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Abstract 

Purpose: Homeostasis Model Assessment of β-cell function and Insulin Resistance 

(HOMA-B/-IR) indices are informative about the pathophysiological processes 

underlying type 2 diabetes (T2D). Data on both fasting glucose and insulin levels are 

required to calculate HOMA-B/-IR, leading to underpowered Genome-Wide Association 

studies (GWAS) of these traits.  

Methods: We overcame such power loss issues by implementing Genome-Wide Inferred 

Statistics (GWIS) approach and subsequent dense genome-wide imputation of HOMA-B/-

IR summary statistics with SS-imp to 1000 Genomes project variant density, reaching an 

analytical sample size of 75,240 European individuals without diabetes. We dissected 

mechanistic heterogeneity of glycaemic trait/T2D loci effects on HOMA-B/-IR and their 

relationships with 36 inflammatory and cardiometabolic phenotypes.  

Results: We identified one/three novel HOMA-B (FOXA2)/HOMA-IR (LYPLAL1, PER4, 

PPP1R3B) loci. We detected novel strong genetic correlations between HOMA-IR/-B and 

Plasminogen Activator Inhibitor 1 (PAI-1, rg=0.92/0.78, P=2.13×10-4/2.54×10-3). HOMA-

IR/-B were also correlated with C-Reactive Protein (rg=0.33/0.28, P=4.67×10-3/3.65×10-

3). HOMA-IR was additionally correlated with T2D (rg=0.56, P=2.31×10-9), glycated 

haemoglobin (rg=0.28, P=0.024) and adiponectin (rg=-0.30, P=0.012).  

Conclusion: Using innovative GWIS approach for composite phenotypes we report novel 

evidence for genetic relationships between fasting indices of insulin resistance/beta-cell 

function and inflammatory markers, providing further support for the role of 

inflammation in T2D pathogenesis. 

 

Keywords: HOMA-IR, HOMA-B, type 2 diabetes, inflammation, genome-wide 

inferred statistics  
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Introduction 

Type 2 diabetes (T2D) represents the fastest growing non-communicable disease 

epidemic world-wide1. Fasting hyperglycaemia is one of the criteria used for type 2 

diabetes (T2D) diagnosis, and fasting insulin (FI) levels are indicative of insulin 

sensitivity in peripheral tissues, but neither measure provides mechanistic insights into 

insulin secretion and action2. Homeostasis Model Assessment of β-cell function (HOMA-

B) and Insulin Resistance (HOMA-IR) can be derived from FG and FI concentrations and 

are two commonly used fasting state glycaemic indices elucidating pathophysiological 

processes in T2D3-11. HOMA-B reflects the function of β-cells in terms of their ability to 

secrete insulin, whereas HOMA-IR is a surrogate measure of insulin sensitivity.  

Pathophysiology of T2D and metabolic syndrome, as well as epidemiological and 

genetic studies suggest that there is a shared aetiology between cardiometabolic 

phenotypes, variability of glycaemic traits in individuals without diabetes, and T2D9,12-14. 

Sedentary lifestyle and major risk factors of T2D induce low-grade inflammation, which 

consequently leads to overt diabetes in individuals with more pronounced and prolonged 

inflammatory response15 and insulin resistance. However, genetic relationships between 

these traits are not established. Moreover, metabolic syndrome is a pro-thrombotic state 

due to the inhibition of the fibrinolytic pathway, another proposed risk factor of T2D 

related to insulin resistance and inflammation16,17, but little is known about their shared 

genetic risk factors. The shared genetic aetiology within cluster of cardiometabolic traits 

was only recently reported through estimation of genetic correlations18,19.  

Our understanding of biological processes shared between β-cell function and 

insulin resistance, reflected by HOMA-B/-IR, and a range of epidemiologically related 

traits and diseases, such as T2D, could be informed by dissecting the patterns of their 

genetic relationships. Genome-wide association studies (GWAS) have identified over 70 
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loci associated with fasting glucose (FG) and/or FI levels in non-diabetic European 

descent individuals20. However, to date, only ten HOMA-B loci, including ADCY5, 

ARAP1(STARD10), DGKB, FADS1, GLIS3, GCK, G6PC2, MTNR1B, TCF7L2, and SLC30A8, and 

three HOMA-IR loci (GCKR, IGF1/SC4MOL, TCERG1L) have been described in GWA studies 

in European/African American descent populations21-25. This is mostly attributable to 

underpowered studies, since HOMA-B and HOMA-IR calculations require assessment of 

both FG and FI in the same individual. If either of these two primary fasting measures is 

missing for an individual, their HOMA indices cannot be derived and such individuals do 

not contribute to GWAS of HOMA indices. Similarly, missing FG or FI measurement in an 

entire cohort precludes involvement of such study in GWAS meta-analyses of HOMA 

indices (Figure 1). As a consequence, HOMA-B/-IR GWAS meta-analyses usually feature 

dramatically smaller sample sizes compared to FG/FI GWAS. Previously published 

HOMA-B/-IR discovery analyses by the Meta-Analyses of Glucose and Insulin-related 

traits Consortium (MAGIC) suffered from about 20% sample size and power losses for 

analytically inferred indices21, which has held up the progress of understanding the 

molecular mechanisms behind insulin secretion and sensitivity composite measures 

through locus discovery in recent years26,27;28,29. The Genome Wide Inferred Statistics 

