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Abstract1

We contrast two computational models of sequence learning. The associative learner2

posits that learning proceeds by strengthening existing association weights. Alternatively,3

recoding posits that learning creates new and more efficient representations of the learned4

sequences. Importantly, both models propose that humans act as optimal learners but5

capture different statistics of the stimuli in their internal model. Furthermore, these6

models make dissociable predictions as to how learning changes the neural representation7

of sequences. We tested these predictions by using fMRI to extract neural activity patters8

from the dorsal visual processing stream during a sequence recall task. We observed that9

only the recoding account can explain the similarity of neural activity patterns, suggesting10

that participants recode the learned sequences using chunks. We show that associative11

learning can theoretically store only very limited number of overlapping sequences, such12

as common in ecological working memory tasks, and hence an efficient learner should13

recode initial sequence representations.14

Introduction15

Here we investigate the neural mechanism involved in learning short visual sequences. The16

ability to remember or to perform events or actions in the correct order is critical to the per-17

formance of almost all cognitive tasks [1]. Understanding human sequence learning mechanism18

is crucial not only for understanding normal cognition, but also to understand the nature of19

the impairments and disabilities that follow when sequence learning is disrupted [2, 3, 4].20

In this study we ask whether the changes in neural activity during sequence learning reflect21

a particular type of optimal learning strategy. An optimal learner is an agent whose internal22

model reflects the statistics of the environment [5, 6], and human learning has been shown to23

follow the optimal model in a wide range of domains such as speech and language [7, 8], visual24

scenes and objects [9, 10, 11, 12, 13], and sensorimotor control [14, 15]. However, statistical25

regularities across sequences can be represented in multiple ways [1]. First, sequences can be26

represented as simple associations (Fig 1A-B) and their statistics represented by weighting27
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the associations based on their relative frequency (Fig 1A-C). An optimal learner would up-28

date the association weights as new data comes in to reflect the statistics of the environment.29

Alternatively, learning can proceed by recoding frequently occurring associations using new30

latent representations. The latter approach has been termed ’chunking’ in cognitive literature31

[16, 17] to describe learning where complex objects (words, faces) are constructed from lower-32

level features (phonemes, syllables, oriented lines). The crucial difference between these two33

learning approaches is that for associative learning the sequence codes remain the same, whilst34

new codes are inferred with recoding (Fig 1D). Therefore we can dissociate between these two35

mechanisms by comparing neural representations of novel sequences to learned ones.36

Research on sequence learning has provided evidence for both learning mechanisms. Manual37

motor skill learning has been shown to decrease noise in learned representations [18, 19, 20]38

whilst not changing the representations of individual items in the sequence [21, 22]. Similarly,39

in the auditory domain frequently co-occurring sequence items elicit a neural response that40

indicates an increase in association strength [23]. Contrastingly, chunking has been observed41

widely in tasks where separate movements are integrated into a unified sequence [24], and in42

auditory-verbal sequence learning [25, 26, 27], where multiple co-occurring sequence items are43

bound together and recalled in all-or-nothing fashion [28, 29].44

Importantly, both learning mechanisms reduce the amount information required to repre-45

sent stimuli [30, 11, 5] and therefore are hard to dissociate on the basis of simple univariate46

learning measures. For example, several past fMRI learning studies have observed two broad47

effects for learned stimuli: reduction of the BOLD signal and increase in pattern separability48

[31, 32, 33, 34]. However, such results do not inform us of the computations underpinning49

the learning process: any statistical learning mechanism will reduce uncertainty and hence50

decrease resource requirements [35]. Therefore broad univariate measures indicating more ef-51

ficient coding of learned stimuli, such as improvement in behavioural performance, reduction52

in the average BOLD response, or pattern separability, are expected a priori for any learning53

mechanism. Contrastingly, in this study we use fMRI to ask what is the computational mecha-54

nism underpinning learning in our task, rather than where in the brain can we detect learning55
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effects.56

We first formally derive the associative and recoding models in the context of Bayesian op-57

timal learner. We show that the two accounts make dissociable predictions as to how sequences58

are encoded in the brain, and these predictions can be expressed in terms of the similarity of59

neural pattern activity. We tested these predictions in the dorsal visual processing stream using60

a sequence recall task together with the representational similarity analysis (RSA, [36, 37]) of61

fMRI data. We observed that only the recoding account can explain the similarity of neural ac-62

tivity patterns. Specifically, the encoding of sequences in the posterior parietal cortex changed63

from representing novel sequences as individual items to representing them as chunks after they64

had been presented several times.65

Finally, we show that associative learning can effectively store only very limited number66

of similar (overlapping) sequences. Therefore an efficient learner should benefit from recoding67

initial sequence representations, since ecological learning tasks, such as reading or navigating,68

often involve a large number of multiple overlapping sequences (e.g. words, directions, recipes).69

Taken together our findings represent strong theoretical and empirical evidence for a specific70

learning mechanism: human learning of short visual sequences proceeds by recoding initial se-71

quence representations with new ones within the same brain regions. Such recoding is necessary72

to enable efficient behaviour in complex tasks.73

3

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 8, 2020. ; https://doi.org/10.1101/496893doi: bioRxiv preprint 

https://doi.org/10.1101/496893
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig 1: Sequence learning. (A) Four Gabor patches (items used in this study) associated with
four sequence positions and the multinomial matrix representation of the sequence. (B) Item-position
associations in monkey prefrontal cortex as observed by Berdyyeva and Olson [38]. Each subplot
displays spiking activity for a particular neuron: the first one responds most to items at the beginning
of a three-item sequence, the second for the ones in the middle, and the last one for items at the end
of the sequence. Numbers on x-axis mark the onset of the stimulus events. (C) Visual representation
of three sequences as position-item associations and the resulting frequency of associations. The
frequency of associations can be learned as a model of the environment. (D) Dissociating between
learning mechanisms in terms of similarity between novel and learned sequences: with associative
learning (left) learned sequences share the same item codes with novel ones. Furthermore, learning
reduces noise in learned sequence representations. Recoding (right) changes item representations so
that novel and learned stimuli do not share representations.
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Results74

Behaviour75

We used a task requiring ordered recall of a sequence of simple visual stimuli, where some76

of the sequences are presented only once (novel sequences) and some are presented multiple77
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times (repeating sequences, Fig 2). Only two individual sequences were repeated and we first78

presented them 12 times each during a practise session. This ensured that those two individual79

sequences were learned to criterion before the beginning of the main experiment. The repeating80

and novel sequences were designed maximally dissimilar to each other so that learning of the81

repeating sequences would not transfer to the novel ones. We proceeded to present the two82

familiar repeating sequences interleaved with novel sequences (Fig 2B).83

Fig 2: Task. (A) Single trial: participants had to recall a sequence of four Gabor patches in the
order they were presented after a 4.8s delay period using a button-box. The size of the stimuli within
the display area is exaggerated for illustrative purposes. (B) Trial types and progression: 2/3 of the
trials were repetitions of the same two individual sequences (repeating sequences), while 1/3 of the
trials were novel unseen orderings of the items (novel sequences). The identity and order of repeating
and novel sequences were pseudo-randomised across participants.
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We observed that novel and repeating sequences were processed differently by participants.84

We calculated two behavioural measures of recall for both types of sequences: how many85

items were recalled in the correct position, and the average time between consecutive key86

presses. The proportion of correctly recalled items was roughly the same for novel and repeating87

sequences: 0.96 vs. 0.97, with no significant difference across subjects (p = 0.22, df = 21).88

This was expected since both novel and repeating sequences were only four items long and89

should therefore fit within participants’ short term memory spans. However, participants were90

consistently faster in recalling repeating sequences: the average time between consecutive key91

presses was 0.018 seconds shorter for repeating sequences (t = −3.04, p = 0.007, df = 21).92
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Next, we sought to establish how the neural representation of novel sequences differs from the93

repeating, learned ones: specifically, whether there is a change in representation that supports94

either the associative learning or recoding hypotheses.95

fMRI evidence for learning models96

A learning model has two components: a model of representation for novel sequences and97

another for learned sequences. We assume that the difference between these two representations98

is the effect of the learning mechanism. Specifically, associative and recoding mechanisms make99

different predictions on the similarity between novel and repeating sequences. These predictions100

ares formalised as representational dissimilarity matrices (RDM, Fig 3), which are then fitted101

with fMRI activity patterns using the representational similarity analysis (RSA, [36], Fig 3).102

Associative learning model103

An ideal learner should infer internal representations that reflect the statistics of the environ-104

ment. Intuitively, associative learning can be thought of as changing the weights of associations105

so that they reflect the frequency of past occurrences (Fig 1C). This can be formalised using106

the Dirichlet-Multinomial distribution, which encodes how many times particular discrete as-107

sociations have occurred: the full description of the model and its parameters can be found in108

Associative learning in Methods.109

The associative learning model makes two predictions that can expressed in terms of between-110

sequence similarity (Fig 3). First, both novel and repeated sequences should be encoded with111

the same sequence representation model since associative learning only changes the noise levels112

in the representations. In other words, if novel sequences are encoded as item-position associ-113

ations, so should the learned ones. We tested this hypothesis with two classical sequence rep-114

resentation models: item-position associations, where sequences are formed by mapping items115

to their ordinal positions; and item-item associations, where consecutive items are associated116

with each other (see Sequence representation models in Methods).117

Second, the associative learner predicts that the repeating (learned) sequences should be118
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Fig 3: Testing the predictions of learning models using RSA. Left : model prediction expressed
as a representational dissimilarity matrix (RDM) of pairwise between-stimulus distances. The small
matrices on the top refer to the representations of individual sequences in the matrix form (as shown on
Fig 1). For example, second cell in the first row is the predicted distance between sequences presented
on trials 1 and 2. Right : RDM of measured voxel activity patterns elicited by the stimuli. The
small matrices are illustrative representations of voxel patterns from an arbitrary brain region. The
correlation between these two RDMs reflects the evidence for the predictive model. The significance
of the correlation can be evaluated via permuting the labels of the matrices and thus deriving the
null-distribution. See Representational similarity analysis (RSA) in Methods for details.
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represented with less noise: the repetition of sequences should strengthen the weights of indi-119

vidual associations. Therefore, noise in activity patterns generated by novel sequences should120

be greater than for repeating sequences and hence the expected similarity between repeating121

and novel sequences should be greater than within novel sequences (see Associative learning122

predictions for RSA in Methods). To give testing anatomic specificity we parcellated the dorsal123

visual processing stream bilaterally into 74 anatomically distinct regions.124

No evidence for associative learning in neural representations125

We found no evidence for the first associative learning prediction: novel and repeating126
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sequences were not encoded similarly in any of the brain regions. To further explore this127

null-result, we looked at the representation of novel and repeating sequences separately. We128

found that novel sequences were represented as item-position associations in eight regions in the129

dorsal visual processing stream (Table 1; also see Fig 9 in Supplementary information for plots130

for individual brain regions). However, in all of the eight regions where the associative item-131

position model predicted similarity between novel sequences, it failed to predict the similarity132

between novel and repeating sequences (df = 21, p > 10−3). This shows that, contrary to the133

predictions of the associative models, repeating and novel sequences did not share a common134

representational code in our task.135

Table 1: Representation of novel sequences as item-position associations. Anatomical
region suffixes indicate gyrus (G) or sulcus (S). Asterisks (∗) represent significant evidence for the
item-position model reaching the lower bound of the noise ceiling in any of the three task phases:
presentation, delay, and response. The lower noise ceilings were significantly greater than zero for all
regions displayed in the table (df = 21, p < 10−3); see Noise ceiling estimation in Methods for details).

