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Abstract 

Most connectivity metrics in neuroimaging research reduce multivariate activity patterns in regions-of-

interests (ROIs) to one dimension, which leads to a loss of information. Importantly, it prevents us 

from investigating the transformations between patterns in different ROIs. Here, we applied linear 

estimation theory in order to robustly estimate the linear transformations between multivariate fMRI 

patterns with a cross-validated Tikhonov regularisation approach. We derived three novel metrics that 

describe different features of these voxel-by-voxel mappings: goodness-of-fit, sparsity and pattern 

deformation. The goodness-of-fit describes the degree to which the patterns in an input region can 

be described as a linear transformation of patterns in an output region. The sparsity metric, which 

relies on a Monte Carlo procedure, was introduced in order to test whether the transformation mostly 

consists of one-to-one mappings between voxels in different regions. Furthermore, we defined a 

metric for pattern deformation, i.e. the degree to which the transformation rotates or rescales the 

input patterns. As a proof of concept, we applied these metrics to an event-related fMRI data set 

consisting of four subjects that has been used in previous studies. We focused on the transformations 

from early visual cortex (EVC) to inferior temporal cortex (ITC), fusiform face area (FFA) and 

parahippocampal place area (PPA). Our results suggest that the estimated linear mappings are able 

to explain a significant amount of variance of the three output ROIs. The transformation from EVC to 

ITC shows the highest goodness-of-fit, and those from EVC to FFA and PPA show the expected 

preference for faces and places as well as animate and inanimate objects, respectively. The pattern 

transformations are sparse, but sparsity is lower than would have been expected for one-to-one 

mappings, thus suggesting the presence of one-to-few voxel mappings. ITC, FFA and PPA patterns 

are not simple rotations of an EVC pattern, indicating that the corresponding transformations amplify 

or dampen certain dimensions of the input patterns. While our results are only based on a small 

number of subjects, they show that our pattern transformation metrics can describe novel aspects of 

multivariate functional connectivity in neuroimaging data. 
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1 Introduction 

 

Functional connectivity between brain regions is usually estimated by computing the 

correlation or coherence between their time series. For this purpose, multivariate (MV) activity 

patterns within regions of interest (ROIs) are commonly reduced to scalar time series, e.g. by 

averaging across voxels, by selecting the directions which explain the highest variance (PCA), or by 

selecting the two directions (one per ROI) which are maximally correlated between them (CCA). This 

process leads to a loss of information and potentially to biased connectivity estimates (Marzetti et al. 

2013; Geerligs et al. 2016; Anzellotti et al. 2017, 2018; Basti et al. 2018). Importantly, it also makes 

it impossible to estimate the transformations between patterns among different ROIs, and to describe 

possible functionally relevant features of those mappings. Here, we computed linear MV-pattern 

transformations between pairs of ROIs in fMRI data, and used them to derive three novel MV-

connectivity metrics, i.e. goodness-of-fit, sparsity and pattern deformation. 

Recent fMRI studies have explored MV-connectivity between brain regions. For instance, 

Geerligs et al (2016) applied multivariate distance correlation to resting-state data. This method is 

sensitive to linear and non-linear dependencies between pattern time courses in two regions of 

interest, but it does not provide information about the features of the transformation between the 

two. Anzellotti et al. (2016) reduced the dimensionality of their fMRI data per ROI using PCA over 

time, projecting data for each ROI onto their dominant PCA components. This resulted in a much 

smaller number of time courses per region than the original number of voxels. They then applied 

linear (regression) and non-linear (neural network) transformations to the projected low-dimensional 

data for pairs of brain regions, and found that the non-linear method explained more variance than 

the linear one. However, dimensionality reduction via PCA leads to a possible loss of information. 

Indeed, the patterns of the reduced data for different ROIs might not show the same relationships to 

each other as the original voxel-by-voxel representations. For example, if two regions show a sparse 

interaction, i.e. each voxel in the first ROI is functionally related only to few voxels in the other ROI, 

this might not be the case for their corresponding projections on the dominant PCA components. 