(GWIS) method provides an approximation of the GWA summary statistics for any 

derived variable that is a function of primary phenotypes, when such statistics, means 

and covariances of the constituent primary phenotypes are available or can be 

approximated with reasonable precision30. Unlike GWAS, the GWIS can accommodate 

information from individuals or cohorts, where any of the primary phenotypes is 

assessed. Moreover, the GWIS accommodates any degree of overlap between individuals 

from studies contributing data for primary traits. In this study, we applied GWIS 

methodology30 and derived the summary statistics for HOMA indices based on recent FG 
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and FI GWAS meta-analysis summary statistics from the MAGIC (Lagou et al., manuscript 

in preparation). 

The aims of this study were three-fold: (i) to infer analytically HOMA-B/-IR GWIS 

based on the FG/FI GWAS meta-analysis summary statistics from the MAGIC consortium 

and evaluate the sensitivity of GWIS methodology; (ii) to use the obtained summary 

statistics to define the effects of T2D, FG/FI and HbA1C loci on insulin secretion and action 

through their effects on HOMA-B/-IR; and (iii) to explore the genetic relationships 

between HOMA-B/-IR, cardiometabolic, and inflammatory traits.  

 

Methods 

Phenotypes 

Homeostasis Model Assessment of β-cell function (HOMA-B) and Insulin resistance 

(HOMA-IR) are calculated from the Fasting Glucose and Fasting Insulin measures by 

formulae: 

𝐻𝑂𝑀𝐴 − 𝐵 =
20 × 𝐹𝐼

𝐹𝐺 − 3.5
 , [1] 𝐻𝑂𝑀𝐴 − 𝐼𝑅 =

𝐹𝐺 × 𝐹𝐼

22.5
 , [2] 

where FG is measured in mmol/l and FI is in mU/l units31. 

 

GWIS for HOMA-B/-IR 

To approximate the HOMA-B/-IR GWAS summary statistics, we applied a recently 

developed GWIS approach30. We obtained the summary statistics from the latest GWAS 

meta-analysis of FG and FI performed by the MAGIC in up to 88,320/64,090 individuals 

and 40/33 studies respectively (Supplementary Materials and Methods) (Lagou et al., 

manuscript in preparation). Studies genotyped on Metabochip were not included, so that 

inferred summary statistics were appropriate to analyse with LD score regression 
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(LDSC)32. In the MAGIC meta-analysis FI was measured in pmol/l and natural log 

transformed, FG was measured in mmol/l with a cut-off at 7mmol/l. The standard HOMA 

formulae require untransformed FG/FI measures and use mU/l units for FI. We adapted 

the HOMA formulae to compute a GWAS summary statistics for ln(HOMA-IR) and 

ln(HOMA-B) given summary statistics for FG and ln(FI), measured in the units described 

above: 

𝐻𝑂𝑀𝐴 − 𝐵 = 𝑙𝑛
20 ×

𝑒𝐹𝐼

6.945
𝐹𝐺 − 3.5

 , [3] 𝐻𝑂𝑀𝐴 − 𝐼𝑅 = 𝑙𝑛
𝐹𝐺 ×

𝑒𝐹𝐼

6.945
22.5

 , [4] 

 

where division by 6.945 was introduced to convert FI from pmol/l to mU/l units. The 

GWIS method requires, in addition to genome wide summary statistics for FG and FI, the 

population mean of FG and FI, the phenotypic correlation between FG and FI and sample 

overlap across the studies, included in both meta-analyses studies, to correct for 

dependence between the FG and FI GWAS (details in Supplemental Materials and 

Methods and example scripts in Data Access). Overall, we calculated the effect estimates 

(β’s) for HOMA-B and HOMA-IR for each SNPi, i=1,…,M, where M is the number of SNPs. 

According to the GWIS method βi is computed as a sum of HOMA-B or HOMA-IR functions 

respectively (versions of the formulae given above) derived using population means and 

published summary statistics for FG and FI, which are evaluated for 1 and 2 copies of 

effect alleles and weighted by the estimated frequencies of effect alleles in FI and FG 

GWAS summary statistics (Supplementary Materials and Methods). For the calculation 

of the standard errors (SEs) of the GWIS-inferred effect estimates of HOMA-B and HOMA-

IR we used the Delta method accounting for the sample overlap (Supplementary 

Materials and Methods). We compared the magnitude and direction of the effects in 

genome-wide significant loci in published and inferred analysis and confirmed power 
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gain, especially for HOMA-IR, when compared to previous analysis. (Tables S1 and S2, 

Figures S1-S4). 