Lobe Name Presentation Delay Recall

Frontal Central S ∗ ∗
Occipital Occipital Inferior G S ∗
Occipital Occipital Middle Lunatus S ∗
Parietal Intraparietal Posterio-Transversal S ∗
Parietal Parietal Inferior-Supramarginal G ∗
Parietal Postcentral G ∗ ∗
Parietal Postcentral S ∗
Temporal Temporal Superior S ∗

The associative learning model also predicts that the noise in the activity patterns generated136

by novel sequences should be greater than for repeating sequences and hence the expected137

similarity between repeating and novel sequences should be greater than within novel sequences.138

In other words, it should be easier to find evidence for associative codes between repeating and139

novel sequences than for novel sequences alone. Hence the lack of evidence we observe for140

associative learning cannot be attributed to the lack of fMRI measurement sensitivity.141

No behavioural evidence for associative learning142

There was also no behavioural evidence for associative learning: increased probability for143
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associations present in the repeating sequences should affect novel sequences where such as-144

sociations are also present. For example, repeated exposure to a sequence ABCD should145

also boost BDCA since C appears at the 3rd position in both. We tested this prediction by146

comparing response times for individual item-position associations in novel sequences: there147

was no advantage for those associations which were shared with the two repeating sequences148

(t = 0.28, p = 0.78, df = 21).149

Recoding model150

The recoding model posits that statistical regularities across sequences can be used to infer151

representations where frequently co-occurring stimuli are recoded using a single code. For152

example, if two individual items in a sequence occur next to each more frequently than apart153

then an optimal learner should infer a model of the environment where those two adjacent items154

have been generated by a single latent variable. Formally, participants’ internal representations155

of sequences are therefore recoded inferred as latent variables given the observed sequences:156

p(θ|S) = p(S|θ)p(θ)
p(S)

, (1)

where θ is the internal latent model of a set of sequences S = {y1, ...,ym}. Here we call this157

latent representation a chunking model, in line with previous literature [17, 16, 1].158

A chunking model θi is defined by two parameters and their probability distributions159

p(x, z|θi), where x is a set of individual chunks, and z a set of mappings defining how chunks160

are arranged together to encode observed sequences. For example, regularities within a set161

of two sequences S = {ABCD,CDAB} can be expressed by two chunks x = {AB,CD} and162

their mappings to the observed data z = {((A,B), (C,D)), ((C,D), (A,B))}. Here we represent163

chunks formally as n-grams : for example, a four-item sequence ABCD can be represented by164

a tri-gram ABC and a uni-gram D; or two uni-grams A and B and a bi-gram CD, etc.165

Next, we estimated the optimal chunking model for the sequences in our task: given the166

many possible ways sequences could be chunked, we assumed that the optimal learner would167
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employ a chunking model that finds the most efficient encoding. The full formal description of168

the chunking models, their parameters, and the process of inferring the optimal model can be169

found in Chunk learning in Methods. Importantly, we designed the presentation of repeating170

and novel sequences so that the optimal model would remain the same for every trial across171

the experiment: every repeating sequence was encoded with a single four-gram chunk, and172

every novel sequence with four uni-grams ( Fig 4, bottom row). Knowing the optimal chunk173

representation allowed us to calculate pairwise distances between sequences as defined by their174

constituent chunks. The resulting RDM of n-gram distances was then fit with neural activity175

patterns using the RSA method (Fig 3).176

Note that the optimal chunking model predicts the same representation for novel sequences177

as the associative item-position model. This is because the optimal chunking model encodes178

novel sequences with four one-item chunks resulting in the same number of item codes associated179

with the same positions (see Fig 4). In other words, both models’ predictions for novel sequence180

representation are the same. However, the two models make different predictions about the181

similarity between the repeating and novel sequences.182

Fig 4: Sequence representation in associative and recoding models. Associative (top) and
chunk recoding (bottom) models encode items in individual sequences differently. Differently coloured
letters and boxes refer to individual item codes. For the chunk recoding model (bottom) item codes
reflect the optimal chunking structure estimated with Bayesian model comparison. Note that the
representation of the novel sequence (Trial 2) contains the same number of item codes at same positions
for both models.
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E E
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We found significant evidence for the recoding model in three brain regions: the parietal184

inferior-supramarginal gyrus, the postcentral sulcus, and the occipital superior transversal sul-185

cus (Fig 5A). As predicted by the recoding model, the representation of sequences in all three186

regions followed a model where novel sequences are encoded with four one-item chunks but187

repeating sequences with single chunks, indicating a change in the representational code. The188

evidence for the recoding model was only statistically significant for the presentation phase of189

the task and not during the delay or the response phases.190

Fig 5: Evidence for the recoding model. (A) The recoding model predicted the distance between
pairs of voxel activity patterns corresponding to novel and repeating sequences in three brain regions.
’R’ and ’AL’ on the X-axis refer to the recoding and associative learning models respectively. Y-
axis displays the model fit in terms of participants’ average Spearman’s rank-order correlation. Dots
represent individual participants’ values and error bars around the mean represent bootstrapped 95%
confidence intervals. Coloured dashed lines represent the lower and upper bounds of the noise ceiling
for the recoding model. In all displayed plots the lower noise ceilings were significantly greater than
zero across participants. (B) Regions which encode both novel and repeating sequences as predicted
by the recoding model projected on the glass brain for a single participant (P-9) in the MNI152
standard space. Red: the parietal inferior-supramarginal gyrus; green: the postcentral sulcus; blue:
the occipital superior transversal sulcus. Top: axial slices; bottom: saggital slices, left hemisphere.
Superimposed on the brain template is the statistical map of t-values (magenta-cyan) of the univariate
BOLD difference for learned stimuli (repeating/learned < novel sequences).

A B
Parietal 

Inferior-Supramarginal Postcentral
Occipital 

Superior-Transversal

Model-free fMRI analyses of learning effects191

We carried out two additional model-free fRMI analyses contrasting the representation of novel192

sequences to repeating ones. This was done to gauge how consistent our results were with193

previous fMRI studies which have shown two broad fMRI learning effects: reduction of the194

BOLD signal and increase in fMRI pattern separability for learned stimuli [31, 32, 33, 34].195
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Univariate BOLD difference for learned stimuli196

We carried out a whole-brain univariate analysis to test whether the average BOLD response197

differed between novel and repeating sequences. We found extensive bilateral reduction in the198

mean BOLD response for repeating sequences (Fig 5B). This extended across parietal and199

pre-motor regions and was mostly absent in the primary visual and motor areas.200

Note that the univariate change for the repeating sequences does not address the main hy-201

pothesis of this study, neither does it provide an alternative explanation of the data. Any neural202

learning mechanism is expected to make representations more efficient and therefore decrease203

the computational and metabolic cost of inference [5]. Both associative learning and recoding204

predict more efficient representations: we cannot dissociate between learning retaining the same205

codes (associative learner) and recoding by simply measuring behavioural improvement or total206

change in metabolic cost (univariate BOLD).207

Changes in voxel pattern noise208

To gain more insight into learning-induced changes we tested whether the voxel pattern209

distances within and between novel and repeating sequences change across the experiment. For210

example, do the neural voxel patterns corresponding to the two repeating sequences become211

more dissociable over the experiment? Specifically, we tested for significant changes in voxel212

pattern distance (a) between the repeating sequences, (b) within the individual repeating se-213

quences, (c) between the repeating and novel sequences, (d) within novel sequences. For full214

details on the distance analyses see Model-free fMRI analyses of learning effects in Methods.215

We found no brain regions where any of the voxel pattern distance change measures were216

statistically significant across the participants (df = 21, p > 10−3).217

Note that these model-free analyses were fundamentally different from the RSA approach218

employed for the comparison of the learning models above: here we did not measure the change219

in distances as predicted by a learning model but instead gauged whether the variance of the220

voxels’ responses changed across the experiment.221
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Recoding provides more efficient representation of multiple sequences222

than associative learning223

To further explore why recoding might be an advantageous learning mechanism we contrasted224

the effective learning capacity between the two learning models. Specifically, we estimated how225

much would multiple to-be-learned sequences interfere with each other. For example, a single226

sequence can readily be learned by strengthening the item-position associations. However, such227

a coding scheme would struggle to effectively learn multiple overlapping sequences. For exam-228

ple, two sequences ABCD and BADC can be learned simultaneously by storing position-item229

associations (Fig 6A), but this would result in eight association weights of equal strength to230

represent four sequences (ABCD, BADC and ABDC, BACD; Fig 6B). Such a learning mech-231

anism would suffer from catastrophic interference with multiple short sequences of overlapping232

items. Most naturally occurring sequences (words or sentences in a language, events in tasks233

like driving a car or preparing a dish) do not consist of items or events which only uniquely234

occur in that sequence. Hence an efficient sequence learning mechanism has to be able to learn235

multiple overlapping sequences, which are re-orderings of the same items.236

The interference resulting from strengthening of individual associations can be quantified237

for each learning model in terms of shared representations causing such interference. In the238

associative item-position model any individual sequence will have an expected similarity to all239

other possible sequences (Fig 6A). For example, ABCD shares two item-position associations240

with DBCA, and so forth. On the average, any individual 4-item sequence encoded with241

the item-position model shares two items with 21% of all the other possible sequences, while242

only 31% share no associations and about 5% share 3 out of 4 associations (Fig 6C). As more243

sequences are learned the interference between stored representations will inevitably increase244

since the number of possible associative codes in the item-position model is limited to the245

number of items × positions. Fig 6E shows that the effective capacity of learning different246

overlapping sequences with the associative item-position model is approximately five: at that247

point there are no sequences left which have been unaffected by learned sequences.248
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Fig 6: Interference in sequence learning. (A) Visual representation of two sequences as position-
item associations (top) and the resulting frequency of associations (bottom) as defined by the associa-
tive sequence learning model. (B) Associative learning of two sequences on panel (A) would boost the
representations of four individual sequences despite the statistical regularities being extracted from
only two. See Associative learning of overlapping sequences in Supplementary information for a worked
example. (C) Histogram of the expected number of shared codes (item-position associations, x-axis) in
an item-position model for a single 4-item sequences with all other possible 4-item sequences (n = 256,
allowing repeats) measured as a proportion of sequences sharing the same number of codes (y-axis).
(D) Histogram of the shared codes for a two-item (bi-gram) chunk representation. (E) Interference
between sequence representations in the item-position model. X-axis displays how many sequences
have been learned and lines on the plot display the proportion of other sequences affected by learning
as a function of codes shared: the lines correspond to columns in panel (C). The red line shows the
proportion of sequences which have been unaffected by learning. (F) Interference between sequence
representations in the chunk model.