Thus, dimensionality reduction may remove important information about the pattern transformations. 

Another approach is to ignore the temporal dimension of ROI data and use “representational 

connectivity”, i.e. compare dissimilarity matrices between two regions (Kriegeskorte et al., 2008a). A 

dissimilarity matrix describes the intercorrelation of activity patterns for all pairs of stimuli within one 

region. In this approach, one can test whether the representational structure between two regions is 

similar or not. However, one cannot test whether the activity patterns of one region are 

transformations of another, possibly changing the representational structure in a systematic way.  

In the current study, we used the original voxel-by-voxel patterns and estimated linear 

transformations between them. Although it is well-established that transformations of representations 
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between brain areas are non-linear (Naselaris et al., 2011; Khaligh-Razavi & Kriegeskorte 2014; 

Yamins et al. 2014; Guclu & van Gerven 2015), linear methods can capture a significant amount of 

the response variance (Anzellotti et al 2016). Linear transformations are also easy to compute, to 

visualise, and can be analysed using the vast toolbox of linear algebra. Moreover, our work on linear 

transformations can serve as a basis for further investigations on MV-connectivity using non-linear 

transformations. 

Linear transformations in the case of multivariate connectivity can be described as matrices 

that are multiplied by patterns of an “input ROI” in order to yield the patterns of an “output ROI”. We 

can therefore use concepts from linear algebra to describe aspects that are relevant to the functional 

interpretation of the transformation matrices.  

The first concept, similar to the one already used in Anzellotti et al. (2016), is that of 

goodness-of-fit. The degree to which activity patterns in the output region can be explained as a 

linear transformation of the patterns in the input region is a measure of the functional connectivity 

strength between the two regions.  

The second concept is that of sparsity, i.e. the degree to which a transformation can be 

described as a one-to-one voxel mapping between input and output regions. Topographic maps, in 

which neighbouring neurons or voxels show similar response characteristics, are well established for 

sensory brain systems (Patel et al. 2014). It has been suggested that these topographic maps are 

preserved in connectivity between brain areas, even for higher-level areas (Thivierge & Marcus 2007; 

Jbabdi et al. 2013). Topography-preserving mappings should result in sparser transformations than 

those that result in a “smearing” of topographies, or that are random.  

Third, we will introduce a measure for pattern deformation. Transformations between brain 

areas are often assumed to yield different categorisations of stimuli, based on features represented in 

the output region. The degree to which a transformation is sensitive to different input patterns is 

reflected in its spectrum of singular values. In the extreme case, where the transformation is only 

sensitive to one specific type of pattern of the input region but is insensitive to all other orthogonal 

patterns, it contains only one non-zero singular value. In the other extreme, a transformation which 

results in a rotation and scaling of all input patterns, would have the maximum number of equal non-

zero singular values. 

We applied our approach to an existing event-related fMRI data set that has been used in 

several previous publications to address different conceptual questions (Kriegeskorte et al. 2008a; 

Kriegeskorte et al. 2008b; Mur et al., 2012; Mur et al. 2013). Four human participants were presented 

with 96 photographic images of faces (24 images), places (8 images) and objects (64 images). We 

analysed regions that capture representations at different stages of the ventral stream, and that were 

also the focus of the above-mentioned previous publications, namely early visual cortex (EVC), 

inferior temporal cortex (ITC), fusiform face area (FFA) and parahippocampal place area (PPA). 
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Specifically, we focused on the transformation from EVC, a region involved at early stages of visual 

processing, to each of the three other ROIs, which are higher-level regions showing a functional 

selectivity for the recognition of intact objects (i.e., ITC), faces (FFA) and places (PPA) (Kanwisher et 

al. 1997; Epstein & Kanwisher, 1998). We ran separate analyses for different sets of stimuli 

composed of all 96 images, one composed of the 24 faces and one composed of the 8 places stimuli. 