We run the LDSC33 between the GWIS-inferred and published summary statistics for 

HOMA-B and HOMA-IR, to obtain the LDSC intercept for the GWIS-inferred HOMA-B/-IR 

and to estimate the genetic correlation between inferred and published data. We used 

LDSC intercept to correct the inferred summary statistics for any inflation 

(Supplementary Materials and Methods). 

 

Genome-wide imputation using summary statistics 

We implemented a novel methodology developed within SS-imp software tool that 

enables genome-wide imputation from denser reference panels34 and imputed the 

analytically inferred HOMA-B/-IR GWIS to 1000 Genomes project variant density and 

compared the findings with the lower variant density directly inferred GWIS. 

 

Functional and regulatory elements enrichment analysis 

We applied the GARFIELD35 tool v2 on the meta-analysis results to assess enrichment of 

the HOMA-B/HOMA-IR associated variants within functional and regulatory features. 

GARFIELD enables checking for genic annotations, chromatin states, DNaseI 

hypersensitive sites, transcription factor (TF) binding sites, FAIRE-seq elements and 

histone modifications, among others, in a number of publicly available cell lines. We 

considered significant enrichment to be present if the GWIS signal and the functional 

annotation signal significantly co-localized, i.e. PGWIS<5x10-8 and Penrichment<1.2x10-5 after 

correction for 2,040 annotations. 

 

Genetic correlation between HOMA indices and other phenotypes 
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To evaluate the shared genetic aetiology, we applied the LDSC approach33 to HOMA-B/-

IR and publicly available meta-analysis summary statistics for T2D, 13 glycaemic and 17 

cardiometabolic phenotypes (sample size, ethnicity, reference and source of the data 

presented in Table S3). We defined an extended group of cardiometabolic phenotypes 

and related traits by including chronic kidney disease (CKD) and its markers (Estimated 

glomerular filtration rate (eGFR) based on creatinine and cystatin C)36; systolic and 

diastolic blood pressure (SBP/DBP) and hypertension (HTN)37 to explore the genetic 

relationships between cardiometabolic traits and HOMA-B/-IR. We expanded our 

analysis to five inflammatory markers, including adiponectin38, plasminogen activator 

inhibitor 1 (PAI-1)39, C-reactive protein (CRP)40, intercellular adhesion molecule 1 

(ICAM-1)41, white blood cell counts (WBC)42). The five inflammation phenotypes were 

obtained with permission of Cross Consortia Pleiotropy (XC-Pleiotropy) Group (Table 

S3).  

 

Results  

GWAS for HOMA-B/-IR  

We inferred analytically the HOMA-B/-IR GWAS summary statistics using the summary 

statistics of HapMap reference panel-imputed FG/FI GWAS meta-analyses of 40/33 

studies by the MAGIC (Lagou et al., in preparation). We imputed them to 1000 Genomes 

phase 3 (2013-05-02) reference panel thus reaching ~11.2M autosomal variants for up 

to 75,240 non-diabetic individuals of European descent. We detected a novel HOMA-B 

locus at FOXA2 gene (rs5029909, β(SE)=-0.044(0.0079), P=2.70×10-08), which 

overlapped with an established FG-association (rs6113722, R2=0.69 in Europeans, 

1000G)13. We also confirmed associations at 10 established HOMA-B/FG loci (Figure S5a, 

Table 1)13,21,43. The HOMA-IR GWIS provided three novel loci at LYPLAL1/SLC30A10, 
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PER4, PPP1R3B and confirmed established loci at GCKR and IGF121 (Figure S5b, Table 1). 

Imputation using new tool SS-imp34 for summary statistics to 1000G density highlighted 

small difference from the lead variants at HOMA loci imputed to HapMap2 reference 

panel (Table S4). New lead 1000G-imputed variants at TCF7L2, ARAP1[STARD10] for 

HOMA-B, and at GCKR (rs11336847) for HOMA-IR, were in strong (r2>0.8) LD, and at 

G6PC2 (rs580670 for HOMA-B in moderate (r2>0.6) LD with HapMap2 lead variants 

(Table1). 

GWIS requires FG/FI population mean estimates to infer summary statistics for 

HOMA-B/-IR, which vary across studies. We performed a set of sensitivity analyses, 

where we allowed mean estimates to fluctuate between reasonable values. These 

analyses indicated that within 1 standard deviation (SD) from the two means (M(SD) = 

5.25(0.34) mmol/l for FG and M(SD)=60.40(19.45) pmol/l for FI) 8 out of 11 HOMA-B 

loci were genome-wide significant in 100% of cases, except for GCK (72%), SLC30A8 

(86%) and FOXA2 (55%) with slight p-value drops to 4.7×10-7, 1.2×10-7 and 2.7×10-7 

respectively; and all 5 HOMA-IR loci were genome-wide significant irrespective of FG/FI 

means variation (Figure S6). 