C D E F

A B

Contrastingly, a chunk recoding model that only uses two item chunks (bi-grams), has a249

markedly different expected similarity distribution (Fig 6D), resulting in significantly reduced250

interference between learned sequences (Fig 6F). Note that the bi-gram chunking model used251

here for illustrative purposes is the most limited chunking model possible: any flexible chunking252

model – such as the one estimated for our participants – will perform significantly better. A253

chunking model that is free to infer any number of chunks of any length can represent any254
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number of multiple overlapping sequences without interference [39].255

In sum, associative learning employs fewer codes but therefore necessarily loses in the rep-256

resentational power or ’coverage’ over multiple overlapping sequences. Contrastingly, chunking257

allows emergence of more dissimilar codes which can be used to cover the space of all possible258

sequences with little interference.259

Discussion260

In the current study we contrasted two classes of sequence learning models. First, we considered261

associative learning that proceeds by changing the signal-to-noise ratio of existing representa-262

tions. Alternatively, repeated presentations might lead the initial representations to be recoded263

into more efficient representations such as chunks. Both mechanisms would result in more effi-264

cient codes and improve performance in the task: by either reducing uncertainty in the internal265

representations (associative learning) or reducing the necessary number of associations (chunk266

recoding). However, the two accounts make different predictions about changes the similarity267

between novel and repeating sequences.268

Learning induces recoding of sequence representations269

We found that novel visual sequences were represented as position-item associations in a num-270

ber of anatomically distinct regions in the dorsal visual processing stream. This is in line with271

previous research reporting that initial sequence representations are associative, binding indi-272

vidual events to a temporal order signal which specifies their position in a sequence [40, 41].273

However, we found no evidence that repeated sequences were also represented positionally, as274

would be predicted by the associative learning model. Instead, we observed that learning pro-275

ceeds by recoding the initial stimuli using a different set of codes. Specifically, the similarity276

between repeated and novel sequences followed predictions of the optimal chunking model in277

three cortical regions in the parietal lobe.278

Such flexible recoding of stimuli in response to the changing statistics of the environment is279

15

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 8, 2020. ; https://doi.org/10.1101/496893doi: bioRxiv preprint 

https://doi.org/10.1101/496893
http://creativecommons.org/licenses/by-nc-nd/4.0/


a common and often necessary feature of probabilistic learning models (see Fiser et al. [5] for280

a review). However, most neural learning models assume that different populations represent281

different stages of learning: for example, a traditional hippocampal-cortical learning account282

assumes that the fast acquisition of initial associations is supported by the dynamics of the283

hippocampus proper while the cortical areas encode the consolidated representations [42]. Here284

we show that the same cortical region encodes both initial and learned representations.285

Our findings are also consistent with behavioural data on memory for sequences where there286

is evidence for the use of positional coding when recalling novel sequences [43] while learned287

verbal sequences show little indication of positional coding [25].288

Recoding provides more efficient encoding of multiple overlapping289

sequences290

Recoding initial sequence representations is also advantageous from an efficient coding perspec-291

tive: we showed that in our task an associative learner would be only able to effectively learn292

very few overlapping sequences, as it is limited by the space of possible associations. Con-293

trastingly, recoding by chunking creates higher-dimensional codes, which can effectively store294

a limitless number of overlapping sequences [39, 10, 5]. Although higher-dimensional codes re-295

quire more information to store than simpler low-dimensional associations, they are necessary296

to cover the vast space of possible overlapping sequences present in ecological working memory297

tasks such as reading, speaking, or navigating.298

Multiple and parallel systems for sequence learning299

It is important to note that our experimental task is significantly different from standard300

motor-sequence learning paradigms where learning proceeds through repetition of movements301

and consolidation can take several hours or days [44, 24, 45]. Here we used a serial recall302

task where individual sequences are typically learned in as few as 2-4 repeated presentations303

[46, 47] and learning proceeds even when no recall is attempted [48, 49]. Therefore learning304
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mechanisms observed in our study are probably more reflective of rapid learning of visual or305

auditory sequences rather than the slower acquisition of motor skills.306

Fast sequence learning through recoding is likely only one of the multiple learning processes.307

Accumulating evidence points to subcortical learning – facilitated by the hippocampal forma-308

tion and basal ganglia – operating in parallel [50, 51, 52, 53] and the effects of both types of309

learning can be delineated for a single task in rodents [54]. Therefore we would expect the310

extent and the exact nature of learning-induced recoding to be dependent on the exact task311

and its properties.312

Conclusions313

Our results suggest that humans follow an optimal sequence learning strategy and recode initial314

sequence representations into more efficient chunks. We found no evidence for the hypothesis315

that learning involves strengthening existing associations. Furthermore, we show that asso-316

ciative learning without recoding is not theoretically capable of supporting long-term storage317

of multiple overlapping items. Although the initial associative representations of novel se-318

quences may be sufficient to support immediate recall, multiple sequences can only be learned319

by developing higher order representations such as chunks. Our findings show that such re-320

coded representations of learned visual sequences can be found in the occipito-parietal cortical321

regions.322
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Methods323

Participants324

In total, 25 right-handed volunteers (19-34 years old, 10 female) gave informed, written consent325

for participation in the study after its nature had been explained to them. Participants reported326

no history of psychiatric or neurological disorders and no current use of any psychoactive327

medications. Three participants were excluded from the study because of excessive inter-328

scan movements (see fMRI data acquisition and pre-processing). The study was approved329

by the Cambridge Local Research Ethics Committee (CPREC, Cambridge, UK; application330

PRE.2017.024).331

Task332

On each trial, participants saw a sequence of items (oriented Gabor patches) displayed in the333

centre of the screen (Fig 2A). Each item was displayed on the screen for 2.4s (the whole four-334

item sequence 9.6s). Presentation of a sequence was followed by a delay of 4.8s during which335

only a fixation cue ’+’ was displayed on the screen. After the delay, participants either saw336

a response cue ’*’ in the centre of the screen indicating that they should manually recall the337

sequence exactly as they had just seen it, or a cue ’–’ indicating not to respond, and to wait338

for for the next sequence (rest phase; 10-18s). We used a four-button button-box where each339

button was mapped to a single item (see Stimuli below).340

The recall cue appeared on 3/4 of the trials and the length of the recall period was limited341

to 7.2s. We omitted the recall phase for 1/4 of the trials to ensure a sufficient degree of de-342

correlation between the estimates of the BOLD signal for the delay and recall phases of the343

task. Each participant was presented with 72 trials (36 trials per scanning run) in addition to344

an initial practice session outside the scanner. In the practice session participants had to recall345

two individual sequences 12 times as they learned the mapping of items to button-box buttons.346

Participants were not informed that there were different types of trials.347
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Stimuli348

All presented sequences were permutations of the same four items (see Sequence generation and349

similarity below on how individual sequences differed from each other). The items were Gabor350

patches which only differed with respect to the orientation of the patch. Orientations of the351

patches were equally spaced (0, 45, 90, 135 degrees) to ensure all items were equally similar to352

each other. The Gabor patches subtended a 6◦ visual angle around the fixation point in order353

to elicit an approximately foveal retinotopic representation. Stimuli were back-projected onto354

a screen in the scanner which participants viewed via a tilted mirror.355

We used sequences of four items to ensure that the entire sequence would fall within the356

participants’ short-term memory capacity and could be accurately retained in STM. If we had357

used longer sequences where participants might make errors (e.g. 8 items) then the representa-358

tion of any given sequence would necessarily vary from trial to trial, and no consistent pattern359

of neural activity could be detected. All participants learned which four items corresponded to360

which buttons during a practice session before scanning. These mappings were shuffled between361

participants (8 different mappings) and controlled for heuristics (e.g. avoid buttons mapping362

orientations in a clockwise manner).363

Structure of the trials364

To test our hypotheses we split the 14 individual sequences in to two classes: two of these were365

repeatedly presented through the experiment (repeating sequences, 2/3 of the trials) while the366

remaining 12 were previously unseen and were only presented once (unique sequences, 1/3 of367

the trials). The two individual repeating sequences were chosen randomly for each participant.368

The two repeating sequences were also used for training before the scanning experiment369

(each presented 12 times). This was done to ensure that the two repeating sequences would be370

12 times more likely already at the start of the experiment and stay so throughout scanning371

(see Optimal chunking model for details).372

To keep the relative probability of repeating and unique sequences fixed throughout the373

experiment we pseudo-randomised the order of trials so that on the average there was a single374
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unique sequence and two repeating sequences in three consecutive trials (Fig 2B). This ensured375

that after every three trials the participant exposure to repeated and unique sequences was the376

same (2/3 repeated, 1/3 unique sequences).377

For MRI scanning we repeated this experimental block twice for every participant so that378

in a 36-trial scanning session participants recalled each unique sequence once and repeating379

sequences 12 times each (Fig 2B). Over two scanning sessions this resulted in 48 trials with380

repeating sequences and 24 trials with unique sequences.381

Sequence generation and similarity382

We permuted the same four items (oriented Gabor patches) into different individual sequences383

to resemble sequences in the natural world, which are mostly permutations of a small set of384

items or events based on the desired outcome (e.g. driving the car, parsing a sentence, etc).385

