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Abstract1

A long-standing observation about primary visual cortex (V1) is that the stimulus selectivity of2

neurons can be well explained with a cascade of linear computations followed by a nonlinear rec-3

tification stage. This framework remains highly influential in systems neuroscience and has also4

inspired recent efforts in artificial intelligence. The success of these models include describing5

the disparity-selectivity of binocular neurons in V1. Some aspects of real neuronal disparity re-6

sponses are hard to explain with simple linear-nonlinear models, notably the attenuated response7

of real cells to ”anticorrelated” stimuli which violate natural binocular image statistics. General8

linear-nonlinear models can account for this attenuation, but no one has yet tested whether they9

quantitatively match the response of real neurons. Here, we exhaustively test this framework using10

recently developed optimisation techniques. We show that many cells are very poorly characterised11

by even general linear-nonlinear models. Strikingly, the models can account for neuronal responses12

to unnatural anticorrelated stimuli as well as to most natural, correlated stimuli. However, the13

models fail to capture the particularly strong response to binocularly correlated stimuli at the pre-14

ferred disparity of the cell. Thus, V1 neurons perform an amplification of responses to correlated15

stimuli which cannot be accounted for by a linear-nonlinear cascade. The implication is that even16

simple stimulus selectivity in V1 requires more complex computations than previously envisaged.17
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Significance statement18

A long-standing question in sensory systems neuroscience is whether the computations performed19

by neurons in primary visual cortex can be described by repeated elements of linear-nonlinear units20

(a linear filtering/pooling stage followed by a subsequent output nonlinearity, such as a squaring).21

This question goes back to the Nobel-prize winning work by Hubel & Wiesel who argued that22

orientation selectivity in V1 can qualitatively be explained in this way. In this paper, we show23

that V1 neurons have an amplification of their response to stimuli which are contrast matched24

in the two eyes, and that the recovered models cannot describe this property. We argue that25

this likely represents more sophisticated computations than can be compactly described by the26

linear-nonlinear cascade framework.27
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Introduction28

In their classic model for orientation selectivity in the visual cortex, Hubel and Wiesel (1962) pro-29

posed that simple cells performed a linear operation on the retinal image. A nonlinear relationship30

between the filter response and the spike rate was sufficient to account for the observed selectivity31

(a linear-nonlinear, or LN, model of simple cells [Hubel and Wiesel, 1962]). Complex cell properties32

such as position invariance could be modelled as the sum of several such LN “subunits” followed33

by a second nonlinearity. This process, where the output of one set of LN models forms the input34

to a second LN model, is referred to as an LN cascade. In the ensuing 50 years, models with this35

structure have been used to explain the responses of sensory neurons in many cortical areas, and36

increasingly sophisticated methods have evolved to fit the models to individual neurons. Disparity37

selectivity in these neurons is typically explained with the binocular energy model (BEM), an LN38

cascade model in which the linear filters are binocular [Ohzawa et al., 1990].39

40

One interesting property of these neurons has been hard to capture with the model: when pre-41

sented with anticorrelated random dot patterns, neuronal responses are less strongly modulated42

by disparity than in correlated patterns [Cumming and Parker, 1997]. This anticorrelated attenu-43

ation is thought to represent the fact that these stimuli cannot arise in natural viewing and hence44

represent a specialisation for the statistics of natural binocular inputs [Haefner and Cumming,45

2008, Henriksen et al., 2016b].46

47

Generalised versions of the BEM (GBEM), which allow for arbitrary filters and nonlinearities,48

as well as suppressive subunits, can capture a diverse set of tuning curves, including the attenu-49

ated response to anticorrelated stimuli [Nieder and Wagner, 2000, Read et al., 2002, Tanabe and50

Cumming, 2008, Tanabe et al., 2011, Henriksen et al., 2016c, Goncalves and Welchman, 2017].51

However, none of these studies demonstrate that real cells obtain their disparity tuning through a52

GBEM-type mechanism.53

54

A sufficiently broad LN cascade can approximate any function [Hornik, 1991], so in theory a55

GBEM with enough subunits must be able to describe the disparity tuning of real neurons. How-56

ever, an LN cascade is only an interpretable description of a mechanism if the number of filters57

is modest. In practice, the number of subunits is also limited by the amount of data, since the58

cross-validated performance of a complex model will generally be low when there is limited data.59

The question then is whether real neurons can be described by a GBEM with a modest number of60

subunits.61

62

The most comprehensive effort to answer this was by Tanabe et al (2011). They performed a63

spike-triggered analysis of covariance, using a binocularly uncorrelated Gaussian noise stimulus.64
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GBEMs fitted to these data did not produce disparity tuning curves showing anticorrelated atten-65

uation. However, this reflected the small correlation range present in the noise stimulus. When66

Tanabe et al separated their neuronal responses according to whether the stimulus correlation fluc-67

tuated above or below the mean of zero, they found that the neurons also showed no anticorrelated68

attenuation. It is then hardly surprising that the fitted models did not.69

70

In this paper, we definitively answer the question of whether the GBEM framework can account71

for the disparity tuning of real cells. Using recently developed optimisation routines [McFarland72

et al., 2013], we fit GBEM units to neuronal data recorded from V1 in the macaque. The key73

advance from Tanabe et al (2011) is that this method allows us to fit GBEMs when the image74

sequences are binocularly correlated (or anticorrelated), and hence produce anticorrelated atten-75

uation in the data. The GBEM accounted well for neuronal responses to anticorrelated stimuli,76

but underestimated response to correlated stimuli at the preferred disparity. This suggests that77

V1 contains a mechanism to amplify responses to naturally occurring disparities, which cannot be78

explained by an LN cascade.79

Materials and methods80

Animal subjects81

Two male macaques (Macaca mulatta) were implanted with scleral search coils, head posts, and a82

recording chamber under general anaesthesia. The full procedure is described elsewhere [Cumming83

and Parker, 1999, Read and Cumming, 2003]. For the experiment, subjects viewed two CRT84

monitors through a custom mirror haploscope. The subjects were required to maintain fixation85

on a central box in order to receive a reward. All experiments were performed at the National86

Institutes of Health in the US, and complied with the US Public Health Service policy on the use87

and care of animals. The protocols received approval by the National Eye Institute Animal Care88

and Use committee at the National Institutes of Health.89

Recording90

We recorded extracellular activity from neurons in primary visual cortex (V1) using laminar multi-91

contact electrodes (U-probes, Plexon for monkey Jbe; V-probes, Plexon for monkey Lem). Each92

electrode had 24 linearly arranged probes spaced 50 µm apart. Electrodes were placed transdurally93

at the start of each day with a custom-built microdrive. The data was sampled with Spike2 (Cam-94

bridge Electronic Design), and the full waveform data was saved to disk for offline analysis. Spikes95

were subsequently analysed offline using custom spike-sorting software. Neurons were included in96

the analysis if they were well-isolated and disparity-tuned (as determined by a permutation test,97