 

Effects of established T2D, FG/FI and HbA1C loci on HOMA-B/-IR 

 We investigated the effects of established 102 T2D, 50 FG/FI and 57 HbA1C44 loci 

on indices of -cell function and insulin resistance (Figure 2, Tables S5-S7)20,45-48. As 

previous studies were performed using a number of reference panel imputations, the 

number of established T2D/FG/FI/HbA1C SNPs that map to HOMA-B/-IR GWIS results is 

smaller than the number of currently reported SNPs in the literature (R2>=0.9 for the 

proxy SNPs). The effects of T2D loci on HOMA indices followed a grouping previously 

defined by us29. The largest group of loci associated at least nominally with HOMA-B and 
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primarily leading to reduced insulin secretion included 20 T2D loci. Some of these loci 

have at least a nominal effect on improved insulin sensitivity which likely reflects 

compensatory mechanisms observed in individuals without known T2D used for the 

HOMA analyses, as previously discussed29. The effects of T2D loci on HOMA index of 

insulin resistance (Figure 2b) clearly demonstrate that, in addition to IRS1, GCKR, KLF14 

and PPARG, a number of more recently defined T2D loci, including PEPD, ANKRD55, BCL2, 

ARL15 and GRB14 are related to this pathophysiological process. FTO, MC4R and NRXN3 

are established body mass index (BMI) loci49 and therefore their observed effects on 

fasting insulin resistance are likely to be driven through their primary effects on adiposity. 

Most of the established FG loci were at least nominally associated with the reduced 

-cell function, as reflected by negative effect estimates for HOMA-B (Figure 2c), while 

FI loci were associated with decreased insulin sensitivity, i.e. provided positive effect 

estimates for HOMA-IR values (Figure 2d). Ten FG loci were genome-wide significant for 

HOMA-B (Figure 2c). FG level-increasing alleles at eight overlapping T2D loci (Figure 

2a) represented by hyperglycaemia (MTNR1B, GCK), β-cell (SLC30A8, PROX1, ADCY5, 

GLIS3, TCF7L2), and proinsulin (ARAP1[STARD10]) loci, as well as the FG only loci that do 

not have established associations with T2D (G6PC2, FOXA2) were associated with 

reduced β-cell function through their primary effect on the set point of glucose. All FI loci 

were at least nominally associated with increased insulin resistance detected by HOMA-

IR (Figure 2d). At FI loci, we detected at least nominal effects on HOMA-B, which might 

be related to left truncation for FG values for these analyses which introduced seeming 

improvement in -cell function29. The T2D effect allele in GCKR locus reflects solely the 

decreased insulin action, i.e. normal functioning of β-cells in the presence of increased 

insulin resistance (Figure 2b)50,51.  
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Nine of eleven genome-wide significant HOMA-B loci and four loci of suggestive 

significance (GCK, PDX1, CDKAL1, FTO) have established effects on HbA1C levels44 (Figure 

2e). The HbA1C loci have been classified into erythrocytic or glycaemic, but a number of 

them remain unclassified. We suggest that five unclassified HbA1c loci (PHB2, FNDC3B, 

GAS6, SYF2, CERS2) are glycaemic as they exert nominal effects on HOMA-B. Similarly, the 

abovementioned PHB2, FNDC3B, GAS6 as well as ATA2B and FOXN2 are nominally 

associated with HOMA-IR and therefore are likely glycaemic. 

 

Enrichment in functional elements for HOMA-B/-IR associations 

The enrichment analysis using the GARFIELD software did not yield statistically 

significant co-localization signals neither for HOMA-B nor HOMA-IR. We observed 

suggestive evidence (P<0.05) for an enrichment of the HOMA-B associated variants 

within several pathophysiologically relevant tissues, including blood, liver and brain. 

Both HOMA-B and HOMA-IR associated variants showed also suggestive evidence for 

enrichment in a number of annotations within K562 (human immortalised myelogenous 

leukemia cell line) and HepG2 (human immortalised liver carcinoma cell line) cells, 

including transcription start cites, weak enhancers among chromatin states, histone 

modifications, transcription factor binding cites and FAIRE-seq elements (Figure S7). 

 

Genetic relationships between HOMA indices and other phenotypes.  

LDSC33 was applied to estimate the genome-wide genetic correlation between HOMA-B/-

IR and 36 other phenotypes falling into five broad domains (Table S8), including, T2D, 

13 glycaemic traits, four blood lipids, four obesity traits, nine phenotypes indicative of 

T2D complications and five inflammation markers (Figure 3). HOMA-B showed positive 

and strong (rg=0.68[SE=0.07], P=4.33×10-21) genetic correlation with HOMA-IR in our 
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data. We identified the strongest novel genetic correlation (FDR–adjusted to correct for 

multiple testing at P<0.05) in the domain of inflammatory markers, specifically between 

HOMA-IR and PAI-1 (rg=0.92, P=2.13×10-4), usually observed at higher levels in people 

with obesity and metabolic syndrome39. Similarly, HOMA-B directly correlated with PAI-

1 (rg=0.78, P=2.54×10-3). CRP positively correlated with both HOMA indices (rgHOMA-B/-

IR=0.28/0.33, PHOMA-B/-IR=3.65×10-3/4.67×10-3), while adiponectin showed significant 

inverse correlation with HOMA-IR only (rg=-0.30, P=0.012).  