We chose the 14 individual four-item sequences used in the experiment (2 repeating, 12386

unique) to be as dissimilar to each other as possible in order to avoid significant statistical reg-387

ularities between individual sequences themselves and instead be able to introduce regularities388

only through repeating the individual sequences (see Chunk learning for details).389

We constrained the possible set of individual sequences with two criteria:390

1. Dissimilarity between all individual sequences : all sequences needed to be at least three ed-391

its apart in the Hamming distance space (see Similarity between sequence representations392

for details on the Hamming distance between two sequences). For example, given a re-393

peating sequence {A,B,C,D} we wanted to avoid a unique sequence {A,B,D,C} as394

these share the two first items and hence the latter would only be a partially unique395

sequence. This would allow in chunk learning to encode both sequences with a common396

multi-item chunk AB.397

2. N-gram dissimilarity between two repeating sequences : the two repeating sequences shared398

no items at common positions and no common n-grams, where n > 1 (see Chunk learning399

for n-gram definition and details). This ensured that the representations of repeating400

sequences would not interfere with each other and hence both could be learned to similar401
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level of familiarity. Secondly, this ensured that for the chunking model the repetitions of402

these two sequences were optimally encoded with two four-grams since they shared no403

common bi-grams of tri-grams.404

Given these constraints, we wanted to find a set of sequences which maximised two statistical405

power measures:406

1. Between-sequence similarity score entropy : this was measured as the entropy of the lower407

triangle of the between-sequence similarity matrix. The pairwise similarity matrix be-408

tween 14 sequences has 142 = 196 cells, but since it is diagonally identical only 84 cells409

can be used as a predictor of similarity for experimental data. Note that the maximum410

entropy set of scores would have an equal number of possible distances but since that is411

theoretically impossible, we chose the closest distribution given the restrictions above.412

2. Between-model dissimilarity : defined as the correlation between pairwise similarity matri-413

ces of different sequence representation models (see Similarity between sequence representations).414

We sought to maximise the dissimilarity between model predictions, that is, decrease the415

correlation between similarity matrices.416

The two measures described above, together with the constraints, were used as a cost417

function for a grid search over a space of all possible subsets of fourteen sequences (k = 14)418

out of possible total number of four-item sequences (n = 4!). Since the Binomial coefficient of419

possible choices of sequences is ca 2×106 we used a Monte Carlo approach of randomly sampling420

104 sets of sequences to get a distribution for cost function parameters. This processes resulted421

in a set of individual sequences which were used in the study: see Individual sequences used in422

the task in Supplementary information.423

Sequence representation models424

Sequences are associative codes: they are formed either by associating successive items to each425

other (item-item associations) or by associating items to some external signal specifying the426

temporal context for sequences (item-position associations).427
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In the case of item-position associations sequences are formed by associating items to some428

external signal specifying the temporal context. This context signal can be a gradually changing429

temporal signal [55, 56, 57], a discrete value specifying the item’s position in a sequence [58], or a430

combination of multiple context signals [59, 60]. Common to all of these models is the underlying431

association of item representations to the positional signal, forming item-position associations432

(Fig 1A). Alternatively, for item-item associations the weights of the associations are usually433

expressed in terms of transitional probabilities [1] forming a ’chain’ of associations [61]. Past434

research has provided evidence for both: sequences are represented as item-position associations435

in rodent, primate, and humans brains [62, 63, 64] and also as item-item associations [65]436

depending on task type and anatomical area (see [1] for a review).437

For our sequence processing task (Fig 2) we model the participants’ internal sequence rep-438

resentations µ given the presented sequence y as Bayesian inference (Eq 2), where the posterior439

distribution p(µ|y) represents a participant’s estimate of the presented stimulus, and their re-440

sponse can be thought of as a sample from the posterior distribution:441

posterior︷ ︸︸ ︷
p(µ|y) ∝

likelihood︷ ︸︸ ︷
p(y|µ) ·

prior︷︸︸︷
p(µ) (2)

Associations between discrete variables – such as items, or items and positions – can be442

formalised as a multinomial joint probability distribution. The multinomial representation can443

in turn be visualised as a matrix where each cell describes the probability of a particular item444

at a particular position (Fig 1).445

Formally, every item x in the sequence z is represented by a multinomial variable which can446

take K states parametrised by a vector µ = (µ1, . . . , µK) which denotes the probability of item447

x occurring at any of k positions:448

p(x|µ) =
K∏
k=1

µxk
k , (3)
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and the whole N -item sequence z = (x1, . . . , xN)
T is given by:449

p(z|µ) =
N∏

n=1

K∏
k=1

µxnk
k , (4)

where the µ represents the probability of particular item-position associations and hence450

must satisfy 0 ≤ µk ≤ 1 and
∑

k µk = 1. Exactly the same formalism applies to item-item451

associations: we simply replace the set of K position variables with another identical set of N452

items.453

Similarity between sequence representations454

Item-position associations455

When sequences are represented as item-position associations they can be described in

terms of their similarity to each other: how similar one sequence is to another reflects whether

common items appear at the same positions. Formally, this is measured by the Hamming

distance between two sequences:

DH(yj,yl) =
k∑

i=1

|xi
j − xi

l| (5)

xi
j =xi

l ⇒ 0 (6)

xi
j ̸=xi

l ⇒ 1 (7)

where xi
j and xi

l are the i-th items from sequences yj and yl of equal length k. Consider two456

sequences ABCD and CBAD: they both share two item-position associations (B at the second457

and D at the fourth position) hence the Hamming distance between them is 2 (out of possible458

4).459

We use the between-sequence similarity as defined by the Hamming distance as a prediction460

about the similarity between fMRI activation patterns: if sequences are coded as item-position461

associations then the similarity of their corresponding neural activity patterns, all else being462
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equal, should follow the Hamming distance. This allows us to test whether a particular set463

of voxels encodes information about sequences using an item-position model. Representational464

similarity analysis of fMRI activity patterns below provides the details of the implementation.465

Item-item associations466

Here we use n-grams as associations between multiple consecutive items to define sequences467

as pairwise item-item associations: a four-item sequence ABCD can be unambiguously repre-468

sented by three bi-grams AB, BC, CD so that every bi-gram represents associations between469

successive items. The bi-gram representation of item-item associations can be used to derive a470

hypothesis about the similarity between sequences: the between-sequence similarity is propor-471

tional to how many common item pairs they share. For example, the sequences FBI and BIN472

both could be encoded using a bi-gram where B is followed by I (but share no items at common473

positions and are hence dissimilar in terms of item-position associations). This allows us to474

define a pairwise sequence similarity measure which counts how many bi-grams are retained475

between two sequences:476

SC(Si, Sj) = card(Ci ∩ Cj) (8)

where Ci and Cj are the sets of n-grams required to encode sequences Si and Sj so that477

card(Ci ∩ Cj) denotes the cardinality of the union of two sets of n-grams (i.e. the number478

of elements in the resulting set). All possible constituent n-grams of both sequences can be479

extracted iteratively starting from the beginning of sequence and choosing n consecutive items480

as an n-gram. For bi-grams this gives:481

Ci = {i = 1, . . . , k − 1 : (xi, xi+1)}

where Ci is a set of all possible adjacent n-grams from sequence Si of length k so that every482

bi-gram is a pair (tuple) of consecutive sequence items (xi, xi+1). Similarly for a set of n-grams483

C from any sequence of length k:484
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C = {i = 1, . . . , k − (n− 1) : (xi, . . . , xi+(n−1))},

where n is the length of n-gram. Effectively, the n-gram similarity counts the common485

members between two n-gram sets. Given sequence length k this similarity can accommodate486

n-grams of all sizes n (as long as n ≤ k). To make the measure comparable for different values487

of n we need to make the value proportional to the total number of possible n-grams in the488

sequence and convert it into a distance measure by subtracting it from 1:489

DC = 1− γ card(Ci ∩ Cj) (9)

where γ is a normalising constant:490

γ =
1

k − (n− 1)
.

Effectively, the n-gram distance DC counts the common members between two n-gram sets.491

We then used the bi-gram distance measure to derive sequence representation predictions for492

item-item association models.493

The prediction made by the n-gram distance DC is fundamentally different from the predic-494

tion made by the Hamming distance DH (Eq 7): the n-gram distance assumes that sequences495

are encoded as item-item associations whilst the Hamming distance assumes sequences are496

encoded as item-position associations.497

To understand why the item-position and item-item models make inversely correlated pre-498

dictions, consider again the example given above: two sequences of same items FBI and BIF499

are similar from a bi-gram perspective since both could be encoded using a bi-gram where B500

is followed by I (but share no items at common positions and are hence dissimilar in terms501

of item-position associations). Conversely, two sequences FBI and FIB share no item pairs502

(bi-grams) and are hence dissimilar form a bi-gram perspective but have both F at the first503

position and hence somewhat similar in terms of the item-position model (Hamming distance).504
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Item mixture505

We also defined an additional control model which tested for a null-hypothesis that instead506

of sequence representations neural activity could be better explained by the superposition of507

patterns for constituent individual items in the sequence, called the item mixture model (e.g.508

see Yokoi et al. [22]).509

This model is not a sequence representation model but rather an alternative hypothesis510

of what is being captured by the fMRI data. This model posits that instead of sequence511

representations fMRI patterns reflect item representations overlaid on top of each other like a512

palimpsest so that the most recent item is most prominent. For example, a sequence ABCD513

could be represented as a mixture: 70% the last item (D), 20% the item before (C), and514

so forth. In this case the mixing coefficient increases along the sequence. Alternatively, the515

items in the beginning might contribute more and we would like to use a decreasing mixing516

coefficient. If all items were weighted equally the overall representations would be identical as517

each sequence is made up of the same four items. Here we only considered linearly changing518

coefficients: we did not consider non-linear or random weights.519

Formally, we model an item mixture representation M of a sequence as a weighted sum of520

the individual item representations:521

M = Iβ (10)

where I is the four-dimensional representation of individual items in the sequence and β is522

the vector of mixing coefficients so that βn is the mixing coefficient of the n-th item in I so that523

0 < βn ≤ 1, and
N∑

m=1

βn = 1.

where N is the length of the sequence. The rate of change of β (to give a particular βn a524

value) was calculated as525

βn = αβ0(1− θ)n,
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where θ is the rate of change and α normalising constant. In this study we chose the value526

of θ so that β = {0, 1/6, 1/3, 1/2} represents a recency-weighted slope over individual sequence527

items. The reason we only tested for the ’recency mixture’ is that the distances between528

mixtures only depend on the absolute value of the slope of the mixture coefficients over the529

items. In other words, an RDM derived with a recency-based item mixture predicts the same530

similarity between voxel patterns as an RDM derived with a primacy based mixture given the531

absolute value of the gradient slope remains the same. Here we chose a middle point between532

two extreme slope values: all the mixtures become the same when the slope is horizontally533

flat and only a single item contributes when the slope is vertical. See Item mixture model534

parameters in the Supplementary information for more details and a worked example.535