P < 0.01). 95/197 cells met these criteria, giving 65 cells from monkey Lem, and 30 from monkey98
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Jbe.99

Stimulus100

The stimuli were presented on two Viewsonic P225f CRT monitors. The resolution was 1280×1024101

pixels and the monitor refresh rate was 100Hz. Both monitors’ luminance outputs were linearised102

using lookup tables. The mean luminance was 40 cd/m2, and the contrast (between maximum103

and minimum luminance) was > 99% as measured with a Konica-Minolta LS100 photometer. The104

eccentricity depended on the recording site, and varied from 2◦ − 4◦ for recordings from the oper-105

culum to > 10◦ for recordings in the calcarine sulcus. The animal was shown a 1D random noise106

pattern consisting of either black, gray, or white bars. The orientation of the stimulus was chosen107

so as to match the orientation preference of the cell (measured using circular patches of 1D noise108

at zero disparity) as closely as possible. When the stimulus orientation was sufficiently different109

from the preferred orientation (e.g. because there were multiple cells with different orientation110

preferences), there was typically no disparity selectivity to the 1D noise stimulus. The bars were111

0.0946◦ in width, and the pattern consisted of 42 bars in each eye. The stimulus could be either112

binocularly correlated, anticorrelated, or uncorrelated. Stimulus disparities were selected based on113

the disparity tuning observed in measurements after fixing the orientation. Disparity was applied114

to the stimulus by wrap-around (i.e. bars displaced off the right end of the stimulus would be115

appended to the beginning of the stimulus; this has the effect of keeping the frequency power116

spectrum the same for the left and right images). We only used disparities which were integer117

multiples of the bar width, and always applied disparity orthogonally to the orientation of the bar118

pattern. A new stimulus pattern with a new disparity and correlation was shown every 30ms. A119

single trial lasted for 3s, corresponding to 100 independent noise patterns. We also implemented120

a two-pass procedure by duplicating trials, such that the same exact sequence of noise patterns121

occurred twice for most trials. This was done for the purposes of another experiment. Since there122

is no straightforward way of determining what was on a cell’s receptive field prior to the onset of123

a trial, we discarded the first 200ms of each trial.124

125

Disparity tuning curves126

In order to compute disparity tuning curves, we performed a forward correlation analysis. For a127

given disparity and correlation, we first identified all the patterns which were presented with the128

given stimulus parameters. For each pattern, we computed the number of spikes observed in bins129

tmax − 1, tmax, and tmax + 1, where tmax is the time bin where we observed the largest variance130

across disparities. In other words, we computed the response in a 30ms window around the peak131

response for each neuron. The mean spike count was then computed for every disparity/correlation,132

giving a mean spike count for each disparity-correlation combination. The same exact procedure133
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was performed for both the real cells and their model counterparts, with the only difference being134

whether the sequence of spike counts was predicted or observed.135

136

Generalised binocular energy model137

We fit a generalised form of the binocular energy model using the framework developed by McFar-138

land & Butts (2013). The model takes the general form139

C = F

[
N∑
i

wifi(Li +Ri)

]
, (1)

where fi is the subunit nonlinearity for the ith subunit, wi is the weight given to the ith subunit140

(constrained to be either -1 or +1, corresponding to a suppressive or excitatory subunit, respec-141

tively), and F is the final spiking nonlinearity of the model unit. Li and Ri are the response of142

the ith left and right filters, and are further defined as143

Li = ρ
(i)
L · sL,

Ri = ρ
(i)
R · sR.

(2)

Here sL and sR refer to a vector representation of the stimulus presented to the left and right eyes,144

respectively. ρ
(i)
L and ρ

(i)
R refer to vector representations of the linear spatiotemporal filters for145

the left and right eye of the ith subunit. The number of spatial elements in the filter was simply146

the number of independent pixels in the stimulus, which was 42 for the left and right eyes (84147

total). The number of temporal elements in the filter was 15, sampled at 10ms, corresponding148

to a maximum temporal kernel of 150ms. Thus, the total number of elements for the binocular149

spatiotemporal filter was 1260. The subunit nonlinearity fi can in principle take on a range of150

forms, but for the current purposes we have constrained it to always be a thresholded square. In151

symbols,152

f(x; θ) = Pos(x− θ)2, (3)

Where Pos refers to half-wave rectification, and θ is the threshold parameter. The spiking non-153

linearity F is a softplus rectifier, which is a smoothly varying rectifier function (with well-defined154

derivatives everywhere). It takes the form155

F (z;α, β, γ) = α ln(1 + exp[β(z − γ)]), (4)

where α, β, and γ approximately correspond to magnitude, slope, and threshold parameters, re-156

spectively. The term in equation 1 is a continuous firing rate, and the spike count is obtained by157

passing the continuous rate through some discretisation procedure. For all analyses, we passed158
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the continuous rate through a Poisson random number generator (poissrnd in Matlab) to obtain159

discrete spike counts.160

161

Hyperparameters162

The optimisation routine developed by McFarland & Butts (2013) allows for fitting various compo-163

nents of this framework to empirical data by optimising the (log) likelihood of the model parameters164

given the data. Specifically, we can directly fit the coefficients of the linear spatiotemporal filters165

Li and Ri, the thresholds θi of the subunit nonlinearities, and the parameters α, β, and γ of the166

spiking nonlinearity. While the log likelihood surface is not guaranteed to be convex, McFarland &167

Butts note that appropriate steps, such as L1 and smoothness regularisation, can in general prevent168

the routine from converging to local minima [McFarland et al., 2013]. Therefore, we used both L1169

and smoothness regularisation. L1 regularisation penalises the L1 norm (the taxicab distance from170

the origin) of the linear filter coefficients, ensuring that the filter coefficients take on sensible values171

and also encouraging sparsity of the filter coefficients [Tibshirani, 1996]. Smoothness regularisa-172

tion penalises the Laplacian of the filter coefficients, ensuring that the second derivatives of the173

filters are small everywhere. This prevents abrupt, physiologically implausible changes in the filters174

(since such changes would correspond to large second derivatives). More generally, both forms of175

regularisation help prevent overfitting to the training data. The numbers of excitatory and sup-176

pressive subunits have to be optimised through cross-validation. In order to do this, we first split177

the data into a training set and a validation set. In order to prevent leakage of the training data178

into the validation data, the sets were split by trial instead of frame. For each cell, 75% of trials179

belonged to the training data, and the remaining 25% of trials belonged to the validation data.180