The aim of our study is to find linear transformations between patterns of beta-values in pairs 

of ROIs, estimated for different types of stimuli from a general linear model. We here ignored the 

temporal dimension of the data for two reasons: 1) in fMRI, temporal relationships cannot easily be 

related to true connectivity unless an explicit biophysical model is assumed; 2) even if such an 

assumption is made, it would be difficult to estimate a meaningful temporal relationship at the single-

trial level as required for this event-related analysis. We therefore focused on spatial pattern 

information, which in the pre-processing step is estimated from a general linear model. Using this 

approach, we addressed the following questions (see Fig. 1): 

1) To what degree can the functional mappings from EVC to ITC (EVC->ITC), EVC->FFA and 

EVC->PPA be described as linear matrix transformations? For this purpose, we computed 

the cross-validated goodness-of-fit of these transformations. 

2) To what degree do these transformations represent “one-to-one” mappings between 

voxels, indicating that they characterise topographical projections? For this purpose, we 

estimated the sparsity of the transformations. 

3) To what degree does a transformation amplify or suppress some MV-patterns more than 

others? For this purpose, we investigated the degree of pattern deformation by analysing 

the singular value spectra of the transformations. 
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Fig. 1: The purpose of the current study is 1) to describe a computational approach for estimating 

linear transformations   between MV-pattern matrices   and   (each matrix column contains the 

beta-values associated with a different stimulus type) of two ROIs, and 2) to derive three novel 

connectivity metrics describing relevant features of those functional mappings. 

 

2 Methods 

 

2.1 Estimating linear transformations using the Tikhonov regularisation method 

 

Let us suppose we consider two ROIs X and Y composed of    and    voxels, respectively. 

For each of those two ROIs, we have    MV-patterns of beta values obtained from the general linear 

models with respect to the    stimulus types. Let us call the corresponding matrices containing all the 

MV-patterns          and         . We also assume that   and   are z-normalised across 

voxels for each stimulus. We are interested in estimating the transformation   from   to   and in 

analysing the features of this transformation. Let us assume that the mapping from   to the pattern 

  is linear, i.e. 

                                                                                          ( 1 

where          is the transformation matrix and          is a residual/noise term. The linearity 

assumption allows us to estimate   and to investigate its features, e.g. sparsity and singular values. 

In order to obtain an estimate of the transformation   we use a Tikhonov regularisation method 
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(Bertero et al. 1985; 1988) (also called “ridge regression” in statistics). Specifically, this method aims 

to find a suitable solution for   by minimising the norm of the residuals as well as the norm of the 

transformation itself. According to this method, the transformation is defined as the matrix  

                   
       

  ,                                                       ( 2  

where the parameter   is a positive number which controls the weight of the regularisation term,   

denotes a matrix of the same size of T, and      is the matrix Frobenius norm. A unique solution for    

can be obtained using the Moore-Penrose pseudoinverse as 

                                                                                          ( 3 

where           is the identity matrix and ‘ denotes matrix transpose. 

 

2.1.1 Regularisation parameter estimation via cross-validation 

Several approaches can be used in order to select a suitable   for Tikhonov regularisation in 

eq. (2). These strategies include different cross-validation methods, L-curve and restricted maximum 

likelihood. Here, we exploit a leave-one-out cross-validation method, which is often used in fMRI 

studies as a reliable procedure both at stimulus and subject levels (Misaki et al. 2010; Esterman et al. 

2010). In our leave-one-stimulus-out procedure, the regularisation parameter is defined as the one 

which minimises the sum across stimuli of the ratio between the squared norm of the residual and of 

the (left out) MV-pattern, i.e. as 

            
    

       
 

 

    
 

 
  
                                                                    ( 4 

where          and            are the MV-patterns (beta vectors) associated with the  -th 

stimulus for the two ROIs and    
         is the transformation matrix obtained by using the MV-

patterns of the      stimuli (all the stimuli except for the  -th), and with the regularisation 

parameter   (this approach is nested within the across-sessions cross-validation described in the 

section 2.5.3).  