Distances between two item mixture representations Mi and Mj (Eq 10) of sequences Si536

and Sj were calculated as correlation distances:537

DI(Si, Sj) = cdist(Mi,Mj). (11)

Associative learning538

The optimal way of encoding how many times particular discrete associations have occurred539

is given by the Dirichlet-Multinomial model. In short, past occurrences of items at certain540

positions are transformed into probabilities, which reflect the frequency of associations. Hence541

associative learning can be thought of as changing the weights of associations – µ parameter542

in the multinomial model above – so that they reflect the statistics of the environment. This543

is achieved by deriving p(µ) from the Dirichlet distribution:544

µ ∼ Dir(α) (12)

where α = (α1, . . . , αK)
T denotes the effective number of observations for individual associ-545

ations. The optimal internal representation of associations for a sequence y is therefore given546
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by:547

p(µ|y,α) ∝ p(y|µ)p(µ|α). (13)

We could also use µ to introduce additional biases into the model (e.g. recency or primacy548

effects) but since our task has short sequences and clearly distinctive individual items such549

additional biases are not significant (see Behaviour in Results).550

In formal terms this means specifying the conjugate prior for the parameter µ of the multi-551

nomial prior distribution (Eq 4), which is given by the Dirichlet distribution:552

p(µ|α) = ϕ
K∏
k=1

µak−1
k , (14)

where 0 ≤ µk ≤ 1 and
∑

µk = 1 and ϕ is the normalisation constant. The parameters αk of the553

prior distribution can be interpreted as an effective number of observations xk = 1, or in other554

words, the counts of the value of the sequence position x previously. Effectively, the conjugate555

prior tracks the item-position occurrence history. Since this model reflects the expected value556

of item-position associations it is also an optimal model of sequence representation assuming557

that associations are independent of each other.558

Using position-item associations as defined above to encode a set of individual sequences559

S = (BACD,CABD,ABCD) will result in a following value for µ reflecting the position-item560

counts:561

µ =



1/3 2/3 0 0

1/3 1/3 1/3 0

1/3 0 2/3 0

0 0 0 1


Here matrix rows and columns reflect the items and position variables. Changing or adding562

new sequences to the set will only change the probabilities or association weights but not563

change individual items bound by associations. This matrix is visualised for three item-position564

associations in Fig 1C.565
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Chunk learning566

Bayesian model comparison567

We want to estimate the posterior probability distribution of chunking models θ given the568

observed data D:569

p(θ|D) =
p(D|θ)p(θ)

p(D)
, (15)

and choose the model with the highest posterior probability:

θMAP = argmax
θ

[p(θ|D)].

Since Bayesian model comparison (BMC) implements an inherent Occam’s razor which570

penalises models in terms of their complexity we assign all models equal prior probabilities571

p(θ). Therefore the posterior probability of any model is proportional to model evidence:572

p(D|θi) =
∫

p(S|w, θi)p(w|θi)dw, (16)

where S is a set of sequences (data), θi a particular chunking model and w its parameter values.573

Intuitively, to estimate evidence for any model we need to evaluate its complexity as defined574

by its parameters w and their probability distributions p(w|θi), and how well the model fits575

the data p(S|w, θi). By combining the model complexity and data fit we can rank all possible576

models in terms of their evidence p(D|θi). The model with the greatest evidence is also the577

model with maximum a posteriori probability since we assume equal prior probabilities across578

models.579

Chunking model580

A chunking model θi is defined by two parameters and their probability distributions p(x, z|θi),581

where x is a set of individual chunks and z a set of mappings defining how chunks are arranged582

together to encode observed sequences.583
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Set of chunks584

We represent chunks formally as n-grams (used from hereon synonymously with the term

’chunk’) that can take any length up the maximum possible length of a sequence to be encoded.

For illustrative purposes we denote the individual items in our sequences here with letters: a

four-item sequence of Gabors can be written as ABCD and in turn be represented by a tri-gram

ABC and a uni-gram D. For 4-item sequences the set of all possible n-grams has the number

of P members as the sum of partial permutations of n = 4 items taken k = {1, 2, 3, 4} at a

time:

PN =
n∑

k=1

n!

(n− k)!
= 64

A set of chunks x comprises J n-grams where each constituent n-gram c appears only once:585

x = {c1, ..., cJ}, and 1 < J < PN ; for example x = {AB,BA,A,B,CDA,ACDB}. Each586

individual n-gram has a probability inversely proportional to its combinatorial complexity.587

Specifically, the probability of a particular n-gram cj is proportional to the reciprocal of the588

number of partial permutations of n = 4 items taken k at a time:589

p(cj) = α
1
n!

(n−k)!

, (17)

where k is the length of the n-gram and α is the normalising constant. For example, there590

are 4 possible uni-grams for a 4-item sequence, but 12 bi-grams, 24 tri-grams, etc. Hence the591

probability of a uni-gram is 3 times greater than a bi-gram and so forth. This also captures592

the intuition that longer and more complex chunks should be less likely than simple chunks.593

We also assume that chunks are independent each other and hence the probability of a set of594

n-grams x defined by the chunking model is the product of its constituent chunk probabilities:595

p(x|θi) =
J∏

j=1

p(cj). (18)

Mappings between chunks596
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The second parameter of the chunking model describes how individual n-grams are combined597

together to encode the observed sequences. For example, given a single sequence ABCD and598

a set of n-grams x = {AB,BC,CD,A,B,C,D} we can encode the data as (AB,CD) or599

(A,BC,D) as both mappings are capable of representing the observed data without error.600

For any 4-item sequence there are eight possible ways n-grams can be linked together to

reproduce the observed sequence. These mappings can be described as a set of eight tuples

Z = {g1, . . . ,g8}, where each tuple defines F ≤ 4 links gi = ((l1), . . . , (lF )) that exhaustively

define all possible n-gram parses of a 4-item sequence:

Z ={((1), (2, 3), (4)),

((1), (2, 3, 4)),

((1, 2, 3), (4)),

((1, 2), (3), (4)),

((1), (2), (3), (4)),

((1), (2), (3, 4)),

((1, 2, 3, 4)),

((1, 2), (3, 4))}.

For example, given a sequence ABCD, the first tuple in the set g1 = ((1, ), (2, 3), (4, ))601

corresponds to linking three individual n-grams as ((A), (B,C), (D)). The mappings gi in Z602

differ in terms of how many links are required to encode the sequence: for example, the first603

mapping comprises three links, the second two, and the fifth four. The probability of each604

mapping is a product of it’s individual link probabilities:605

p(gi) =
F∏

j=1

p(lj) = ηF , (19)

where F is the number of links in the mapping gi and η is a probability of each link606
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which we assume to be constant (the reciprocal of the number of possible links). Such inverse607

relationship between the probability of a mapping and its length captures the intuition that608

complex mappings between multiple n-grams should be less likely than simple ones. Note that609

for longer sequences a different relationship might be defined as the ability to combine chunks610

is limited by human short term memory capacity which sets an effective limit to the length of611

sequence that can be encoded [66, 67, 68].612

For a particular model θi the mapping parameter z defines how n-grams are combined

together to generate observed sequences. For example, consider two models and a set of

sequences S = {ABCD,ABCD,CDAB}. Both models use the same set of n-grams x =

{AB,CD,A,B,C,D}, but encode the observed sequences differently:

z1 = {((A,B), (C,D)), ((A,B), (C,D)), ((C,D), (A,B))}

z2 = {((A), (B), (C), (D)), ((A), (B), (C), (D)), ((C), (D), (A), (B))}

Although these two models are equally likely in terms of the chunks they employ, their613

mappings have different probabilities. The probability of mappings defined by a particular614

model is equal to the product of mappings for individual sequences:615

p(z|θi) =
M∏
i=1

p(gi), (20)

where M is the number of mappings (sequences encoded).616

For any model θi the probability of both parameters – n-grams and mappings – are assumed617

to be independent of each other and therefore the probability of any particular model is the618

product their parameter probabilities:619

p(x, z|θi) =
J∏

j=1

p(cj)
M∏
i=1

p(gi), (21)
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where J and M are the number of n-grams and mappings. Therefore every model and its620

two parameters propose an encoding based on some chunks (e.g. examples above), which can621

subsequently compared to the observed data.622

Optimal chunking model623

The optimal model can be estimated by either randomly sampling the parameter distributions624

or using a systematic approach. Here we found the optimal model by only considering models625

that result in parsing the set of sequences into chunks and creating a ranking based on model626

evidence: see Optimal chunking model estimation in Supplementary information for details.627

Furthermore, we designed the experiment so that the only regularities between the sequences628

that could be encoded with common chunks arose from repeating the same two sequences: this629

ensured that we effectively knew the optimal model beforehand.630

To recall, our task included 14 individual sequences made maximally dissimilar to each other

with two of them repeated on 2/3 of the trials. We first presented the two repeating sequences

12 times each during the practice session immediately before the experiment. Since those two

sequences shared no common bi-grams or tri-grams (see Sequence generation and similarity)

the only efficient chunk encoding for the set of repetitions of those two sequences comprised

just two four-item chunks (Fig 7A). Using 12 repetitions in the training session was enough to

make the four-gram representation the most likely one (Fig 7B). Therefore at the start of the

experiment (before the first trial t = 1) the optimal chunking model had a set chunks defined

as:

xMAP
t=0 = {CADB,DCBA},

and a set of mappings zMAP
t=0 where the set of 24 sequences (made up of just two individual631

sequences) were encoded with the same one-on-one mappings.632

We proceeded to estimate the optimal chunking model at every trial t as the set of sequences633

was updated with newly observed stimulus. For this purpose we kept the statistical structure634
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Fig 7: Optimal chunking model. (A) Evidence for three alternative chunking models and their
components at the beginning of the scanning experiment, when participants had seen the two repeating
sequences 12 times each during the practice session. The three models use only single type n-grams:
the 1-gram model encodes sequences using four single-item n-grams, 2-gram model with two bi-grams,
and the 4-gram model with a single four-gram. The left panel shows the probability of the set of
n-grams (code) each model specifies in terms of their negative log values. The centre panel shows
the probability of their mappings (encoding) and the right panel the combination of the two into
model evidence. The blue and red parts of the model evidence bar represent model code (n-grams)
and encoding (mappings) probabilities in terms of their negative logs and the total length of the bar
displays the model evidence as their sum. This allows intuitive visualisation of the code-encoding
trade-off calculated by the Bayesian model comparison. The 4-gram model is the optimal model at
the start of the experiment. (B) Model evidence across trials. X-axis shows the trial number and y-
axis shows the log of model evidence. The optimal model is inferred at every trial; the 1-gram model
encodes sequences only with four uni-grams, and the 4-gram model only uses four-grams. Note that
at the beginning of the experiment the 4-gram model is equivalent to the optimal model: however,
as new sequences are presented the optimal model encodes new data with shorter chunks (uni-grams)
while the 4-gram model encodes new unique sequences with four-grams. Note that as new data is
observed the evidence for any particular model decreases as the set of data becomes larger and the
space of possible models increases exponentially. Also note that the log scale transforms the change
of evidence over trials into linear form.