All identical trials (i.e. two-pass trials) were kept in the same set (either validation or training) to181

ensure independence of the two sets. We then performed a grid search on the number of excitatory182

and suppressive subunits, computing the log likelihood of the model on the validation data (the183

cross-validated log likelihood) for each combination of excitatory and suppressive subunits. Our184

hyperparameter search space was from 1 to 12 excitatory subunits, and from 0 to 5 suppressive185

subunits, yielding a total of 72 hyperparameter combinations for each cell. We capped the number186

of excitatory and suppressive subunits at 12 and 5, respectively, since we observed no cases of cells187

which were best modelled by 12 excitatory or 5 suppressive subunits. We repeated this procedure188

with different train/test splits at least 3 times for each excitatory-suppressive combination, and189

used the mean cross-validated log likelihood for model selection. The hyperparameter combination190

with the highest mean cross-validated log likelihood was used in the subsequent analysis. In gen-191

eral, the cross-validated log likelihood is fairly stable across iterations and so the best parameter192

combination is not greatly affected by either number of repeats or aggregation rule (i.e. mean,193

min, max, and median all give very similar results).194
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Spike count predictions195

After the hyperparameters of the model have been fixed, we obtained cross-validated model spike196

count predictions for each cell by running five-fold cross-validation. We first split the data into five197

equal subsamples (by trial, as noted above), and then fitted the GBEM on four of the subsamples.198

This allows us to obtain spike count predictions for hitherto unseen data (i.e. cross-validated199

predictions). We did this for each of the subsamples, resulting in cross-validated predictions for all200

trials in our dataset. This ensures that all model predictions are of unseen data. Effectively, we201

are testing a particular model architecture (i.e. the GBEM with a certain number of excitatory202

and suppressive subunits) as opposed to a particular instantiation of the GBEM.203

Model responses to disparity-correlation combinations204

The disparity tuning curve captures how well a GBEM unit can capture responses across dispar-205

ities. In order to describe how the GBEM units captures the cell’s responses within disparities,206

we first identify frames with the appropriate disparity/correlation, and then run the forward cor-207

relation procedure as previously specified. The same exact procedure was performed for observed208

spike counts as for (cross-validated) predicted spike counts.209

210

Suppose the experiment includes N frames with a given disparity and correlation, where we211

typically have N > 1000. The forward correlation analysis gives us N predicted spike counts212

obtained from the set of cross-validated models. The average of these spike counts gives us the213

predicted disparity tuning curve. However, both cells and models show considerable variability in214

the response to different stimuli with the same disparity and correlation. To assess the agreement215

within disparities, we first binned the N predicted spike counts into 15 bins chosen so as to contain216

an equal number N/15 of spike counts. This allows us to get both the mean model spike count217

within each bin, and, using the same bin boundaries, the mean spike count using the counts218

observed for the real neuron. If we plot the model spike count against the cell spike count in this219

way, we would expect the points from an unbiased model to lie on the identity line.220

Binocular Gaussian noise221

In order to compare our model responses to the population responses of cells in Tanabe & Cumming222

(2011), we also computed the responses of the model units to binocular Gaussian 1D noise. Each223

pixel in these stimuli had a value which was drawn from a normal distribution with unit variance,224

and was independent in the two eyes and also independent from frame to frame. A new pattern225

was generated every 10ms. In order to construct “tuning curves” for the independent binocular226

Gaussian noise, we used a procedure like that used by Tanabe et al (2011). We first computed the227

normalised binocular cross-correlation function of each image frame, extracting a correlation value228

for each disparity. For each disparity, we then identified the frames with the top and bottom 20%229
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of correlation values, which correspond to our correlated and anticorrelated frames, respectively.230

We then used these frames to trigger the forward correlation procedure, computing disparity tun-231

ing curves as previously specified. With this procedure, a single frame can be used in multiple232

disparities if the magnitude of binocular correlation exceeded our threshold for more than one233

disparity.234

Experimental design and statistical analysis235

We used a permutation test to assess the significance of disparity tuning in a given cell. For236

comparing the GBEM’s ability to capture the cell’s response to different stimuli, we first compute237

the relevant metrics (e.g. correlated and anticorrelated tuning strength, anticorrelated attenuation,238

as defined in the Results), and then do a paired samples t-test. We also carried out Pearson239

correlations, obtaining both r and p values for the relationship between these metrics. In Figure 2,240

bootstrap confidence intervals (CIs) are computed on the spiking response of both the cell and the241

model. The code for permutation tests and bootstrap CIs was written by the authors in MATLAB,242

while the Pearson correlation and the paired samples t-tests were carried out using MATLAB’s243

corr and ttest functions, respectively.244

Results245

Example LN filters246

From the fitting procedure, we obtain a GBEM unit with an optimal number of excitatory and247

suppressive subunits for each cell. The linear filters for a GBEM fit to cell lemM322c1 are shown248

in Figure 1a. For this cell, all subunits have a phase disparity between the two eyes (i.e. the profile249

of the filters differ in the left and right eyes). Figure 1b shows the subunit nonlinearities for the250

excitatory and suppressive subunits. In this case, the fitted thresholds are similar for the different251

subunits, except for one of the excitatory subunits (bronze line in top panel of Figure 1b). While252

this subunit’s filter coefficients are much lower (excitatory subunit with bronze outline in Figure253

1a), its threshold is much more negative, meaning that this subunit gives a large positive output to254

a blank screen. Figure 1c shows “tuning curves” to correlated stimuli for the excitatory pool and255

the suppressive pool (i.e. summed over excitatory and suppressive subunits, respectively). The256

pooled responses are normalised such that the baseline (median) response is zero (necessary for257

visualisation purposes since the excitatory subunit in Figure 1b has a high baseline response). The258

tuning curves of the excitatory and suppressive pools have opposite phases: this is the familiar259

push-pull organisation for binocular neurons introduced by Read & Cumming (2007) and found in260

V1 neurons by Tanabe, Haefner, & Cumming (2011).261

262
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Figure 1: a) Filters of excitatory and suppressive subunits recovered for cell lemM322c1. The
resulting GBEM unit has 5 excitatory subunits (red outline), and 3 suppressive subunits (blue
outline). The filters are shown here as spatiotemporal filters, with the vertical axis denoting time
and horizontal axis denoting space. Note that half of the pixels correspond to the left eye and the
other half to the right eye (separated by a vertical bisection). b) Subunit responses as a function
of the normalised filter response for both excitatory (top) and suppressive (bottom) subunits. The
filter response will necessarily be centred on zero. In order to normalise the filter responses, we
divide by the standard deviation. The normalised filter response is therefore a z-score where a
value of ±1 corresponds to one standard deviation from the mean (which as noted is necessarily
zero). A blank screen corresponds to a filter response of 0 in this scheme (though the converse
is not true: a filter response of 0 does not necessarily imply a blank screen). Each line shows a
different subunit, with the colours mapping onto the outline of the spatiotemporal filters in a).
c) Disparity tuning curves for the excitatory (red) and suppressive (blue) pools. The baseline
(median) response of the pools has been normalised to zero so that a meaningful comparison can
be made. The excitatory pool has a much higher baseline response than the suppressive pool.