For HOMA-IR, we saw significant correlations with FI (rg=0.98, P=<0.001), FG 

(rg=0.49, P=1.37×10-9), HbA1C (rg=0.28, P=0.02) and T2D (rg=0.56, P=2.31×10-9), in 

accordance with epidemiological observations. The genetic correlation between HOMA-

B from our largest to date GWAS confirmed initial observations18 on the strong genetic 

correlation with FI (rg=0.80, P=8.77×10-72). In accordance with previous reports, the 

correlation with FG (rg=-0.32, P=0.05) and relationship with T2D (rg=0.05, P=0.71) were 

not significant after multiple testing corrections18,52. Other indices of glucose 

homeostasis, including the insulin sensitivity index, ISI, without adjustment for BMI, were 

inversely correlated with both HOMA indices (rgHOMA-B/-IR=-0.90/-1.04, PHOMA-B/-

IR=1.20×10-5/2.71×10-8). We did not find significant genetic correlations between HOMA-

B/-IR and other glycaemic traits, which is likely due to small GWAS sample sizes for those 

phenotypes (Table S8). Triglycerides (TG) and all obesity traits were directly correlated 

with both HOMA-B/-IR, similarly to a previous report that used enrichment analysis 

approaches13. We found no significant genetic correlations between HOMA-B/-IR and 

traits in the domain of T2D complications with the exception of Estimated Glomerular 

Filtration Rate (eGFR) defined from cystatine C and HOMA-B (rgHOMA-B/IR=-0.31/-0.27, 

PHOMA-B/IR=0.03/0.05).  
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Effects of fasting glycaemic trait loci on PAI-1 variability 

We followed up the observation from genome-wide genetic correlation estimates by 

evaluation of the effects of FG/FI loci on PAI-1 and HOMA-B and HOMA-IR, respectively 

(Figure 4). While only four FG loci (PPP1R2B, MTNR1B, CRY2 and GCKR) showed at least 

nominally significant effects on PAI-1ref39, the direction of their effects was variable. 

Interestingly, among FI loci, at least half of the loci had nominal association with PAI-1. 

At only two loci (PELO and GCKR), FI increasing allele was associated with lower PAI-1 

levels, GCKR variant effect being in line with its established mutational mechanism 

leading at the same time to higher FG and lower triglycerides levels51. At the same time, 

among four established PAI-1 loci, rs1801282-A (coding SNP, Pro12Ala) at PPARG is an 

established T2D risk53 and insulin resistance29 variant leading to higher PAI-1 levels.  

 

Discussion  

We report the largest GWAS to date of HOMA-B and HOMA-IR indices in non-

diabetic individuals of European origin, inferred analytically from FG and FI GWAS meta-

analysis summary statistics and imputed using novel methodology34 to 1000 Genomes 

Project variant density. The application of GWIS methodology brought the total count of 

HOMA-B/-IR loci to 11/5, respectively, and brought the analytical sample size up to 

~75,240 individuals. This GWIS-based analysis revealed one novel HOMA-B and three 

novel HOMA-IR loci. We highlighted the strongest novel positive genetic correlations 

between non-glycaemic trait PAI-1 and HOMA-B/-IR. We also reported novel positive 

genetic relationships between CRP and HOMA-B/-IR, as well as inverse relationships 

between adiponectin and HOMA-IR. We demonstrated that GWIS of both HOMAs 

produced more precise SNP effect parameter estimates, and thus gained power, 

compared to the previous GWAS21. The results of LDSC33 analysis confirmed that the gain 
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in power in GWIS did not arise from the introduction of spurious inflation due to 

population stratification or other biases. 

Novel HOMA-B/-IR loci, including FOXA2, LYPLAL1/SLC30A10, PPP1R3B, are 

established for FG or FI, while HOMA-IR locus at PER4 encoding for Period Circadian 

Clock 3 Pseudogene is novel. The lead variant rs10224545 at PER4 also showed a 

genome-wide significant association with FI in our data. This region was not covered on 

Illumina Metabochip and therefore was not detected by a larger study from the MAGIC 

investigators13. Similarly to MTNR1B23,54 and CRY221 loci, both affecting FG levels and 

related to indices of β-cell function, the association with insulin resistance at PER4 gene 

provides an additional link between circadian rhythmicity and energy metabolism55. 