A B

of the sequences fixed across the experiment: otherwise an optimal model on trial one would be635

different to the one on the last trial. Therefore we organised the order of trials so that on the636

average there was a single unique sequence and two repeating sequences in three consecutive637

trials. This ensured that after every three trials the participant exposure to repeated and638

unique sequences was roughly the same.639

Since the unique sequences shared no significant statistical regularities with each other or640

with the repeating sequences they could not have been efficiently encoded with common n-641

grams (n > 1). Therefore, at trial t = 1 the optimal model to encode the previously seen642

repeating sequences and the new unique one included the previously inferred two four-grams643
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and additionally four single item uni-grams:644

xMAP
t=1 = {CADB,DCBA,A,B,C,D}. (22)

Since we kept the statistical structure of the sequences fixed across the experiment this645

ensured that the optimal model would remain the same for every trial across the experiment:646

on a trial when a repeating sequence was presented it was encoded with a single four-gram647

chunk, and when a unique sequence was presented it was encoded with four uni-grams, as648

shown on Fig 7B.649

Representational similarity analysis (RSA)650

Representational similarity analysis of fMRI activity patterns651

First, we created a representational dissimilarity matrix (RDM) S for the stimuli by calculating652

the pairwise distances sij between sequences {N1, . . . , NM}:653

S =


s1,1 . . . s1,M
...

. . .
...

sM,1 . . . sM,M

 ,

sij = D(Ni, Nj)

where sij is the cell in the RDM S in row i and column j, andNi andNj are individual sequences.654

D(Ni, Nj) is the distance measure corresponding to any of the sequence representation models655

tested in this study:656

1. The item-position model: Hamming distance (Eq 7)657

2. The item-item model: bi-gram distance (Eq 9)658

3. The item mixture model: the item mixture distance (Eq 11)659

4. The optimal chunking model: n-gram distance (Eq 9) between the individual chunks660
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Next, we measured the pairwise distances between the voxel activity patterns:661

A =


a1,1 . . . a1,M
...

. . .
...

aM,1 . . . aM,M

 , (23)

aij = cdist(Pi, Pj) = 1−
(Pi − µPi

) · (Pj − µPj
)

||(Pi − µPi
)||2||(Pj − µPj

)||
2

(24)

where aij is the cell in the RDM A in row i and column j, and Pi and Pj are voxel activity662

patterns corresponding to sequences Ni and Nj. As shown by Eq 24, the pairwise voxel pattern663

dissimilarity is calculated as a correlation distance.664

We then computed the Spearman’s rank-order correlation between the stimulus and voxel665

pattern RDMs for every task phase p and ROI r:666

rr,p = ρ(rSr,p, rAr,p) =
E[(rSr,p − µrSr,p)(rAr,p − µrAr,p)]

σrSr,pσrAr,p

(25)

where ρ is the Pearson correlation coefficient applied to the ranks rS and rA of data S and667

A.668

Finally, we tested whether the Spearman correlation coefficients r were significantly positive669

across participants (see Significance testing below). The steps of the analysis are outlined on670

Fig 3.671

Noise ceiling estimation672

Measurement noise in an fMRI experiment includes the physiological and neural noise in voxel673

activation patterns, fMRI measurement noise, and individual differences between subjects –674

even a perfect model would not result in a correlation of 1 with the voxel RDMs from each675

subject. Therefore an estimate of the noise ceiling is necessary to indicate how much variance676

in brain data – given the noise level – is expected to be explained by an ideal ’true’ model.677

We calculated the upper bound of the noise ceiling by finding the average correlation of each678
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individual single-subject voxel RDM (Eq 23, 24) with the group mean, where the group mean679

serves as a surrogate for the perfect model. Because the individual distance structure is also680

averaged into this group mean, this value slightly overestimates the true ceiling. As a lower681

bound, each individual RDM was also correlated with the group mean in which this individual682

was removed.683

We also tested whether a model’s noise ceiling was significantly greater than zero. We first684

Fisher transformed individual Spearman’s rank-order correlation values and then performed a685

one-sided t-test for the mean being greater than zero. The 5% significance threshold for the686

t-value was corrected for multiple comparisons as described in Significance testing. For more687

information about the noise ceiling see Nili et al. [36].688

In sum, we only considered a model fit to be significant if it satisfied three criteria: (1) the689

model fit was significantly greater across participants than the lower bound of the noise ceiling,690

(2) the lower bound of the noise ceiling was significantly greater than zero across participants,691

and (3) the average fit for the item-mixture model (null-hypothesis) did not reach the noise692

ceiling.693

Associative learning predictions for RSA694

Associative learning makes two predictions: learning doesn’t change individual item represen-695

tations and learning reduces noise in sequence representations. These hypotheses can be tested696

by measuring the similarity between neural activation patterns elicited by novel and repeating697

sequences.698

Noise in sequence representations can be estimated by assuming that the voxel pattern699

similarity A (Eq 23) is a function of the ‘true’ representational similarity between sequences S700

plus some measurement and/or cognitive noise ν: A = S+ ν. Here the noise ν is the difference701

between predicted and measured similarity. Note that this is only a valid noise estimate when702

the predicted and measured similarity are significantly positively correlated (i.e. there is ’signal’703

in the channel).704

If learning reduces noise in sequence representations then the noise in activity patterns705
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generated by novel sequences νN should be greater than for repeating sequences νL. To test706

this we measured whether the activity patterns of repeating sequences were similar to novel707

sequences as predicted by the Hamming distance. The analysis followed exactly the same RSA708

steps as above, except instead of carrying it out within novel sequences we do this between709

novel and repeating sequences. First, we computed the Hamming distances between individual710

repeating and novel sequences SU,R, next the corresponding voxel pattern similarities AU,R and711

finally computed the Spearman’s rank-order correlation between the stimulus and voxel pattern712

RDMs exactly as above (Eq 25). If this measured correlation is significantly greater than the713

one within novel sequences (rU,R > rU) across participants, it follows that the noise level in714

repeating representations is lower than in novel representations. This analysis was carried out715

for all task phases and in all ROIs and the outcome could fall into one of three categories:716

1. No significant correlation: the probability of rU,R is less than the significance threshold717

(p < 10−4; see Significance testing below). This means that repeating sequences are not718

represented as item-position associations in this ROI and hence the test for noise levels719

is meaningless.720

2. Significant correlation, but consistently smaller across participants than the within-novel721

sequences measure: rU,R < rU . repeating sequence representations are noisier than novel722

sequence representations.723

3. Significant correlation, but consistently greater across participants than the within-novel724

sequences measure: rU,R > rU . repeating sequence representations are less noisy than725

novel sequence representations.726

To confirm that our assumptions regarding the effects of noise on sequence representation727

were correct we estimated the fMRI measurement noise for the participants in our task and728

tested to what degree the noise should be reduced (or signal-to-noise ratio increased) in the729

fMRI patterns for the changes to be detectable with the representational similarity analysis.730

The details of these simulation can be found in Simulation of expected changes in pattern731

similarity in Supplementary information.732
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Recoding predictions for RSA733

The recoding model predicts that the repetition of individual sequences should recode individual734

associations of those sequences. We assumed that participants were ideal learners and inferred735

an optimal chunking model based on the statistics across previously seen sequences (Eq 22). See736

the Chunking model and Optimal chunking model sections for estimation details. Importantly,737

we designed the presentation of repeating and novel sequences so that the optimal model would738

remain the same for every trial across the experiment: every repeating sequence was encoded739

with a single four-gram chunk, and every novel sequence with four uni-grams ( Fig 4, bottom740

row). For every participant we then estimated an RDM predicting the distances across novel741

and repeating sequences using the n-gram distance method described above (Eq 9). First, we742

computed the n-gram distances between individual repeating and novel sequences SU,R, next the743

corresponding voxel pattern similarities AU,R and finally computed the Spearman’s rank-order744

correlation between the stimulus and voxel pattern RDMs exactly as above (Eq 25).745

Model-free fMRI analyses of learning effects746

All analyses were carried out with pre-processed data as detailed in the Functional data pre-747

processing section.748

Changes in pattern distances across the experiment749

Between two repeating sequences750

We computed voxel pattern distance between each of the Nth repetition of the two repeat-751

ing sequences and estimated a slope across repetitions (least squares linear regression) to see752

whether there was a significant change in distance across trials. The figure below displays this753

for a single participant and region: y-axis displays the distance value, while x-axis the trial754

number. For example, the data point at x = 1 represents the distance between two individual755

repeated sequences R1 and R2 at their first presentation, and all 12 data points are calculated756

as:757
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dx=1 = distance(R1
1, R

1
2),

. . . ,

dx=12 = distance(R12
1 , R12

2 )

where superscript denotes the repetition number and subscript the identity of the sequences.

In all distance analyses we used the cosine distance between two patterns u and v defined as:

distance(u, v) = 1− u · v
∥u∥2∥v∥2

Fig 8: Change in pattern distance across trials for a single participant and region. Y -axis
displays the distance value, while x-axis the trial number.
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slope=-0.005246,  p=0.432796

Between two repeating sequences

We then tested whether the participants’ slope values were significantly different from zero758

for all ROIs. The significance threshold was α = 0.05/(Number of ROIs).759

Within repeating sequences760

We measured whether voxel pattern distances within the individual two repeating sequences761

changed significantly across the experiment. This test measured whether there was a change762

in distances between consecutive presentations of the same individual repeated sequence:763

dn = distance(Rn, Rn−1).
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As with the previous analysis, the participants’ individual slopes – averaged across the two764

repeating sequences – were included in the group level t-test for every ROI.765

Between the two repeating sequences and the unique sequences766

We tested whether the distance between N -th repetition of the repeating sequence Ri and767

the twelve unique sequences U1, . . . , U12 changed significantly across the experiment.768

dn = E[distance(Rn
i , U1), . . . , distance(R

n
i , U12)].