Example disparity tuning curves263

Once we have the GBEM fits for each cell, we can obtain a disparity tuning curve for both the cell264

and the model, as described in the Methods. Figure 2 shows the disparity tuning curve for two265

cells where the GBEM unit has successfully captured the disparity tuning of the cell. Figure 2a266
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shows the tuning curve for cell jbeM012c7, a “tuned excitatory” cell by Poggio & Fischer’s (1977)267

nomenclature. Figure 2b shows the corresponding GBEM fit. It is important to highlight that the268

model was not fit to the disparity tuning curve of the cell; rather, the optimisation routine was269

given the luminance values on the screen and the spike times. Furthermore, the model disparity270

tuning curves used only spike counts predicted for on-screen luminance values which were not used271

during fitting. Thus, the ability to capture disparity tuning means that the model has learned a272

nonlinear binocular interaction which was not explicated in the inputs. The GBEM does a good273

job at capturing both the correlated and anticorrelated responses of the cell, and also captures274

the weak response attenuation of the cell to anticorrelated stimuli. Figure 2c shows the tuning275

curve of another example cell of the type known as a “tuned inhibitory” cell [Poggio and Fischer,276

1977]. These cells are relatively uncommon in cortex and respond most vigorously to a stimulus277

which is binocularly anticorrelated, i.e. to stimuli which are impossible in naturalistic viewing. A278

success of the original BEM is that it can capture this type of disparity tuning by incorporating279

phase disparity between the left and right subunits. Indeed, the GBEM readily accounts for the280

disparity tuning of this cell (Figure 2d), and does so by recovering linear filters which have phase281

disparities of approximately π.282

283

Most GBEM fits capture the overall shape of disparity tuning, and for some cells the magnitude284

of disparity tuning is also well-captured (e.g. Figure 2). However, most GBEM units underesti-285

mate the magnitude of disparity tuning. This becomes particularly evident when the GBEM and286

cell responses are superimposed, as in Figure 3. These include example cells where the disparity287

amplitude is quite well captured (Figure 3a), significantly underesimated (Figure 3b, d) and very288

seriously underestimated (Figure 3c). Figure 3a shows an example odd-symmetric cell where the289

cell’s response is very well-captured.290

291

In exampe cells, models tend to underestimate disparity tuning amplitude292

The response shown for all model cells is cross-validated, meaning that the model responses are293

shown for stimuli with which the model has not been fit. Thus, despite the underestimates, Figure294

3 represents a substantial success of the GBEM architecture to account for average responses across295

disparities.296

However, as noted, the amplitude of disparity tuning is systematically underestimated, espe-297

cially at the preferred disparity, indicated with the vertical blue dashed lines in Figure 3a, c, e,298

and f. In order to gain insight into this discrepancy, we plotted the mean rate in the real cell299

as a function of the predicted rate of the model, binned according to the predicted rate. This300

relationship is shown separately for 4 different conditions: correlated and anticorrelated stimuli301

at the preferred and anti-preferred disparity (see Methods). If the model correctly predicts the302
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Figure 2: Disparity tuning curves for two example cells (a,c) and their corresponding GBEM fit
(b,d). Correlated responses are shown in red, anticorrelated responses are shown in black, and
uncorrelated responses are shown in gray. The number of spikes per second were calculated in a
30ms window centred around the peak temporal response of the cell. The shaded regions show
95% bootstrap confidence intervals for the responses.

firing rate of the cell across all conditions, all points should lie on the identity line. If the model303

correctly predicts responses across noise patterns within a disparity, then these points should be304

monotonically increasing within each disparity.305

306

In Figure 3a and 3g, the disparity tuning curves are generally well captured, with only a slight307

underestimate. Accordingly, in Figure 3b and 3h, the points lie close to the identity line, indicating308

a generally successful model. In Fig 3c, the model captures the overall shape of the tuning curve,309

but underpredicts the magnitude of disparity tuning. In particular, it underpredicts the response310

of the cell to correlated stimuli. The effect of this can be seen in Figure 3d, where the responses to311

the correlated anti-disparity (red crosses) and the anti-correlated preferred disparity (black dots)312

lie on roughly the same curve. The correlated preferred responses are notably shifted up and to313

the left, i.e. the real cell responds more strongly to the preferred disparity than predicted by the314

model. This means that with the recovered model structure, there is no single output nonlinearity315

that can simultaneously account for the responses to correlated and anticorrelated stimuli. The316

implication is that the GBEM structure itself is not appropriate for simultaneously describing the317
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response to correlated and anticorrelated stimuli. It also suggests that the correlated responses318

at the preferred disparity are in some way “special” in the way they are processed by this V1 neuron.319

320

In some cases, we observed a much more spectacular failure to capture the disparity tuning.321

Figure 3e shows a cell where the model exhibits very little disparity selectivity. Despite this fail-322

ure to capture disparity tuning, Figure 3f shows that the rank ordering of the model responses323

within disparities are nevertheless broadly preserved: stimuli of a particular disparity which elicit324

a larger than average response in the cell also elicit a larger than average response in the model.325

In other words, the model can account for a large proportion of the cell’s responses to variations326

in the stimulus, but simply fails to account for disparity-selectivity. This means that for a given327

disparity, a large response in the cell to a particular luminance pattern does generally correspond328

to a larger response in the model as well. However, the GBEM selectively fails to capture the329

binocular interaction between the left and right eyes. We found that in general, the model fits can330

be broadly grouped into the three categories highlighted in Figure 3, namely: disparity tuning well331

captured; captured with signficnant underestimate of amplitude; not captured at all. Of particular332

interest are the model units that fail to capture any disparity tuning (e.g. Figure 3e); this does333

not represent a general fitting failure, as evidenced by Figure 3f, but is, as noted, a selective failure334

to capture disparity tuning. If a GBEM unit failed to capture less than 30% of the variance in335

disparity tuning of the corresponding cell, we categorised this model fit as failing to adequately336

capture disparity tuning. Out of the 95 disparity-selective cells in our dataset, 28 fits failed to337

capture disparity tuning by this definition (30% of disparity-selective cells).338

