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Abstract 17 

Human metapneumovirus (HMPV) has been recognized as an important pathogen which 18 

can cause a spectrum of respiratory tract disease. Here, we report Nanopore metagenomic 19 

sequencing of the first full length HMPV genome directly from a throat swab from a UK 20 

patient with complex lung disease and immunocompromise. We found a predominance 21 

(26.4%) of HMPV reads in the metagenomic sequencing data and consequently assembled 22 

the full genome at a high depth of coverage (mean 4,786). Through phylogenetic analyses, 23 

we identified this HMPV strain to originate from a unique genetic group in A2b, showing the 24 

presence of this group in the UK. Our study demonstrated the effectiveness of Nanopore 25 

metagenomic sequencing for diagnosing infectious diseases and recovering complete 26 
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sequences for genomic characterization, highlighting the applicability of Nanopore 27 

sequencing in clinical settings. 28 

 29 

Importance 30 

Nanopore metagenomic sequencing has the potential to evolve as a point-of-care test for a 31 

range of infectious diseases. Here, we report the first full length human metapneumovirus 32 

(HMPV) genome in the UK sequenced by Nanopore from a non-invasive sample from an 33 

immunocompromised patient. We demonstrate the presence of HMPV from a unique genetic 34 

group not previously reported from the UK. Our study demonstrates the effectiveness of 35 

Nanopore sequencing for diagnosing an infection that was not detected by routine first-line 36 

tests in the clinical microbiology laboratory. We report sufficient genomic data to provide 37 

insight into the epidemiology of infection and with the potential to inform treatment 38 

decisions. 39 
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Manuscript text 45 

Human metapneumovirus (HMPV) is a negative-sense, single-stranded RNA virus of 46 

approximately 13kb and belongs to the family Paramyxoviridae [1]. Since it was first 47 

described in 2001, HMPV has been recognized as an important pathogen which can cause 48 

respiratory tract diseases, ranging from mild upper respiratory tract infections to severe 49 

bronchiolitis and pneumonia [2]. HMPV can also cause severe disease in 50 

immunocompromised patients and those with underlying medical conditions, including lung 51 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 17, 2018. ; https://doi.org/10.1101/496687doi: bioRxiv preprint 

https://doi.org/10.1101/496687
http://creativecommons.org/licenses/by/4.0/


transplant recipients [3]. Two main genetic lineages (A and B) and five sublineages (A1, A2a, 52 

A2b, B1, and B2) have been described [4]. 53 

The Nanopore sequencing platform (Oxford Nanopore Technology, ONT) is capable of 54 

generating real-time sequencing data, with the potential to evolve as a point-of-care test for a 55 

range of infectious diseases [5,6]. In this report, we describe recovery of full length HMPV 56 

genome directly from a throat swab through the application of Nanopore metagenomic 57 

sequencing. 58 

A male in his 40’s with cystic fibrosis (CF) and a previous lung transplant presented with 59 

breathlessness, thick sputum and low oxygen saturations. His condition was further 60 

complicated by CF-related diabetes mellitus and bronchiolitis obliterans. To our knowledge, 61 

he had not travelled outside the UK. As he presented to hospital during the peak of the 62 

influenza season, a throat swab was taken to test for respiratory viruses in a clinical 63 

diagnostic laboratory; this sample was negative by PCR for influenza A, influenza B, and 64 

respiratory syncytial virus. Given his previous confirmed colonisation with Pseudomonas 65 

aeruginosa, he was treated with broad spectrum intravenous antibiotics, and discharged from 66 

hospital after two weeks. 67 

We performed Nanopore metagenomic sequencing and generated 168,811 reads from this 68 

throat swab. We identified 44,580 (26.4%) HMPV reads and 5,393 (3.1%) human reads 69 

(which were discarded and not retained). The remaining reads mostly comprised bacteria 70 

representing oral flora (predominantly Lactobacilli (20%), Actinobacteria (7%), and 71 

Proteobacteria (6%)) (Fig. S1). Mapping results showed that HMPV reads covered 99.8% 72 

(13,291/13,319) of the reference sequence (USA/NM009/2016, accession number KY474539) 73 

at a high mean depth of coverage (4,786). The mean alignment length was 1,534bp and 25% 74 

of the alignments were longer than 2,000bp (Fig. 1). We used an alignment-based approach 75 
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to recover a HMPV genomic sequence of 12,893bp, referred to as JR001 (accession number 76 

xxx). The sequence is nearly complete excepting 205bp at the start of the coding region. 77 