Within unique sequences769

We tested whether there was a change in pattern distances across successive presentations770

of individual unique sequences.771

dn = distance(Un, Un−1).

Behavioural measures772

Significant differences in behavioural measures across participants were evaluated with a t-test773

for dependent measures. We chose not to inverse-transform reaction time data following recent774

advice by Schramm and Rouder [69] (see also Baayen and Milin [70]).775

fMRI data acquisition and pre-processing776

Acquisition777

Participants were scanned at the Medical Research Council Cognition and Brain Sciences Unit778

(Cambridge, UK) on a 3T Siemens Prisma MRI scanner using a 32-channel head coil and779

simultaneous multi-slice data acquisition. Functional images were collected using 32 slices780
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covering the whole brain (slice thickness 2 mm, in-plane resolution 2×2 mm) with acquisi-781

tion time of 1.206 seconds, echo time of 30ms, and flip angle of 74 degrees. In addition,782

high-resolution MPRAGE structural images were acquired at 1mm isotropic resolution. (See783

http://imaging.mrc-cbu.cam.ac.uk/imaging/ImagingSequences for detailed information.) Each784

participant performed two scanning runs and 510 scans were acquired per run. The initial ten785

volumes from the run were discarded to allow for T1 equilibration effects. Stimulus presentation786

was controlled by PsychToolbox software [71]. The trials were rear projected onto a translucent787

screen outside the bore of the magnet and viewed via a mirror system attached to the head788

coil.789

Anatomical data pre-processing790

All fMRI data were pre-processed using fMRIPprep 1.1.7 [72, 73], which is based on Nipype791

1.1.3 [74, 75]. The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU)792

using N4BiasFieldCorrection [76, ANTs 2.2.0], and used as T1w-reference throughout the793

workflow. The T1w-reference was then skull-stripped using antsBrainExtraction.sh (ANTs794

2.2.0), using OASIS as target template. Brain surfaces were reconstructed using recon-all795

[77, FreeSurfer 6.0.1], and the brain mask estimated previously was refined with a custom796

variation of the method to reconcile ANTs-derived and FreeSurfer-derived segmentations of797

the cortical grey-matter of Mindboggle [78]. Spatial normalisation to the ICBM 152 Nonlinear798

Asymmetrical template version 2009c [79] was performed through nonlinear registration with799

antsRegistration [80, ANTs 2.2.0], using brain-extracted versions of both T1w volume and800

template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and801

grey-matter (GM) was performed on the brain-extracted T1w using fast [81, FSL 5.0.9].802

Functional data pre-processing803

The BOLD reference volume was co-registered to the T1w reference using bbregister (FreeSurfer)804

using boundary-based registration [82]. Co-registration was configured with nine degrees of805

freedom to account for distortions remaining in the BOLD reference. Head-motion parameters806
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with respect to the BOLD reference (transformation matrices and six corresponding rotation807

and translation parameters) were estimated using mcflirt [83, FSL 5.0.9]. The BOLD time-808

series were slice-time corrected using 3dTshift from AFNI [84] package and then resampled809

onto their original, native space by applying a single, composite transform to correct for head810

motion and susceptibility distortions. Finally, the time-series were resampled to the MNI152811

standard space (ICBM 152 Nonlinear Asymmetrical template version 2009c, Fonov et al. [79])812

with a single interpolation step including head-motion transformation, susceptibility distortion813

correction, and co-registrations to anatomical and template spaces. Volumetric resampling814

was performed using antsApplyTransforms (ANTs), configured with Lanczos interpolation to815

minimise the smoothing effects of other kernels [85]. Surface resamplings were performed using816

mri vol2surf (FreeSurfer).817

Three participants were excluded from the study because more than 10% of the acquired818

volumes had extreme inter-scan movements (defined as inter-scan movement which exceeded a819

translation threshold of 0.5mm, rotation threshold of 1.33 degrees and between-images difference820

threshold of 0.035 calculated by dividing the summed squared difference of consecutive images821

by the squared global mean).822

fMRI event regressors823

To study sequence-based pattern similarity across all task phases we modelled the presentation,824

delay, and response phases of every trial (Fig 2A) as separate event regressors in the general825

linear model (GLM). We fitted a separate GLM for every event of interest by using an event-826

specific design matrix to obtain each event’s estimate including a regressor for that event as827

well as another regressor for all other events (LS-S approach in Mumford et al. [86]). Besides828

event regressors, we added six head motion movement parameters and additional scan-specific829

noise regressors to the GLM (see Functional data pre-processing above). The regressors were830

convolved with the canonical hemodynamic response (as defined by SPM12 analysis package)831

and passed through a high-pass filter (128 seconds) to remove low-frequency noise. This process832

generated parameter estimates (beta-values) representing every trial’s task phases for every833
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voxel.834

We segmented each participants’ grey matter voxels into anatomically defined regions of835

interest (ROI, n = 74). These regions were specified by the Destrieux et al. [87] brain atlas and836

automatically identified and segmented for each participant using mri annotation2label and837

mri label2vol (FreeSurfer).838

Univariate analysis of novel vs. learned sequences839

Voxel-wise effects were controlled for multiple comparisons using the family-wise error rate as840

implemented in the SPM-12 package.841

Significance testing842

We carried out the representational similarity analysis for every task phase (encoding, delay,843

response; n = 3) and ROI (n = 74 for RSA). To test whether the results were significantly dif-844

ferent from chance across participants we used bootstrap sampling to create a null-distribution845

for every result and looked up the percentile for the observed result. We considered a result to846

be significant if it had a probability of p < α under the null distribution: this threshold α was847

derived by correcting an initial 5% threshold with the number of ROIs and task phases so that848

for RSA α = 0.05/74/3 ≈ 10−4 and for classification α = 0.05/9/3 ≈ 10−3.849

We next shuffled the sequence labels randomly to compute 1000 mean RSA correlation850

coefficients (Eq 25). To this permuted distribution we added the score obtained with the851

correct labelling. We then obtained the distribution of group-level (across participants) mean852

scores by randomly sampling mean scores (with replacement) from each participant’s permuted853

distribution. The number of random samples for the group mean distribution was dependent on854

the significant probability threshold: we took n = 10/α samples so that the number of samples855

was always an order of magnitude greater than the required resolution for the group chance856

distribution. Next, we found the true group-level mean score’s empirical probability based on857

its place in a rank ordering of this distribution.858
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Replication of analysis859

The analysis scripts required to replicate the analysis of the fMRI data and all figures and860

tables presented in this paper are available at: https://gitlab.com/kristjankalm/fmri seq ltm.861

The MRI data and participants’ responses required to run the analyses are available in862

BIDS format at: https://www.mrc-cbu.cam.ac.uk/publications/opendata/.863
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1 Supplementary information868

1.1 Neural representation of novel sequences869

Novel sequences were represented as item-position associations in eight regions in the dorsal870

visual processing stream (Fig 9, Table 2). Evidence for item-position associations exceeded the871

noise ceiling all of those regions. The noise ceiling gives theoretical lower and upper bounds of872

the possible model fit given the noise in the data: any representational model which does not873

reach the noise ceiling should not be considered as a plausible explanation of voxel responses874

(see Noise ceiling estimation in Methods). We also defined an additional representational model875

for the RSA which tested for a null-hypothesis that instead of sequence representations neural876

activity could be better explained by the superposition of patterns for constituent individual877

items in the sequence, called the item mixture model (see e.g. Yokoi et al. [22]). The item878

mixture model reached the noise ceiling in six tested regions (displayed in italics in Table 2).879

Since we cannot rule out the possibility that the regions where the item mixture model reached880

the noise ceiling are not engaged in item rather than sequence representation we excluded those881

ROIs from further analysis.882

In sum, the analysis of novel sequence representation shows that only the item-position883

model is a plausible fit to neural sequence representations in the dorsal visual processing stream.884

Our findings are in line with previous research that novel sequences are initially encoded in terms885

of associations between items and their temporal positions in both animal [38, 63, 62, 88] and886

human cortex [89, 41, 90].887

1.2 Item mixture model parameters888

There are a number of meaningful ways individual items could contribute to the mixture.889

Although we have chosen a ’recency mixture’ where the most recent item contributes the890

most, we could have also used a ’primacy mixture’ with exactly the opposite slope of mixture891

contributions. The reason we only tested for the ’recency mixture’ is that both recency and892

primacy models predict the same similarity between individual sequences in our task. In other893
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Table 2: Evidence for the representation of novel sequences. Anatomical region suffixes
indicate gyrus (G) or sulcus (S). Asterisks (∗) represent the item-position model and daggers (†) the
item mixture model reaching the lower bound of the noise ceiling. The lower noise ceilings were
significantly greater than zero for all regions displayed in the table (df = 21, p < 10−3). Regions in
which the item mixture model reached the noise ceiling in any of the task phases are displayed in
italics.