339

This failure is surprising given that, as noted above, GBEM units can easily produce disparity340

tuning curves of the required form. Indeed, it would be easy to hand-tune a GBEM to produce341

a much better fit to the tuning curve in Figure 3e than produced by our fitting procedure. It342

might therefore appear that this represents a trivial failure of our fitting procedure, e.g. conver-343

gence on a local optimum rather than the global one for a particular combination of excitatory344

and suppressive subunits. This is not the case. The reason for the “failure” to capture disparity345

tuning is that the model is not fit to the disparity tuning curves. Instead, the input to the model is346

simply the luminance patterns on the screen, and so the GBEM attempts to capture the full range347

of monocular, binocular, and temporal dynamics of the cell. The response to a given disparity348

in a tuning curve averages across many different monocular stimuli. Modest failures to capture349

responses to indiviudal stimuli can therefore result in substantial failures to describe the disparity350

tuning curve. Thus, while a hand-tuned model might be able to capture the tuning curve, it would351

do much worse than the fitted GBEM in predicting the response of the cell to actual (previously352

unseen) random line stereograms.353

354
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Quantifying the reduced response to anticorrelated stereograms: the rel-355

ative anticorrelated response356

The total failure to capture disparity tuning, seen in about 30% of our cells, can be viewed as an357

extreme version of a more general failure: the underestimation by the GBEM of the magnitude358

of disparity tuning in real cells. Thus, the largely absent disparity tuning of the GBEM unit for359

jbeM060c9 (Figure 3e) can be seen as a more extreme failure of the sort seen in lemM312c8 (Figure360

3c). Further evidence that the correlated response is special can be seen in the tuned inhibitory361

cell shown in Figure 3g. This cell’s response is suppressed by stimuli at disparity near 0, yet the362

GBEM unit underpredicts the magnitude of response modulation to these stimuli. This suggests363

that the model fails to capture the cell’s response to correlated stimuli per se and not just the364

spike rate independent of stimulus characteristics. The anticorrelated attenuation depends on the365

magnitude of the correlated response, which is amplified in real cells. Therefore, the effect of un-366

derestimating the response to correlated stimuli (at the preferred disparity) is that real cells have367

stronger anticorrelated attentuation than the GBEM units.368

369

In order to quantify this, we compute the regression slope (type II regression, [Draper and370

Smith, 2014]) between the correlated and anticorrelated response. We will refer to this metric as371

the relative anticorrelated response of the cell (note that this is different from the metric used to372

quantify anticorrelated attenuation in [Cumming and Parker, 1997], but the same as that used by373

[Henriksen et al., 2016b]). Figure 4b shows graphically how the relative anticorrelated response374

quantifies the degree to which dispartiy tuning is reduced for anticorrealted stimuli. If the rela-375

tive anticorrelated response is -1, then the neuron responds as strongly to anticorrelated stimuli376

as to correlated, but with a sign inversion (as in the standard binocular energy model) and thus377

exhibits no response attenuation to anticorrelated stimuli. A relative anticorrelated response of 0378

corresponds to a neuron which does not modulate its response to anticorrelated stimuli 1.379

380

The relative anticorrelated response for jbeM012c7 (Figure 2a) is -0.69 (95% CI: [-0.76, -0.62]),381

and the relative anticorrelated response for its GBEM fit (Figure 2b) is -0.74 (95% CI: [-0.85,382

-0.63]). Thus, the GBEM readily captures much of the anticorrelated response of this cell. For383

jbeM061c4 (Figure 2c), the GBEM also captures the relative anticorrelated response of the neuron384

well (Figure 2d), and this is again reflected in the relative anticorrelated response (jbeM061c4:385

-1.01, 95% CI: [-1.09,-0.923]; GBEM: -1.11, 95% CI: [-1.21, -1.00]). For the example cells in Figure386

3, the relative anticorrelated responses are -0.57 [-0.75,-0.2] for lemM328c9 and -0.94 [-1.02,-0.86]387

for its GBEM fit; -0.67 [-0.71,-0.63] for lemM312c8 and -0.99 [-1.05,-0.93] for its GBEM fit; -0.13388

[-0.14,-0.12] for jbeM060c9 and -0.62 [-0.70,-0.54] for its GBEM fit; -0.88 [-1.08,-0.70] for jbeM012c9389

1In theory, a cell whose anticorrelated response is modulated orthogonally to the correlated response would have
a relative anticorrelated response of 0; in practice, the latter is rare and we observed no such cases in the current
study.
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and -1.25 [-1.46, -1.07] for its GBEM fit.390

The GBEM fails to capture the anticorrelated attenuation seen in real391

neurons392

In order to summarise the inability of the model to capture the cell’s tuning curve across the393

population, we plot the relative anticorrelated response for the neurons against the relative an-394

ticorrelated response for their corresponding GBEM fits (Figure 5a). The four example cells in395

Figure 3 are indicated. Two key points are worth observing. First, there is a strong positive cor-396

relation between the relative anticorrelated response in the cells and that seen in the model units397

(r = 0.61, p < 0.001, Pearson correlation). This is notable since Tanabe & Cumming (2011) found398

no attenuation in anticorrelated response in the model units recovered with their spike-triggered399

analysis of covariance. Thus, although it has long been recognised that the GBEM can in principle400

explain anticorrelated attenuation, this is the first direct evidence that this explanation is at least401

partially correct. However, the vast majority of points in Figure 5a lie beneath the identity line,402

meaning that the GBEM systematically predicts less anticorrelated attenuation than is observed403

in the cells. This suggests that although the GBEM goes some way towards accounting for the404

relative anticorrelated response seen in V1 neurons, it is not on its own a sufficient explanation.405

Notably, most of the cells that are above the identity are the ones we previously identified as406

producing poor fits to the disparity tuning curve of the cell.407

408

Quantifying model fit: the correlated and anticorrelated tuning strength409

In principle, there are three potential reasons for the failure of the GBEM to account for anti-410

correlated attenuation. The first possibility is that the GBEM fails because it is unable to account411

for the anticorrelated response, perhaps because cells have a specialised mechanism for suppressing412

false matches [Samonds et al., 2013]. The second possibility is that the GBEM is unable to cap-413

ture the correlated response. Similar to the anticorrelated case, a failure to capture the correlated414

response could be because V1 neurons have enhanced responses to true matches which cannot be415

easily captured by the GBEM framework. The third possibility is that there is failure to capture416

both the anticorrelated and the correlated responses. In our example cells above, we saw that the417

evidence pointed to the second possibility – a failure to capture correlated response at the pre-418

ferred disparity. To quantify this at the population level, we first define a model tuning strength419

metric separately for the correlated and the anticorrelated patterns. The model tuning strength is420

simply the regression slope between the cell and the model’s tuning curves (illustrated in Figure421