Overall, nine HOMA-B loci at ADCY5, DGKB, GCK, SLC30A8, GLIS3, TCF7L2, ARAP1, 

LYPLAL1/SLC30A10 and MTNR1B and one HOMA-IR locus at GCKR are also established 

as contributing to the risk of T2D47. Among the remaining, two lead variants (rs174555, 

rs4240624 at FADS1/2/3 and PPP1R3B, respectively) are only nominally (P<0.05) 

associated with T2D risk47. Other HOMA-B loci, such as G6PC2, are established for 

glycated haemoglobin (HbA1C) levels, in addition to FG, or for a wide range of glycaemic, 

lipid, metabolomic traits, such as variants within FADS1refs21,56,57. Among novel HOMA-IR 

loci, LYPLAL1/SLC30A10 is an established FI (rs2820436, R2=1)ref43 and obesity locus 

known for its effects on waist-to hip ratio (WHR) in women (rs2820443, R2=0.44)ref58, 

while associations at PPP1R3B are established for several glycaemic traits, including FI 

(rs983309, r2=0.75; rs2126259, r2=0.85), FG (rs983309, r2=0.75) and 2-hour 

postprandial glucose, 2hrGlu (rs11782386, r2=0.60). 

High insulin and glucose levels, insulin resistance and β-cell dysfunction 

characterize the pathophysiology of T2D. However, the exact mechanism of genetic 

interrelationships between the metabolic processes and disease is still unclear. Amongst 
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the established T2D loci45,46,48 we investigated in relation to HOMA indices GWIS results 

(Tables S5-S7), only 41/30 have at least nominal effect on HOMA-B/-IR variability, 

respectively, highlighting an incomplete overlap between genetic variants affecting 

normal glucose homeostasis and processes involved in T2D pathogenesis. Insulin 

resistance and β-cell function may have distinct impact on susceptibility to T2D28, and 

mechanistically T2D loci can be related to a specific biological process affecting insulin 

secretion, resistance or processing59. Effects of T2D loci follow the main subdivisions into 

β-cell, hyperglycaemia, proinsulin and insulin resistance groups29. The group of 

established T2D loci that influence insulin resistance or fasting insulin has been under-

characterised, most probably, due to low power of respective endophenotype GWAS 

meta-analyses21,60. Empowered by analytically inferred HOMA-IR GWAS, we 

demonstrated that the group on insulin resistance loci is larger than described before and 

comparable to that of β-cell loci. As expected from epidemiological studies, FG loci also 

affect HOMA-B values (Figure S5), whereas FI variants have most prominent effect on 

HOMA-IR.  

We confirmed the evidence of shared genetic effects between HOMA-B and T2D 

risk at several loci, manifested by inverse relationships28,29. However, the effect of left 

truncation for FG levels to define non-diabetic individuals in general population leads to 

seemingly improved β-cell function through positive HOMA-B values for the insulin 

resistance loci. In fact, we did not observe any genetic correlation between HOMA-B and 

T2D using summary statistics from the latest GWAS meta-analyses. In parallel, we 

however demonstrated that HOMA-B loci, associated with a decrease in β-cell function, 

exert their effects by both increasing and decreasing insulin resistance (Figure 2a-b).  

Inflammation markers PAI-1 and CRP showed strong positive genetic correlation 

with both HOMA-B/-IR measures. The correlation of these markers was stronger with 
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fasting insulin resistance. CRP is a marker of increased cardiovascular risk61,62 and PAI-1 

is associated with CAD63 and myocardial infarction64, both high risk factors in T2D. 

Importantly, PAI-1 is a fibrinolytic and inflammatory marker, which was proposed and 

confirmed in epidemiological studies as an independent risk factor for T2D65,66. In our 

study among non-glycaemic traits, PAI-1 showed the strongest genetic correlation with 

fasting insulin resistance, a pathophysiological process leading to T2D. Moreover, when 

we looked at the individual effects of FG/FI variants on PAI-1 variability, variant alleles 

associated with higher FI grouped around increased levels of PAI-1, while there was no 

clear pattern of such an effect for FG variants. From pathophysiological point of view, the 

clustering of hyperinsulinaemia, dysglycemia, dyslipidemia, and hypertension as 

cardiovascular risk endophenotypes in T2D occurs around insulin resistance, and in the 

presence of elevated PAI-1 levels, leads to fibrinolytic dysfunction, increased thrombotic 

risk17,67, and induces local or systemic low-grade inflammation. Taken together, evidence 

from our study provides novel genetic support for the need to dissect in better detail 

these deficient mechanisms in the early pathogenesis of T2D. 

Noteworthy, we observed no significant genetic correlation between HOMA-B/-IR 

and CAD, hypertension, SBP and DBP, which could indicate that the associations between 

HOMA-B/-IR and PAI-1 and CRP are strictly due to inflammatory pathways involved in 

T2D risk. Contrary to expectations from epidemiological studies, we neither observed 

correlation between adiponectin and HOMA-B for genetic effects using the GWAS 

summary statistics, whilst the respective genetic correlation with HOMA-IR may be 

through its association with obesity, since adiponectin is secreted in adipose tissue. 