Lobe Name Presentation Delay Recall

Frontal Central S ∗ ∗
Frontal Frontal Middle G ∗ ∗,† †
Occipital Calcarine S ∗,† ∗ †
Occipital Occipital Inferior G S ∗
Occipital Occipital Middle G ∗ ∗,†
Occipital Occipital Middle Lunatus S ∗
Occipital Occipital Superior G ∗ † ∗,†
Occipital Occipital Superior Transversal S ∗,† ∗
Parietal Intraparietal Posterio-Transversal S ∗
Parietal Parietal Inferior-Angular G ∗,† ∗
Parietal Parietal Inferior-Supramarginal G ∗
Parietal Postcentral G ∗ ∗
Parietal Postcentral S ∗
Temporal Temporal Superior S ∗

words, a representational dissimilarity matrix (RDM, Eq 23) derived with a recency-based item894

mixture predicts the same similarity between voxel patterns as an RDM derived with a primacy895

based mixture (if the absolute value of the gradient slope remains the same). For a detailed896

explanation see the example below.897

We could have chosen any of the infinite slope values across positions. However we chose898

a middle point between two extreme slope values: all the mixtures become the same when899

the slope is horizontally flat and only a single item contributes when the slope is vertical.900

We could have obtained an estimate of the coefficients from analysing the individual finger901

movement representations since the mapping between items and fingers was randomised across902

the participants. However, here our focus was on sequence representations and therefore we903

felt a null hypothesis representing an average in the space of possible mixtures was enough.904

Worked example905

We assume a recency mixture model where contributions increase with sequence position906
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Fig 9: Novel sequence representation in the dorsal visual processing stream. We tested for
three possible sequence representations models: item-position associations (IP), item-item associations
(II), and a null-hypothesis of item mixtures (IM). The bar plots show fits to those three models, that is,
how well each model predicted the distance between pairs of voxel activity patterns corresponding to
individual novel sequences. Y-axis displays the model fit in terms of participants’ average Spearman’s
rank-order correlation, error bars represent the standard error of the mean (SEM). Dashed lines in
bar plots represent the lower and upper bounds of the noise ceiling. This was done separately for
all three task phases (presentation, delay, response; Fig 2). Red asterisks mark regions and task
phases where the fit with the item-position model was significantly greater than the noise ceiling and
compared to the item mixture model (df = 21, p < 10−3), and the item mixture model did not reach
the noise ceiling. In all displayed plots the lower noise ceilings were significantly greater than zero
across participants.

as β = [0, 1/6, 1/3, 1/2], then we can represent a sequence as an item mixture in our task by907

indicating the proportion of each four items [A,B,C,D] in the mixture, e.g.: [C,A,D,B] as908
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[A : 1/6, B : 1/2, C : 0, D : 1/3], [B,D,C,A] as [A : 1/3, B : 0, C : 1/6, D : 1/2] and so forth.909

Given that item representations do not change from sequence to sequence and hence all mixtures910

would be equal if the coefficients β were equal across all items (e.g. uniformly 1/4) the distances911

between the resulting mixture representations are determined by the vector of coefficients. For912

example, the euclidean distance between [A,B,C,D] and [C,A,D,B] as mixtures (given β =913

[0, 1/6, 1/3, 1/2]) is the euclidean distance between the two four-dimensional mixture vectors:914

d = EuclideanDist([1/6, 1/2, 0, 1/3], [1/3, 0, 1/6, 1/2])915

Assuming the gradient β has always the same number of unique values then the distance916

between such 4D points depends only on the absolute value of the gradient slope and not the917

direction of it (positive or negative slope). This should be evident when one considers that in918

our task all sequences have always exactly the same four items and hence mixture contributions919

are directly proportional to the ordering of the same four items.920

For a simulation how the mixture model similarity prediction does not depend on the direc-921

tion of the slope (recency vs primacy) see the Jupyter Notebook (model mixture) at our code922

repository.923

1.3 Optimal chunking model estimation924

Model fit925

In Bayesian inference the model fit is defined by the likelihood function which evaluates how

likely is that the observed data was generated by a particular model – in our case:

p(S|θi) = p(S|z,x, θi),

where x is a set of n-grams and z is a set of discrete mappings which define how individual926

n-grams are combined to encode the observed data S. Intuitively, the likelihood of a model θi927

quantifies how easy or difficult it is to generate all observed sequences using a set of n-grams928

and mappings as specified by the model.929

Commonly, the likelihood of a model is measured in terms of the distance between model930
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predictions and the observed data: for example, we could use a between-sequence distance931

metric (such as the Levenshtein or Hamming distance) to compute the distances between the932

observed sequences S and the set of sequences defined by a particular model’s parameters (n-933

grams and mappings). However, here we only consider models that are capable of encoding the934

observed data: e.g. for a set of two sequences S = {ABCD,DBAC} we only consider chunks935

like x = {AB,CD} or x = {A,B,C,D}, but not x = {CA,DD}; and the same with map-936

pings. There are two reasons for this: first, the space of possible models that correctly encode937

the observed sequences is already quite large. For example, in our study we use 14 individual938

sequences. As any individual 4-item sequence can be encoded with 8 different mappings (see939

Chunking model above), it follows that a set of 14 sequences can be encoded with 814 different940

mappings. Similar combinatorial expansion applies for the number of possible sets of n-grams.941

Second, the models that cannot even theoretically fit the data are inevitably less likely than942

models which do. Therefore by constraining ourselves to the subspace of data-matching models943

we explore the domain of most probable models. This constraint also follows an ecological ra-944

tionale: chunks are assumed to be inferred from the regularities present in the data, hence there945

is no reason to consider latent variables that cannot be mapped onto the observed variables.946

Model evidence947

Model evidence (Eq 16) combines previously described measures: model complexity in terms948

of the probabilities of its parameters and model fit. Here we only consider models which fit the949

observed data perfectly: evaluating model evidence is therefore reduced to estimating model950

complexity for data-fitting models. The model with greatest evidence – and therefore the one951

with maximum a posterior probability – is the one which encodes the set of observed sequences952

with the least complex model.953

Importantly, the two model parameters – set of n-grams and mappings – make contrasting954

contributions to model complexity: an optimal model will need to find a trade-off between the955

number of n-grams it comprises and the complexity of the mappings. For example, a set of956

four individual uni-grams x = {A,B,C,D} can encode any of the 14 sequences in our task,957
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but all of the mappings need to be maximally complex, each involving four links between the958

n-grams. Such a model would have a simple set of chunks but would require complex mappings959

to encode the observed sequences. In the other extreme, consider a model where each individual960

sequence is encoded with a single four-gram and therefore would require simple mappings (each961

n-gram to each individual sequence, i.e. four times less complex per sequence than the uni-gram962

model). However, the such a set of 14 four-grams is by definition more complex and therefore963

less probable than a set of four simple uni-grams.964

The two model parameters – set of n-grams and mappings – can therefore be intuitively965

thought of as the model’s codes and the encoding it specifies. The Bayesian model comparison966

mechanism guarantees that the model with the greatest evidence – the optimal model – will967

define an ideal trade-off between the complexity of the codes and the encoding it produces.968

This trade-off can be visualised by displaying the model evidence as a sum of their negative log969

probabilities: Fig 7B illustrates the trade-off between the codes and the encoding for several970

possible chunking models given a set of two repeated sequences.971

1.4 Simulation of expected changes in pattern similarity972

Our hypothesis about the effects of associative learning assumes noise reduction directly at973

the level of representational dissimilarity matrix (RDM, Eq 23). Diedrichsen et al. [91] have974

pointed out that as most distance estimates are based on the product of random variables,975

the resultant noise variance in the distance estimates gets more complicated than the model976

we have assumed here. To address this issue we investigated the degree to which the noise977

should be reduced (or SNR to be increased) in the learned pattern in order for the changes978

to be detectable in the RDM. Specifically, we carried out a series of simulations to assess how979

pattern similarity distances change according to the reduction of noise in the activity patterns980

for the learned sequences. For example, when the measurement noise is already high, a certain981

amount of noise-reduction in learned sequences would not be visible in the estimated distance982

measures.983

We simulated the predicted effects of associative learning which assume that (1) neural984
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sequence representations remain the same with learning but (2) their SNR changes proportional985

to the SNR change observed in the behavioural responses. Therefore such change should also986

be detected in the fMRI data.987

Briefly, we first transformed the behavioural change accompanying sequence learning (sig-988

nificant reduction in manual response times, see Behaviour in the Results section of the main989

manuscript) into the change in the internal representations of sequences. Formally, we assumed990

that manual response times are proportional to noise in the representation distribution: as991

noise increases so do the response times. This leads to two representational noise estimates992

for both unique and repeated sequences which were then transformed into expected voxel re-993

sponses. The simulated voxel responses where then combined with the estimated fMRI noise994

using the data from the study’s pilot scans. This was carried out using the CNR/Noise SD995

approach outlined in [92]. The simulated fMRI data was then transformed into voxel RDMs996

and correlated with stimulus RDMs. Briefly, the steps were as follows:997

1. Estimation of population responses according to the sequence representation model given998

some estimate of the representational noise.999

2. Estimation of fMRI noise from unprocessed EPI scans per subject.1000

3. Combination of simulated population responses with the estimated fMRI noise, resulting1001

in simulated fMRI responses to individual sequences. This step was carried out using the1002

approach and scripts developed by [93], building on previous work by [92].1003

4. RSA simulation: RSA carried out as described in Methods over simulated fRMI data to1004

estimate a relationship between representational noise and the noise in RDMs.1005

The full technical details and results of the simulation are presented in the Jupyter Notebook1006

(sim fmri) at our code repository.1007

The simulation results are displayed in the plot below outlining the change in the RSA1008

correlation values as a function of representational and measurement (fMRI) noise.1009

Our simulation shows that we can indeed expect to see a correspondence between represen-1010

tational noise and RSA correlation values as assumed by the SNR hypothesis: RSA correlation1011
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Fig 10: Y-axis shows the correlation between stimulus RDM and voxel RDM (Spearman’s ρ) and X-
axis shows the amount of noise in the representational model (as represented by the σ noise parameter).
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values decrease as noise in the sequence representations increases. The individual points om1012

the figure above represent two different fMRI noise estimates corresponding to two subjects1013

we scanned in the piloting phase. The difference between the first two noise parameter values1014

(σ = 0.4 and σ = 0.8) corresponds to the estimated noise difference in the novel and learned1015

sequence representations.1016

1.5 Associative learning of overlapping sequences1017

Worked example1018

To continue with the example provided in the manuscript: ”The sequences ABCD and1019

BADC cannot be learned simultaneously simply by storing position-item associations, as the1020

resulting set of associations would be equally consistent with the unlearned sequence ABDC.”1021

When two sequences ABCD and BADC are learned by strengthening item-position asso-1022

ciations then (all other variables remaining the same) we end up with equal strengths for the1023

following item-position associations:1024
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A− 1,

A− 2,

B − 1,

B − 2,

C − 3,

C − 4,

D − 3,

D − 4.

The resulting weights would also be the result of learning two different sequences ABDC1025

and BACD. In other words, learning the two original sequences would result in eight association1026

weights of equal strength to represent four sequences (ABCD, BADC and ABDC, BACD). Such1027

a learning mechanism would suffer from catastrophic interference with multiple short sequences1028

of overlapping items (like most real-word sequential actions tend to be).1029

1.6 Individual sequences used in the task1030

Four individual items (Gabor patches) are represented with numbers 1 to 4.1031
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(3, 1, 4, 2)

(2, 4, 1, 3)

(1, 2, 3, 4)

(4, 2, 1, 3)

(1, 4, 2, 3)

(4, 3, 1, 2)

(4, 1, 3, 2)

(4, 2, 3, 1)

(1, 3, 2, 4)

(1, 2, 4, 3)

(4, 1, 2, 3)

(1, 4, 3, 2)

(1, 3, 4, 2)

(4, 3, 2, 1)
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