4c and d for the anticorrelated and correlated case, respectively). If the model tuning strength422

is 0.5, then the model’s disparity tuning is 50% of the real cell’s tuning (provided that the shape423

of the disparity tuning curve has been appropriately captured, which is generally the case in our424
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data). We can compute the model tuning strength separately for correlated and anticorrelated425

responses, yielding a metric for how well a GBEM unit is able to capture the shape and magnitude426

of the cell’s disparity tuning for correlated and anticorrelated stimuli. Figure 5b shows the anti-427

correlated model tuning strength on the vertical axis, and the correlated model tuning strength428

on the horizontal axis. The vast majority of cells in this plot lie above the diagonal, suggesting429

that the GBEM is better able to capture the anticorrelated responses than the correlated ones.430

This was confirmed by a paired samples t-test comparing the anticorrelated model tuning strength431

(M = 0.52) against the correlated model tuning strength (M = 0.32): t(94) = 5.90, P < 10−7.432

The fact that points generally lie below 1 for both correlated and anticorrelated stimuli means that433

the models underpredict the strength of disparity tuning for both correlated and anticorrelated434

stimuli. However, the magnitude of the model failure is notably greater for correlated stimuli435

compared to anticorrelated stimuli.436

437

The previous analysis confirms that the correlated responses of the cells are more problem-438

atic for the GBEM than anticorrelated responses. This is noteworthy since it suggests that the439

established way of thinking about the shortcomings of the BEM – that it is not able to capture440

the anticorrelated response – is incorrect. Instead, real neurons tend to have a larger response to441

true matches at one specific preferred disparity, which neither the BEM nor its generalisation (the442

GBEM) is able to capture. If the failures of the GBEM above reflect the effect of a mechanism443

that amplifies responses to correlated patterns, it predicts a sytematic relationship between this444

failure and relative anticorrelated response observed in the neuronal responses. Figure 6a shows445

the model tuning strength for correlated responses against the relative anticorrelated response in446

the cell. There is a strong negative correlation between the two (r = −0.58, p < 10−9, Pearson’s447

r). That is, the disparity tuning curves for correlated stimuli are systematically captured less well448

for cells which show stronger attenuation to anti-correlated stimuli. Figure 6b shows the equivalent449

plot for the model tuning strength to anticorrelated responses. This relationship is weaker, but450

significant (r = 0.34, p = 0.001). Interestingly, the effect in Figure 6b is largely due to cells such451

as jbeM060c9 which fail to account for the disparity tuning curve of the real cells. These are shown452

highlighted in gray and largely cluster in the bottom right of the plot. Excluding cells with bad453

fits (e.g. those that can account for less than 30% of the variance in the cell’s disparity tuning454

curve, gray circles in Figure 6b), makes the relationship non-significant (r = 0.19, p = 0.13). The455

results in Figure 6a remain highly significant (p < 10−7) when excluding poor fits.456

Taking the results of Figure 5 and 6 together suggests that “attenuated anticorrelated response”457

is the wrong way to think about the response properties of disparity-selective cells. Instead of “at-458

tenuated anticorrelated response”, real neurons show “correlated amplification”: that is, they have459

an amplification of their response to true matches (correlated stimuli at the preferred dispar-460

ity of cell) rather than an attenuation or suppression of false matches per se. This amplification461
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is largely responsible for the failure of the GBEM to capture the disparity tuning curve of real cells.462

463

Model units correctly predict lack of anticorrelated atenuation with binoc-464

ular Gaussian noise stimuli465

The most comprehensive attempt at directly modelling disparity-selective cells in V1 by learning466

model parameters from data was performed by Tanabe & Cumming (2011). In order to retrieve the467

linear filters for each subunit, the authors first performed a spike-triggered analysis of covariance,468

and then optimised the nonlinearities for each subunit. In principle, this approach should give very469

similar results to the analysis we show here. It is noteworthy then that Tanabe & Cumming (2011)470

found no reduction in relative anticorrelated response in their model cells when tested on disparate471

1D line patterns, where the real neurons exhibited strong reductions. The key differences between472

that paper and the current work are 1) the method of model estimation, 2) the duration of each473

individual noise pattern (10ms in Tanabe & Cumming, 2011; 30ms in the present work), and 3)474

different stimuli due to the requirements of their spike-triggered covariance method. Specifically,475

the spike-triggered analysis of covariance approach used by Tanabe & Cumming requires a white476

noise stimulus which is independent in the two eyes. The consequence of using independent noise477

in the two eyes is that there are very few frames with extreme binocular correlation values (e.g.478

close to -1 or 1). Interestingly, the authors showed that when the cells were tested on the same479

independent noise patterns with which the models were fit, the cells did not exhibit systematic480

attenuation to anticorrelation either [Tanabe et al., 2011].481

482

An independent test of our GBEM units is then to explore whether they can reproduce this483

characteristic feature of real cells highlighted by Tanabe & Cumming (2011): real neurons show484

anticorrelated attenuation only to large positive or negative correlation values. The stimulus used485

to fit the GBEM is very similar to the RLS stimuli used by Tanabe & Cumming to construct their486

attenuated tuning curves, so we know that the model units show somewhat attenuated anticorre-487

lated response (or more appropriately, correlated amplification) in this case. Thus, an additional488

test is whether our model units also show an absence of that attenuation to independent binocular489

Gaussian noise. The procedure for calculating disparity tuning curves from independent noise data490

was the same as in Tanabe & Cumming (2011) and is documented in the Methods section. Figure491

7a shows a tuning curve computed using Tanabe & Cumming’s independent noise stimulus for the492

example GBEM unit shown in Figure 2a (jbeM012c7). While the model unit previously showed493

clear anticorrelated attenuation with disparate line stereograms (M=-0.74, 95% CI: [-0.85, -0.63]),494

this is now not significantly different from -1 (M=-0.95, 95% CI: [-1.08,-0.82]).495

496

We can summarise this across the population by plotting the relative anticorrelated response to497
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the 1D RLS stimulus against the relative anticorrelated response to the independent Gaussian noise498

stimulus (Figure 7). Just as in Tanabe & Cumming (2011), our model units cluster around -1 (no at-499

tenuation), and at the population level is not significantly different from -1 (t(94) = 1.53, p = 0.13).500