Alternatively, it can be due to its involvement in inflammatory processes in T2D 

pathogenesis68. Analysis of CKD and its marker eGFR based on creatinine did not yield 

statistically significant genetic correlations; only eGFR based on cystatine C for HOMA-B 
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did so. The latter could reflect the association between cystatine and metabolic 

syndrome69, whose definition includes T2D risk factors such as insulin resistance and 

abnormal fat distribution70.  

Finally, we reported novel significant positive genetic correlation between HOMA-

IR and T2D, and our estimates of genetic correlations are concordant with established 

genome-wide relationships between HOMA-B and FG/FI/BMI/T2D and HOMA-IR and 

FG/FI/BMI18. The positive genetic correlations for TG and negative for high density 

lipoprotein cholesterol (HDL-C) with HOMA-B/-IR reflect the conditions of diabetic 

dyslipidaemia, characterised by increased levels of TG and decreased levels of HDL 

cholesterol71. The role of obesity and adiposity43,72, in particular, in the risk of T2D is well 

established and was reflected in significant genetic correlations between HOMA-B/-IR 

and obesity related traits, such as BMI, WHR, waist circumference (WC), hip 

circumference (HIP), in our study. In addition, adiposity loci FTO, MC4R and NRXN3 were 

at least nominally associated with HOMA-B/-IR in our analysis not adjusted for BMI.  

 Our study provides additional evidence for the GWIS method as a powerful tool 

for future GWAS studies of analytically derived phenotypes. Our work also suggests that 

GWAS meta-analysis of summary statistics is a useful source of information for follow-up 

analyses, including inferences about genetic correlations and mechanistic 

characterisation of the specific trait pathophysiology through their effects on other 

related phenotypes.  
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Data Access: 

The GWAS summary statistics for the MAGIC investigators study of FG and FI and the 

present study results will be deposited on the consortium web site 

www.magicinvestigators.org.   
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Table 1. Comparison of HOMA-B/-IR and FG/FI effects across genome-wide significant loci 

SNP CHR Locus name 

Alleles 

(effect 

/ 

other) 

Effect (SE), p-value N Effect (SE), p-value N 

   HOMA-B FG 

rs560887 2 G6PC2 C/T -0.046 (0.0033), 4.74×10-46 75,173 0.069 (0.0027), 2.41×10-144 88,202 

rs11708067 3 ADCY5 A/G -0.024 (0.0038), 2.50×10-10 75,227 0.022 (0.0031), 5.55×10-13 88,301 

rs10258074 7 DGKB A/T 0.019 (0.0031), 2.55×10-10 75,202 -0.028 (0.0025), 1.18×10-27 88,240 

rs3757840 7 GCK G/T 0.02 (0.0033), 1.98×10-09 64,352 -0.037 (0.0029), 3.66×10-38 72,887 

rs3802177 8 SLC30A8 G/A -0.021 (0.0036), 2.55×10-09 68,044 0.029 (0.0030), 1.24×10-21 76,819 

rs7034200 9 GLIS3 A/C -0.019 (0.003), 2.96×10-10 74,669 0.016 (0.0025), 2.32×10-10 87,749 
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rs7903146 10 TCF7L2 C/T 0.03 (0.0034), 7.41×10-19 75,212 -0.022 (0.0028), 1.04×10-14 88,262 

rs10830963 11 MTNR1B C/G 0.039 (0.0038), 9.34×10-25 68,612 -0.073 (0.0032), 2.37×10-113 77,412 

rs1552224 11 ARAP1[STARD10] C/A 0.025 (0.004), 4.28×10-10 75,207 -0.023 (0.0034), 5.56×10-12 88,250 

rs174555 11 FADS1/2/3 T/C -0.021 (0.0033), 8.97×10-11 75,237 0.021 (0.0027), 2.17×10-14 88,322 

rs5029909 20 FOXA2 C/T -0.044 (0.0079), 2.70×10-08 68,584 0.044 (0.0068), 1.49×10-10 79,095 

    HOMA-IR FI 

rs2605101 1 LYPLAL1/SLC30A10 A/T 0.019 (0.0034), 3.78×10-08 75,238 0.017 (0.0032), 1.46×10-07 64,091 

rs780093 2 GCKR C/T 0.024 (0.0032), 1.06×10-13 75,226 0.018 (0.0030), 1.73×10-09 64,091 

rs10224545 7 PER4 T/C -0.031 (0.0056), 2.60×10-08 71,951 -0.029 (0.0052), 2.92×10-08 64,091 

rs4240624 8 PPP1R3B A/G -0.035 (0.0055), 2.73×10-10 68,617 -0.030 (0.0051), 4.25×10-09 60,824 

rs2114912 12 IGF1 T/G 0.026 (0.0044), 3.08×10-09 74,634 0.024 (0.0041), 3.76×10-09 63,539 
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Figure Titles and Legends. 