The calculation of the optimal   value would require, for each tested regularisation 

parameter, the computation of    different transformation. However, the computation time can be 

reduced by using two different observations. Firstly, for demeaned and standardised data, it holds 

that     
 

 
=             

 

 
=              . We can thus rewrite the previous formulation for   

without considering the denominator within the sum, i.e. the value of   can be now obtained by 

minimising the sum of squared residuals. Secondly, as is shown in Golub et al. (1979), the   value 

obtained in such a way is equivalent to that obtained by minimising the functional 

                       
 , where      is the diagonal matrix whose non-zero entries are equal to 

            , being the        the   -th elements of                    . Using the two 

previous observations, we can finally assess the value of   as 
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                                                                                        ( 5 

 

This final formulation allows us to obtain the optimal value in a reduced computation time, 

thus also facilitating the calculation of the goodness-of-fit metric (see below). 

 

 

2.2 Characterisation of the goodness-of-fit 

In order to assess the goodness-of-fit of the MV-pattern transformations between ROIs, we 

compute the cross-validated percentage of pattern variance in the output region which can be 

explained using a linear transformation of patterns in the input region, with an optimal regularisation 

parameter   obtained as above. Specifically, we define the percentage goodness-of-fit (   ) as 

           
    

    
                                                                        ( 6 ) 

where      is the functional which describes the sum of squared residuals (see section 2.1.1). This 

metric can be considered as a method to quantify the (linear) statistical dependencies among the MV-

patterns by means of the explained output pattern variance. A value for     equal to 100 denotes a 

perfect linear mapping between the two MV-patterns. A value near zero indicates that the mapping 

between the two patterns cannot be explained via linear MV-regression methods (but may still be 

non-linear).  

To assess the statistical significance of the observed     values, we compared the 

distribution consisting of the     values for the four subjects with a reference distribution, which was 

obtained from simulated data, according to the Kolmogorov-Smirnov (K-S) test. The reference (null) 

distribution represents the situation in which there is no interaction between the original input-region 

and the simulated output-region patterns. We consider the observed     as significant when the p-

value is lower than 0.05. Each surrogate data is defined as having the same size of the output ROI. 

Thus, if the investigated transformation is EVC->ITC, we simulate 100 MV-pattern matrices whose 

sizes are equal to that of the original ITC MV-pattern matrix. Then, we compute the transformation 

from the original EVC to the simulated ITC patterns, and the     for the surrogate data as shown in 

eq. (6). 

 

2.3 Characterisation of the transformation sparsity 

A sparse matrix is defined as having the majority of its elements equal to 0 (Stoer & Bulirsch, 

2002). In the case of MV-pattern transformations between ROIs, a sparse matrix could indicate, e.g., 

a one-to-one mapping between voxels in the two ROIs. However, even in the presence of a perfect 

sparse linear mapping, we cannot expect the majority of elements of the estimated    to be exactly 
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zero (Fig. 2, panels A and B), because the Tikhonov regularisation method always leads to a smooth 

solution. However, other approaches, such as the so called least absolute shrinkage and selection 

operator (LASSO, Tibshirani 1996), may lead to the opposite problem, i.e. to obtain sparse solutions 

even in the presence of non-sparse linear mappings. We therefore need to define a strategy to 

reliably estimate the degree of sparsity of the transformation matrix.  

The idea behind our approach is to take into account both the GOF value, taken as a measure 

of the level of noise (i.e. the higher the GOF value the lower the noise level), and the rate of decay of 

the density curve. The density curve describes the fraction of the entries of the estimated 

transformation which are larger than a threshold, as a function of this threshold. The steepness of the 

decay of this curve increases with the increase of the degree of sparsity of the original 

transformation, and it decreases with the increase of the level of noise in the interaction model. 

Let us take the normalised    obtained by dividing its elements by its maximum absolute 

value. We define the density curve   as the function of the threshold         which describes the 

fraction of elements of    whose absolute value exceeds  . Specifically,   is defined as 

      
   

            

  
   

  
   

    
                                                                                  ( 7 

where    denotes the indicator function of  , which is equal to 1 if   holds, and 0 otherwise. The 

density curve   is a monotonically decreasing function of  , with a value of 1 for     and of 0 for 

   .  