Thus, our model units readily capture both the attenuated anticorrelated response/correlated am-501

plification exhibited by real cells to 1D RLS stimuli with binocular disparity, and also the absence502

of that attenuation in binocularly independent Gaussian noise.503

504

Discussion505

Linear-nonlinear (LN) cascade models have been very successful in describing many properties of506

cortical neurons [Hubel and Wiesel, 1962, Ohzawa et al., 1990, Cumming and Parker, 1997, Ringach507

et al., 1997, Sharpee et al., 2011, Ostojic and Brunel, 2011]. Although they rarely predict spike508

rates perfectly, they can quantitatively describe the shape of tuning curves for several stimulus509

parameters [Hubel and Wiesel, 1962, Adelson and Bergen, 1985, Ohzawa et al., 1990, Cumming510

and Parker, 1997]. Thus existing data are compatible with a view in which LN-cascades generate511

cortical stimulus selectivity, while other nonlinearities only regulate the response gain. Invoking512

these nonlinearities has been reasonable, since the cascade models are usually fit using responses513

to stimuli that differ from the tests. Here we provide a new test of LN cascade models by fitting514

models to activity of V1 neurons in response to random noise patterns with binocular disparity,515

and then examining the mean responses of both model and cell across many different patterns of516

a given disparity.517

518

Accounting for neuronal responses to disparity is made challenging by the fact that while V1519

neurons modulate their activity with the disparity of anticorrelated patterns, this modulation is520

typically weaker than that observed in response to correlated patterns [Cumming and Parker, 1997].521

A number of schemes have been proposed that might explain this [Nieder and Wagner, 2000, Read522

et al., 2002, Tanabe and Cumming, 2008, Tanabe et al., 2011, Tanabe et al., 2011, Samonds et al.,523

2013, Henriksen et al., 2016a, Burge and Geisler, 2014, Goncalves and Welchman, 2017], but it is524

unclear which, if any, of these model frameworks can account for neuronal activity in V1.525

526

In this paper, we made use of developments in optimisation routines which allowed us to fit527

the components of generalised binocular energy model units to spiking data from V1 [McFarland528

et al., 2013]. The data was generally well-described by the model units, confirming that this class529

of models can serve as a first approximation. However, even the best-fitting models underestimated530

the magnitude of the correlated response at the preferred disparity of the cell. It is important to531

note that this is not simply a failure of the fitting procedure, such as a failure to find the global532

maximum likelihood. Although it is possible to create disparity tuning curves by hand that better533
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capture the cell’s tuning curves, the GBEM was not optimised for fitting the actual tuning curves534

themselves. Rather, the GBEM finds a model which can best map image sequences to firing rates,535

and in doing so captures temporal and monocular dynamics, as well as binocular interactions. A536

model with a sufficiently wide array of LN filters must necessarily produce a good description of the537

responses to which it is fit, including the disparity tuning, since the architecture can approximate538

any function [Hornik, 1991]. For an LN cascade model to provide a realistic account of cortical539

neurons, it must both use a plausible number of subunits and generate accurate predictions to540

images which were not used in fitting the model.541

542

We observed that the tendency for the GBEM to underestimate the correlated response was543

related to how much response attenuation the cell exhibited: cells that show relatively weaker544

modulation to anticorrelated stimuli were fit more poorly by our model framework. However, this545

was specific to the correlated responses. In other words, when cells had very large correlated re-546

sponses relative to anticorrelated responses, the model failed to capture the correlated response547

to a larger degree than the anticorrelated response. This strongly suggests that disparity-selective548

V1 cells have a specialised mechanism for strengthening the response to correlated stimuli at the549

preferred disparity, which likely does not originate from a standard linear-nonlinear cascade. We550

call this mechanism correlated amplification.551

552

Previous work has expanded on the BEM to account for the relatively weaker anticorrelated re-553

sponses in four separate ways. The first and simplest is by simply appending an output nonlinearity554

to the BEM. This is by far the most common method for generating anticorrelated attenuation (e.g.555

[Nieder and Wagner, 2000, Read et al., 2002, Henriksen et al., 2016a]), but there has been little evi-556

dence showing that this is the actual explanation. Notably, a simple output exponent can be easily557

approximated by the thresholded square nonlinearity on the subunits in the GBEM. Therefore, if558

an output nonlinearity was the correct explanation, our modelling approach would have revealed it.559

560

Anticorrelated attenuation in cells with odd-symmetric disparity tuning (with a peak at one561

disparity but a trough at another disparity) is a particular challenge [Read et al., 2002]. An output562

nonlinearity cannot account for the anticorrelated attenuation in these cells since the nonlinearity563

would affect the correlated and anticorrelated responses equally (and produce no attenuation).564

The only published solution is to combine two or more even-symmetric subunits with different565

preferred disparities [Haefner and Cumming, 2008, Read et al., 2002]. If each subunit shows atten-566

uation (because of an output nonlinearity, or monocular thresholding), then this is present in the567

final response. If this two-subunit model were the correct description of odd-symmetric disparity568

tuning, then our fitting procedure should have recovered subunits with offset, even-symmetric dis-569

parity tuning. Instead, neurons with odd-symmetric tuning curves tended to have subunits which570
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themselves had odd-symmetric tuning (e.g. lemM322c1 in Figure 1), and thus little anticorrelated571

attenuation (e.g. lemM328c9 and lemM312c8 in Figure 3). This finding argues against the two-572

subunit model of odd-symmetric disparity tuning.573

574

Thus, our data show that a GBEM architecture can only partially account for observed re-575

sponses to anticorrelation. A different approach was described by Samonds et al. (2013), who used576

a recurrent network made up binocular energy model-like units. Recurrent models are interesting577

because they can capture a range of complex phenomena known to operate in cortex. For example,578

feedforward models such as the GBEM are not ideal for modelling complex temporal dynamics. In579

contrast, Samonds et al. (2013) used their recurrent binocular network to successfully model the580

sharpening of disparity tuning over time [Samonds et al., 2009, Samonds et al., 2013]. Recurrent581

models are particularly promising given the recent success of recurrent neural networks in matching582

or exceeding human performance on a range of of complex visual tasks, such as image captioning583