To determine the relationship between JR001 and previously published HMPV genomes, 78 

we constructed phylogenetic trees for the full length genome and eight genes (N, P, M, F, M2, 79 

SH, G, and L). JR001 clustered within genetic sublineage A2b on the basis of the full length 80 

genome and individual genes (Fig. 2 and Fig. S2). Seven HMPV strains from the United 81 

States and one strain from China were closely related to JR001, and formed a unique genetic 82 

group separated from other strains in A2b, strongly supported by a bootstrap value of 100. 83 

The pair-wise nucleotide sequence identities between JR001 and the eight related genomes 84 

ranges from 98.3% to 99.2%. This subgroup has been recently identified based on 85 

phylogenetic analysis of fusion and attachment genes [7], and comprises sequences 86 

originating from East and Southeast Asian countries, including Malaysia, Vietnam, 87 

Cambodia, China, and Japan, between 2006 and 2012 [7,8], and Croatia between 2011 and 88 

2014 [9]. Our study provided evidence supporting the presence of HMPV from this unique 89 

group in the UK. While we found JR001 shared high nucleotide sequence identities with 90 

HMPV strains from the US, its source remains unclear. Further studies are needed to 91 

investigate the geographical distribution of this unique genetic group of HMPV and its 92 

contribution to respiratory disease in the population. 93 

We conducted time-scale phylogenetic analyses for the HMPV genome to estimate the 94 

time of emergence of this group. The topology of the time-scale phylogeny was consistent 95 

with that from the maximum-likelihood phylogenetic analyses. HMPV strains within the 96 

group were estimated to share a common ancestor originating in 2003 (95% highest posterior 97 

density [HPD], 1994 to 2008). 98 

The extent to which the virus is a pathogen in this context is uncertain, as the patient was 99 

also at high risk of acute exacerbations of bacterial infection arising from Pseudomonas 100 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 17, 2018. ; https://doi.org/10.1101/496687doi: bioRxiv preprint 

https://doi.org/10.1101/496687
http://creativecommons.org/licenses/by/4.0/


colonisation. However, the recovery of the complete genome and the predominance of 101 

HMPV reads from the metagenome suggest active infection which could have been 102 

completely or partly responsible for the acute clinical deterioration. It is not uncommon to 103 

observe co-infection of HMPV with other respiratory viral pathogens, especially respiratory 104 

syncytial virus [10]; however we did not detect sequencing reads likely to represent other 105 

significant pathogens in this case (Fig. S1).  106 

The case is the first full length HMPV genome in the UK sequenced by Nanopore 107 

technology directly from a non-invasive sample without the need for enrichment or viral 108 

isolation, diagnosing a potentially relevant pathogen that was not detected by routine first-109 

line tests in the clinical microbiology laboratory, and producing data that can inform 110 

treatment as well as providing insights into the epidemiology of infection. Characterisation of 111 

the microbiome of patients with complex underlying lung disease, both during periods of 112 

clinical stability and in the setting of lower respiratory tract infections, could be valuable in 113 

informing intervention and supporting antimicrobial stewardship.  114 

 115 

Methods 116 

Sample collection, preparation, and Nanopore sequencing 117 

A throat swab was collected in viral transport media from a patient presenting to our 118 

tertiary referral teaching hospital in Oxford, United Kingdom. The sample was tested for 119 

respiratory viruses using Xpert Xpress Flu/RSV assay (Cepheid, Sunnyvale, CA, USA) in a 120 

clinical diagnostic laboratory. The sample was frozen for retrospective Nanopore sequencing. 121 

The sample was thawed and passed through a 0.45 µm filter prior to RNA extraction and 122 

DNase treatment. cDNA was prepared and amplified using a Sequence-Independent-Single-123 

Primer-Amplification method as described previously [11]. cDNA was used as input for a 124 
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SQK-LS108 library preparation and sequencing on a R9.4.1 flow cell using a MinION device 125 

(ONT). 126 

Genomic analysis 127 

Nanopore reads were basecalled using Albacore v2.1.7 (ONT). Metagenomic 128 

classification and mapping were used to identify HMPV reads. Reads were first 129 

taxonomically classified against RefSeq database using Centrifuge v1.0.3 [12]. De novo 130 

assembly was then performed with HMPV-like reads using Canu v1.7 [13]. The resulting 131 

contigs were BLASTed against GenBank nt database to determine the reference HMPV 132 

sequence. Reads were mapped against the selected reference (USA/NM009/2016, accession 133 

number KY474539) using Minimap2 [14]. HMPV reads were defined as those assigned to 134 