The analysis of the rate of decay of the density curve of    as a function of the threshold   

provides an estimate of the actual degree of sparsity of  . Higher degrees of sparsity are associated 

with steeper decay. For instance, the panel C of Fig. 2 shows the   curve for five different toy cases 

in a noise free situation. For each case, we simulated 30 multivariate patterns   (of size 128 voxels x 

96 stimuli) and 30 transformations   (128 voxels x 128 voxels) as following standard normal 

distributions. Each of the five cases in this toy example has a different true percentage of sparsity, 

i.e. 0%, 50%, 80%, 90%, obtained by randomly setting to 0 the corresponding percentage of 

elements of  . We then calculate the MV-pattern matrix   as     . The density curves (average 

and standard deviation across 30 realisations for each case are denoted by solid lines and shaded 

areas) are clearly distinguishable from each other, thus allowing us to disentangle the five cases.  

However, the rate with which a density curve decays from 1 to 0 depends on the noise level 

in the model. In particular, the steepness of the decay associated with a fixed degree of sparsity 

decreases with the increase of the level of noise, i.e. with the decrease of the GOF value (panel D, 

Fig. 2). Thus, by only analysing the density curve it is not possible to distinguish two different 

percentages of sparsity for which the noise levels are different, i.e. the curve   for a percentage of 

sparsity    with noise level    can be undistinguishable from the curve for a sparsity    with noise 

level   . To overcome this problem, we take into account both the density curve   and the goodness-
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of-fit     between the MV-patterns. As it is shown in the panel E of Fig. 2, by using 1) the rate of 

decay of the density curve (   ), defined as the parameter   of an exponential function          

fitted to the   function with a non-linear least square fitting method, and 2) the value of    , it is 

possible to disentangle the simulated degree of sparsity even if the noise levels are different. Let us 

now describe step by step the Monte Carlo based approach that we use in order to estimate the 

degree of sparsity of the pattern transformations in our data set. We consider the transformations 

EVC->ITC, EVC->FFA and EVC->PPA for the sets of stimuli composed of the 96 images of all stimulus 

types, the one composed of 24 faces stimuli and the set composed of 8 places stimuli.  

 

Fig. 2. Estimation of the percentage of sparsity by using a Tikhonov regularisation method. A) An 

example of a sparse simulated transformation. The 90% of the entries are equal to 0, while the other 

10% of the entries are equal to 1. B) Estimate of the transformation in A obtained by using the 

Tikhonov regularisation method. The lighter background indicates that the estimated elements are 
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different from zero even if in the original transformations they are exactly equal to zero. C) Density of 

the thresholded estimated transformations, i.e. the percentage of matrix entries that exceed the 

threshold, as a function of the threshold. In this toy example, we generated 30 realisations for four 

simulated percentages of sparsity (0%, 50%, 80% and 90%). D) Density of the thresholded 

estimated transformations associated with a degree of sparsity of 90% and different GOF values (i.e. 

different level of noise in the model). E) Scatter plots of the rate of decay of the density curves 

(   ) shown in panel C against goodness-of-fit     for the 30 simulation realisations of each of the 

four different cases. It is evident that simulated transformations of e.g. 90% sparsity are associated 

with a certain range of     and     values (red dots) which, at least for sufficiently large values of 

   , are different from those related to transformations with 80% of sparsity (green dots). 

 

2.3.1 Monte Carlo approach to obtain the percentage of sparsity 

Let us suppose we are interested in estimating the degree of sparsity of the pattern 

transformation between EVC (consisting of 224 voxels in our data) and ITC (316 voxels) by using the 

patterns obtained from the full set of 96 stimuli. All other cases (e.g., different ROIs or different sets 

of stimuli such as that obtained for faces only) will be analogously treated. The strategy described 

below can be considered as a Monte Carlo method. Specifically, we: 

1) simulate, for each noise level and each percentage of sparsity, 100 transformations   (size 

256 voxels x 224 voxels), the non-zero entries of which follow a standard normal distribution 

and the positions of the zero entries were randomly selected;  