[Vinyals et al., 2014] and object recognition [Liang and Hu, 2015]. Cells with recurrent connections584

remain a strong potential candidate for accounting for disparity tuning in real cells. However, this585

explanation has not yet been tested in real V1 neurons by fitting a complete recurrent model to586

individual cell responses.587

588

One possibility that has not been explored is incorporating processes such as contrast normal-589

isation separately for each subunit into LN cascades. It has been known for a long time that real590

cells have strong (largely monocular) contrast gain control [Albrecht and Hamilton, 1982, Simon-591

celli and Heeger, 1998, Truchard et al., 2000, Carandini and Heeger, 2012]. In other words, a large592

increment in contrast creates a relatively small increment in neuronal response, which is unlike593

what happens in models like the GBEM (where the response can change several orders of magni-594

tude due to the quadratic nonlinearities). A second possibility is that more complex nonlinearities595

may be able to explain the correlated amplification process. Nonlinearities which act on multiple596

subunits have so far received little attention. For example, a cell whose final spiking nonlinearity597

is a thresholded AND gate, i.e.598

F (g1, g2) =

g1 + g2 if g1 > θ1 and g2 > θ2,

0 otherwise,

(5)

could potentially display the correlated amplification effect given appropriate subunits [Archie and599

Mel, 2000]. Similar nonlinearities have been explored in relation to contrast normalisation, but600

little attention has been given to these types of computations in describing selectivity for stimulus601

features.602

603

A final unexplored possibility is that adding layers to the GBEM framework will allow it to604
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learn more complex models which still generalise well to unseen data. Indeed, one of the remarkable605

features of deep convolutional neural nets is their ability to learn complex, nonlinear features from606

unstructured data [LeCun et al., 2015]. It is well-known that given enough subunits, even models607

such as the GBEM can in principle approximate any arbitrary function [Hornik, 1991]. However,608

if the model is not a good approximation of the underlying generative process, then the learned609

model parameters will fail to generalise to new, unseen data. For a deep generalised binocular610

energy model framework the question therefore becomes whether such a model can 1) provide a611

compact account of disparity-selectivity in cortex, and 2) help illuminate the mechanisms which612

gives rise to interesting properties of real cells.613

614

Thus, while our results demonstrate that a simple LN cascade cannot provide a complete615

account of cortical stimulus selectivity even in V1, they also point the way to tractable related616

architectures that may provide a sucessful account, and a model system in which the model can be617

fit and tested using responses to a single set of stimuli. In several cases these preserve the initial618

linear stage (as proposed by Hubel and Wiesel for simple cells), but required a more complex619

interaction across subunits than simple linear summation. This interaction could be a unique620

contribution of cortex in generating stimulus selectivity.621
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Figure 3: Disparity tuning curves for three example cells which capture the diversity of model
fits. Here, the response of the model (dashed lines) is overlaid on the response of the cell (solid
lines). Panels a, c, e, and g show the disparity tuning curves, whereas panels b, d, f, and h show
the observed spike rated plotted as a function of the predicted spike rate (binned according to the
predicted spike rate). Each point in b, d, f, and h shows the average observed and predicted rates
for a separate bin for a particular disparity/correlation combination (black dots are anticorrelated,
red dots are correlated). Filled circles show the preferred disparity of the cell (dashed blue line
in the left column), and pluses show the anti-preferred disparity (dashed green line in the left
column). The horizontal dashed lines show the mean spike counts at the preferred disparity, for
correlated (red) and anti-correlated (black) stimuli. For clarity, black and red dots and crosses
are shown on the tuning curves to highlight the where the binned responses in b, d, f, and h are
computed. In other words, the red dots in b are the binned responses of the disparity/correlation
indicated by the red dot in a (and the average spike/second for the red dots in b is equal to the
red dot in a).
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Figure 4: a) A disparity tuning curve for jbeM012c7 (solid lines), and its model fit (dashed line).
b) Anticorrelated response as a function of the correlated response for a cell (blue dots) and its
corresponding GBEM fit (magenta dots). The relative anticorrelated response is defined as the
slope of the (type II) regression line, shown for both the model and cell. A relative anticorrelated
response of 0 means that the cell does not modulate its response to anticorrelated stimuli, whereas
an relative anticorrelated response of -1 means that the cell inverts its response perfectly just
like in the binocular energy model. c) Anticorrelated response of the model as a function of the
anticorrelated response of the cell. The regression slope defines the anticorrelated model tuning
strength, which quantifies how strongly the model unit is tuned to anticorrelated stimuli relative
to the cell. If the anticorrelated model tuning strength is 0.5, then the model unit modulates its
response half as strongly to disparity for anticorrelated stimuli compared to that of the cell. d)
Correlated response of the model as a function of the correlated response of the cell. The regression
slope defines the correlated model tuning strength, which quantifies how well the model’s shape
and magnitude of disparity tuning matches that of the cell.
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Figure 5: The relative anticorrelated response for the model against the relative anticorrelated
response for the cell. The dashed black line shows the identity line, while the dashed cyan line
shows the prediction of the BEM (perfect inverted tuning curve to anticorrelated). While the
model shows some attenuation (values > −1), this is more dramatic in the neuronal data (the
points lie mostly below the identity line). The model tuning strength for the anticorrelated tuning
curve, against the same for the correlated tuning curve. The dashed black line again shows the
identity line, and the red square marker shows the point of perfect model fit. Cells which produce
poor GBEM fits (< 30% accounted for variance in the disparity tuning curve) are shown in gray
in both plots.

Figure 6: Correlated (a) and anticorrelated (b) tuning curve slope plotted as a function of the
cell’s relative anticorrelated response. Tuning curve slope quantifies how well the magnitude of
disparity tuning in the cell is captured by its GBEM fit, and this can be computed separately for
the correlated and anticorrelated tuning curves. While the model’s correlated tuning strength is
significantly related to the cell’s anticorrelated slope (a), the model’s anticorrelated tuning strength
(b) is not. In other words, a cell’s magnitude of anticorrelated attenuation (i.e. its relative
anticorrelated response) is predictive of whether the correlated response will be well-described by
a GBEM unit. Cells which produce poor GBEM units (< 30% variance accounted for in the
disparity tuning) are shown in gray.
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Figure 7: The predicted disparity tuning curve of cell jbeM012c7 in response to binocularly uncor-
related Gaussian noise (using forward correlation as in Tanabe et al), based on the GBEM fit. The
tuning curve of the cell and its GBEM fit to 30ms 1D noise stereograms are shown in Figure 3c
and d, respectively, where strong attenuation is present. Note that this attenuation is not present
in model responses to binocularly uncorrelated Gaussian noise. b) The population summary for
all GBEM units. The relative anticorrelated response to 1D noise is shown on the horizontal axis,
and the relative anticorrelated response to Gaussian noise is shown on the vertical axis.
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