HMPV by centrifuge and confirmed by mapping. Consensus sequence for the HMPV strain 135 

was built using Nanopolish v0.9.2 [15].  136 

Phylogenetic analyses were conducted using an integrated dataset that comprised the 137 

HMPV sequence from this study and 154 complete HMPV genomic sequences from NIAID 138 

Virus Pathogen Database and Analysis Resource (ViPR) and NCBI Genbank [16].   139 

Maximum-likelihood phylogenies were generated using RAxML v8.2.10 [17]. Time scale 140 

phylogenies were built for genomic sequences with complete sampling dates (month, day, 141 

and year) using BEAST v1.10.1 [18]. The SRD06 partitioned substitution model, 142 

uncorrelated lognormal relaxed clock model, and Bayesian skyline coalescent tree prior were 143 

used in the analyses. Multiple independent runs were performed with a chain length of 200 144 

million steps and sampled every 10,000 steps. These runs were combined to ensure an 145 

adequate effective sample size (>200) for relevant parameters. 146 

 147 
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This sample that was surplus to diagnostic requirements was sequenced as part of a larger 149 

study with Research Ethics Committee approval (17/LO/1420). 150 

 151 

Accession number 152 

The sequencing data was deposited in the xxx under accession no. xxx. 153 
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Figure legend 210 

Figure 1. Results of Nanopore sequencing of an HMPV isolate from a throat swab. (A) 211 

Histogram of alignment length derived by mapping Nanopore reads to HMPV reference 212 

sequence (USA/NM009/2016, accession number KY474539). The mean alignment length is 213 

1,534bp and 25% of the alignment are longer than 2,000bp. (B) Plot of depth of coverage. 214 

HMPV reads cover the full reference genome (99.8%) at a high depth of coverage (mean 215 

4,786). Five HMPV reads, indicated by red lines, are nearly able to cover the full reference 216 

genome. 217 

 218 

Figure 2. Maximum-likelihood (ML) phylogenetic trees of HMPV isolates from this study 219 

and public databases. (A) ML tree for the full HMPV genome, (B) ML tree for G gene, (C) 220 

ML tree for F gene. Five known genetic sublineages, A1, A2a, A2b, B1, and B2, are 221 

indicated by blue boxes and grey triangles. Numbers at the nodes indicate bootstrap support 222 

evaluated by 1,000 replicates. The complete phylogenies, showing name of all strains 223 

included in the analyses, are shown in supplementary Fig. S2. HMPV strain from this study 224 

and eight strains from US and China formed a unique group within A2, indicated by a red 225 

box. 226 

  227 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 17, 2018. ; https://doi.org/10.1101/496687doi: bioRxiv preprint 

https://doi.org/10.1101/496687
http://creativecommons.org/licenses/by/4.0/


Supplemental materials 228 

Figure S1. Taxonomic assignment of Nanopore sequencing reads of a throat swab from a 229 

patient with complex lung disease and immunocompromise. HMPV reads accounted for 26% 230 

of the total reads. 231 

 232 

Figure S2. Maximum-likelihood (ML) phylogenetic trees for the full length genome and 233 

gene of HMPV isolates from this study and public databases. Numbers at the nodes indicate 234 

bootstrap support evaluated by 1,000 replicates. Five known genetic sublineages, A1, A2a, 235 

A2b, B1, and B2, are indicated by blue and grey boxes. HMPV strain from this study and 236 

eight strains from US and China formed a unique group within A2, indicated by a red box.  237 
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KJ627398|FPP00505/2011/A|Peru|2011_05_06

KJ627403|FLE7570/2009/A|Peru|2009_12_28

HB384717|UNKNOWN_HB384717|Unknown|NA|NA

KY474545|NM015/2016|USA|2016_04_16

KJ627427|FPP01153/2012/A|Peru|2012_01_08

KC403981|146892777/2003/A|Australia|2003_10_12

KC403978|172832103/2004/A|Australia|2004_08_14

HB384716|UNKNOWN_HB384716|Unknown|NA|NA

KJ627434|FLA5055/2008/A|Peru|2008_12_05

KJ627393|FLE7209/2009/A|Peru|2009_11_26

KC403977|145371295/2003/A|Australia|2003_08_12

KJ627424|FLA5834/2009/A|Peru|2009_01_28

KJ627420|FLE7219/2009/A|Peru|2009_11_30

JN184399|TN96_12|USA|1999_12
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