2) compute estimates    of each true   by using a Tikhonov regularisation method on the 

original EVC patterns   and the simulated ITC pattern                          (the 

patterns were firstly demeaned and standardised for each stimulus), where   and   denote 

the independent Gaussian noise/residual signal and its relative strength. Specifically, the 

estimated transformation is given by 

                                                                                      ( 8 

where the   value was estimated each time via the cross-validation procedure described in 

section 2.1.1; 

3) calculate, for each   , the density curve  , its rate of decay    , and the goodness-of-fit 

   ; 

4) calculate the average     and     across the simulation-realisations for each different 

simulated percentage of sparsity and noise level. In such a way, we obtain, for each 

simulated percentage of sparsity, a curve describing the mean     value as a function of the 

   .  

5) estimate the percentage of sparsity for the real data by looking at the point of coordinates 

equal to the average (across subjects)     and    . For instance, if this point lies between 
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two curves representing the results for 50% and 60% of sparsity, the estimated sparsity of 

the transformation EVC->ITC would be 50-60%. 

We simulate five different percentages of sparsity, which ranged from 50% to 90% with an 

incremental step of 10%. An estimated percentage of sparsity lower than 50% would indicate that 

the transformation is not sparse (indeed the majority of its elements would be different from 0) while, 

a higher value in the simulated range indicates the opposite. We use 10 different levels of noise 

strength: the   value ranged from 0.20 to 0.65 with a step of 0.05. This range is chosen in order to 

obtain GOF values in simulations that are similar to those obtained on real data. For each different 

percentage of sparsity and set of stimuli (i.e. the sets composed of 96 images of all stimulus types, 

the set composed of 24 faces stimuli and the set composed of 8 places stimuli) the number of 

simulations is 1000. 

 

2.4 Characterisation of the induced pattern deformation 

A MV-pattern of each ROI can be considered as a point belonging to a vector space whose 

dimension is equal to the number of voxels in that region. In this geometrical framework, a MV-

pattern transformation corresponds to the linear mapping           between the two respective 

vector spaces. The aim of this section is that of: 1) explaining why the singular values (SVs) of the 

transformation    are important features of this mapping, and 2) describing the computational 

strategy used in order to understand how much the transformation deformed the original patterns, 

e.g. via asymmetric amplifications or compressions along specific directions. 

Let us suppose that    is equal to   , i.e. that the number of voxels in the ROI X is equal to 

the number of voxels in the ROI Y (if this is not the case, a voxel subsampling can be performed). By 

means of the polar decomposition theorem (Nigham 1986), which holds for every square matrix, we 

can consider   as the composition of an orthogonal matrix   multiplied by a symmetric positive-

semidefinite matrix    or as the composition of a different symmetric positive-semidefinite matrix    

followed by the same matrix  , i.e. 

                                                                                            ( 9 

This factorisation has an intuitive and useful interpretation (panel A of Fig. 3). It states that 

  can be written in terms of simple rotation/reflection (i.e. the matrix  ) and scaling pattern 

transformations (i.e. the matrices    and   ). Furthermore, even if the square matrix   is not a full 

rank matrix,    and    are unique and respectively equal to      and     , where ‘ denotes the 

transpose. It is also evident that the eigenvalues of    and   , which indicate the scaling deformation 

factors induced by  , are equal between the two and coincide with the SVs of the pattern 

transformation   (Nigham 1986).   
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In order to investigate the pattern deformations, we analysed the SVs of the estimated 

transformation    (the panel B of Fig. 3 shows some examples of SVs of known simulated 

transformations and of their estimates). For this purpose, we defined a metric describing the average 

pattern deformation induced by the transformation  . We computed the rate of decay of the SVs of 

the estimated transformation    (    ), defined as the parameter   of an exponential function fitted 

to the curve composed of all the SV (as in 2.3 for the d curve). For instance, a value of 0 for      

corresponds to constant values for the SVs, i.e. the mapping induces the same deformation between 

the MV-patterns associated with each stimulus, while a larger      value is associated with a larger 

asymmetric deformation, i.e. the patterns are differently amplified/compressed before or after 

rotation depending on the stimulus.  