 

Figure 1. Comparison between GWAS meta-analysis of primary phenotypes and GWIS 

of derived phenotypes. Input phenotypes are fasting glucose (FG) and fasting insulin (FI), 

output phenotypes are Homeostasis Model Assessment of β-cell function (HOMA-B) and 

insulin resistance (HOMA-IR). a) Examples of how FG and FI measures could partially 

overlap within one cohort (e.g. Study A), whereas some cohorts could only have 

measures of FG (Study C) or FI (Study B). Study A could participate in future GWAS by 

computing HOMA-B/IR for overlapping individuals, although the sample size will be 

decreased in comparison to original FG and FI phenotypes. Study B and C cannot 

contribute to HOMA-B/IR GWAS, thus reducing the sample size of GWAS meta-analysis 

of HOMA-B/IR to a larger extent. b) Formulae to compute HOMA-B/IR from FG and FI 

measures. c) Conventional GWAS approach, where HOMA-B/IR would be computed 

based on individual cohort studies, undergoing the reduction of the sample size, if FG 

and FI are not measured in the same individual. GWAS summary statistics would be then 

computed on reduced sample size. d) GWIS approach, where FG and FI meta-analyses 

summary statistics are computed separately with maximum sample size available. 

HOMA-B/-IR summary statistics are then calculated from FG and FI meta-analyses 

results. The sample size of derived phenotypes are computed as geometric mean 

between FG and FI sample sizes. 
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Figure 2. Effects of established T2D (a,b), FG/FI (c,d) and HbA1C (e,f) loci on 

HOMA-B/-IR. Legend: X-axis and Y-axes represent the direction of loci effects on β-

cell function and insulin resistance as reflected by HOMA-B/-IR, respectively. Note, 

DUSP9 T2D locus is not included on the Figure 2 (a,b) as it resides on X chromosome. 

Effects of HOMA-B/-IR SNPs correspond to the risk alleles of either T2D, FG/FI or 

HbA1C SNPs. The largest group of 20 T2D loci (DGKB, CDKN2A/B, C2CD4A, TP53INP1, 

HHEX/IDE, UBE2E2, ANK1, SPRY2, TMEM163, TMEM154, HNF4A, PROX1, THADA, 

BRAF, MNX1, HNF1B(TCF2), GPSM1, IGF2BP2, KCNQ1, KL) is associated at least 

nominally with HOMA-B and is primarily leading to reduced insulin secretion. The 

strongest effects on HOMA-B were observed for the loci characterised by the reduced 

-cell function (SLC30A8, ADCY5, TCF7L2, GLIS3 and CDKAL1), reduced proinsulin 

production and insulin secretion at ARAP1(STARD10), and those related to fasting 

hyperglycaemia (MTNR1B and GCK). 
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Figure 3. Genetic correlations (rg) between HOMA-B/-IR and 13 glycaemic, 17 

cardiometabolic traits, five inflammation markers, and T2D. Genetic correlations 

reaching statistical significance (FDR–adjusted P < 0.05) are indicated in bold black 

in contrast to non-significant correlations reported in italic grey. An asterisk indicates 

BMI adjustment for specific phenotype. Phenotype abbreviations: type 2 diabetes 

(T2D), fasting glucose (FG), fasting insulin (FI), glycated haemoglobin (HbA1C), 

fasting pro-insulin (FPI), insulin sensitivity index (ISI), disposition index (DI), 

corrected insulin response (CIR), corrected insulin response adjusted for Insulin 

Sensitivity Index (CIR_ISI), incremental insulin at 30 min (Incr30), area under the 

curve of insulin levels during OGTT (AUCIns), insulin response at 30 min (Ins30), 2 

hour Glucose (2hrGlucose), triglycerides (TG), high density lipoprotein cholesterol 

(HDL-C), low density lipoprotein cholesterol (LDL-C), total cholesterol (TC), hip 

circumference (HIP), waist circumference (WC), waist to hip ratio (WHR), body mass 

index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), 

hypertension (HTN), coronary artery disease (CAD), eGFR creatinine diabetes 

mellitus (eGFRcrea_DM), eGFR creatinine non diabetes mellitus (eGFRcrea_nonDM), 

eGFR creatinine all (eGFRcrea_overall), eGFR cystatin C all (eGFRcys_overall), chronic 

kidney disease (CKD), white blood cell counts (WBC), intercellular adhesion molecule 

1 (ICAM-1), C-reactive protein (CRP), plasminogen activator inhibitor 1 (PAI-1), GT – 

glycaemic traits. 

 

Figure 4. Effects of established FG/FI (a,b) loci onPAI-1 levels and HOMA-B 

(a)/HOMA-IR (b). The X-axis represents the direction of loci effects on PAI-1, while 

the Y-axis shows effects β-cell function and insulin resistance as reflected by HOMA-

B/-IR, respectively.  
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Figure 1. 
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Figure 3. 
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Figure 4.  
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