

epithelial  

carcinoma 

Normal B  

lymphocyte 

Normal CD14+ 

leukapheresis 

Normal fetal  

lung fibroblast 

Normal 

mammary  

epithelial 

breast 

Normal umbilical 

vein  

endothelial blood 

vessel 

1 16.1 16.0 10.3 18.0 15.1 24.4 
2 16.3 22.2 20.2 15.0 10.7 15.7 
3 16.8 24.4 16.2 20.2 5.4 16.9 
4 14.5 26.2 15.8 14.0 15.1 14.3 
5 20.5 18.8 19.3 8.0 13.9 19.5 
6 20.1 21.7 8.7 14.9 29.5 5.1 
7 14.8 21.3 21.7 21.9 8.6 11.7 
8 15.6 8.1 28.9 16.1 14.7 16.6 
9 11.4 8.4 12.7 24.8 15.8 26.9 
10 12.8 25.4 18.8 15.0 9.8 18.3 
11 15.7 19.9 11.4 14.7 19.1 19.3 
12 9.2 26.2 9.7 18.1 20.4 16.4 
13 8.3 19.1 20.5 18.4 6.8 26.9 
14 21.3 26.6 11.1 18.9 9.7 12.5 
15 31.5 16.8 14.0 15.3 12.2 10.2 
16 22.0 18.4 11.4 9.8 19.7 18.8 
17 12.4 18.3 11.8 26.5 14.8 16.2 
18 8.5 18.3 16.1 22.0 16.7 18.3 
19 6.6 8.2 10.8 10.4 44.7 19.3 
20 21.3 29.1 5.2 22.3 12.6 9.5 
21 17.7 14.7 25.2 17.5 12.6 12.2 
22 17.5 33.3 11.2 8.2 20.1 9.7 
23 9.0 13.9 30.2 23.4 9.4 14.1 
24 13.1 17.7 26.5 17.6 12.6 12.6 
25 18.6 12.8 14.5 10.4 16.5 27.1 
26 20.1 14.4 16.7 12.2 21.1 15.6 
27 28.0 21.5 11.6 14.7 16.3 8.0 
28 16.9 13.7 16.5 22.4 5.8 24.8 
29 35.4 16.2 11.5 12.2 19.0 5.7 
30 18.9 20.9 11.9 15.4 11.7 21.1 
31 10.2 10.2 22.7 18.2 19.7 19.1 
32 8.4 13.6 11.1 19.8 22.4 24.7 
33 13.7 6.7 19.1 13.1 23.9 23.5 
34 15.7 7.5 22.2 24.7 15.1 14.9 
35 23.0 20.0 13.9 10.8 8.3 24.0 
36 10.1 34.1 14.3 25.9 9.7 5.9 
37 20.7 24.3 11.4 15.2 14.3 14.2 
38 14.6 30.2 19.2 15.6 9.0 11.4 
39 17.3 24.9 14.3 14.2 8.5 20.8 
40 9.4 9.9 15.4 31.4 19.4 14.5 
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Supplementary Figure 1. Results for synthetic data.  (a). CDSeq estimates versus true 
proportions; (b). CIBERSORT estimates versus true proportions; (c).CDSeq GEP 
estimates versus true GEP; (d). csSAM GEP estimates versus true GEP. 
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Supplementary Table 2 Cell-type (RNA) proportions (%) used to create mixed samples 

in the experiment with cultured cell types. Samples 1 to 4 and 37 to 40 are two replicates 

of the four pure cell lines. They were used as ground truth for benchmarking the CDSeq-

identified cell types, not input for CDSeq. 
 Cell types 

Sample Number Tumor – MCF7 CAFs – Hs 343.T Normal breast – 

hMECs-hTERT 
Lymphocytes – 

Namalwa 
1 100 0 0 0 
2 0 100 0 0 
3 0 0 100 0 
4 0 0 0 100 
5 85 5 5 5 
6 85 9 3 3 
7 85 3 9 3 
8 85 3 3 9 
9 70 10 10 10 
10 70 15 10 5 
11 70 15 5 10 
12 70 10 15 5 
13 70 10 5 15 
14 70 5 15 10 
15 70 5 10 15 
16 55 15 15 15 
17 55 30 10 5 
18 55 30 5 10 
19 55 10 30 5 
20 55 10 5 30 
21 55 5 30 10 
22 55 5 10 30 
23 40 20 20 20 
24 40 30 20 10 
25 40 30 10 20 
26 40 20 30 10 
27 40 20 10 30 
28 40 10 30 20 
29 40 10 20 30 
30 25 25 25 25 
31 25 35 25 15 
32 25 35 15 25 
33 25 25 35 15 
34 25 25 15 35 
35 25 15 35 25 
36 25 15 25 35 
37 100 0 0 0 
38 0 100 0 0 
39 0 0 100 0 
40 0 0 0 100 
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a.  

b.  

c.  

d.  
Supplementary Figure 2 Results from deconvolution of experimental data: mixed RNA 
from cultured cell lines. (a). CDSeq estimated proportions versus true proportions; (b). 
CIBERSORT estimated proportions versus true proportions; (c). CDSeq estimated GEP 
versus true GEP; (d). csSAM estimated GEP versus true GEP. 
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a.  

b.  

Supplementary Figure 3 Results from deconvolution of mixed samples of liver, brain 
and lung cells. (a) Estimated sample-specific cell-type proportions by CDSeq and 
CIBERSORT compared to known cell-type proportions; (b) Cell-type-specific estimated 
GEPs by CDSeq and csSAM compared to observed GEPs from pure cell lines.  
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Supplementary Figure 4 Correlation among true LM22 GEPs. Some of the 22 cell 
types are highly correlated.  
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a.  

b.  

Supplementary Figure 5 Bar plot of estimated proportions of LM22 data set. Ideally, 
each bar plot should only contain only a single color since the LM22 is a set of GEPs 
from pure cell types. The bar plots of both methods are largely, but not exclusively, 
dominated by single colors, indicating the accuracy of estimated proportions. (a) 
CDSeq-estimated proportions; (b) CIBERSORT-estimated proportions.  
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Supplementary Figure 6 Result of deconvolution of follicular lymphoma tumors data. 
Heatmap chart of correlations between CDSeq-estimated cell-type-specific GEPs using 
fully unsupervised mode. We set the number of cell types to be 8, hyperparameters ! =
5, & = 0.5, and 700 MCMC runs. The 8 CDSeq-identified cell-type-specific GEPs were 
relatively highly correlated with naïve B cell and memory B cell GEPs but less correlated 
with the T cell GEPs. In fully unsupervised mode, CDSeq could uncover signals only from 
B cells.
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a.  
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b. 
 

Supplementary Figure 7 CDSeq performance on deep deconvolution with fully unsupervised learning. We applied 
CDSeq on PBMC data set 11 without appending LM22 GEPs to the GEPs of the heterogenous samples. We set 
the number of cell types to be 22, α=50,β=20: (a) Heat map of correlations between estimated cell-type-specific 
GEPs and LM22 GEPs; and, (b) CDSeq-estimated cell-type proportions compared to flow cytometry estimates, 
where the upper panel (blue dots) is the result of fully unsupervised mode and the lower panel (green dots) is the 
result of quasi-unsupervised mode. The black line is the linear regression line and p is the p-value for testing the 
hypothesis of no correlation against the alternative hypothesis of a nonzero correlation. 
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Supplementary Figure 8 Running time of CDSeq plotted against the shrinkage factor for 
data dilution using the synthetic data. Data dilution is a strategy to speed up calculations 
with very large input data sets. One divides the read counts by a constant shrinkage factor 
and rounds to integer values before running CDSeq. For shrinkage factors ranging from 
100 to 5000 in increments of 50, we measured the running time (in hours) and recorded 
the minimum correlations between the six CDSeq-identified cell-type-specific GEPs and 
their matched (using Munkres algorithm) six true GEPs. As the shrinkage factor increase, 
the running time decreases rapidly whereas the minimum of the Pearson correlation 
coefficients decreases more slowly and reaches a plateau near zero, indicating that at 
least one of the true cell types could not be identified, after shrinkage factors exceed 
about 2000. In this example, the total number of reads for all the 40 synthetic samples is 
about 9.5 × 10'. This result shows that large shrinkage factors degrade estimation and 
impair correct matching of CDSeq-identified cell types to actual cell types. 
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