Additionally, the rate with which the SVs of    decay depends on the degree to which the MV-

patterns in the output region can be described by the linear mapping from the input region (panel C, 

Fig. 2). Therefore, as for the previously described strategy used for characterising the sparsity of the 

transformations, we also take into account the goodness-of-fit     between the patterns as a 

measure of the level of noise in the interaction (panel D of Fig. 3). In this way, we can understand if 

two transformations induce a different deformation on the MV-patterns in the presence of different 

levels of noise. Let us now describe step by step the Monte Carlo based approach that we use in 

order to estimate the average pattern deformation induced by the transformations between EVC and 

all the other three ROIs (i.e., EVC->ITC, EVC->FFA and EVC->PPA). 
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Fig. 3. Estimation of the pattern deformation. A) A geometric interpretation of a linear pattern 

transformation between patterns of equal dimension. Two MV-patterns of two ROIs, let us say EVC 

and ITC, can be seen as two points of two vector spaces, and the matrix transformation   between 

them can be seen as a linear mapping between these two vector spaces. In this panel, a sphere 

(representing for simplicity the MV-patterns of EVC for a set of stimuli) is transformed by   into the 

ellipsoid (representing the ITC MV-patterns for the same set of stimuli). The singular values (SVs) of 

  are important features of this mapping. For example, if the number of voxels is the same in both 

ROIs, the SVs (  values in the figure) describe how much the EVC pattern is deformed by the 

transformation. For instance, constant values across all SVs can indicate an orthogonal 

transformation, that is, a linear mapping in which the ITC pattern can be completely described as a 

rotation (or reflection) of the original EVC pattern. B) The curves of the SVs (a monotonically non-

increasing function with   as the rate of decay) of the estimated transformations for four different 

simulated rates of decay (              ). C) The curves of the SVs of the estimated 
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transformations associated with orthogonal transformations (i.e.,    ) and different GOF values (i.e. 

different level of noise in the model).  D) Scatter plot between goodness-of-fit     and the rate of 

decay of singular values     , i.e. the estimated decay obtained by fitting an exponential curve to 

the SVs of the estimated transformation for the four different cases. By using both the      and 

   , it is possible to characterise the different induced pattern deformations, even if the original level 

of noise is not equal to 0%. 

 

2.4.1 Monte Carlo approach to obtain the rate of decay of singular values curve 

Let us suppose we are interested in investigating the pattern deformation for the same 

transformation for which we assessed sparsity in 2.3.1, i.e. between EVC and ITC by using the MV-

patterns obtained from the full set of 96 stimuli. All other cases (e.g., different ROIs or different sets 

of stimuli such as that obtained for faces only) will be analogously treated. The Monte Carlo approach 

that we use consists of the following steps: 

1) we simulate, for each noise level and each rate of exponential decay of the SVs, 100 

transformations  . For each realisation of  : 

                                                                                   ( 10 

where   and   are two orthogonal matrices obtained by applying a singular value 

decomposition on a matrix whose entries follow standard Normal distributions, and    is a 

diagonal matrix whose non-zero entries follow an exponential decay with parameter  ;  

2) as in the section 2.3.1, we compute the estimates    of the true   by using a Tikhonov 

regularisation method on the original EVC patterns   and the simulated ITC pattern obtained 

as                          (the patterns are firstly demeaned and standardised for 

each stimulus); 

3) we then calculate, for each   , the     , i.e. the rate of decay of the SVs for the 

estimated transformation, and the goodness-of-fit    ; 

4) we calculate the average      and     across the simulation-realisations for each 

different simulated decay of the SV-curve and noise level. In such a way, we obtain, for each 

simulated decay, a curve describing the mean      value as a function of the    ;  

5) in order to allow the patterns to have the same number of voxels, we perform 30 different 

and independent subsampling of the original ITC voxels. For each realisation, we randomly 

choose (according to a discrete uniform distribution), among the 316 ITC voxels, a subset of 

voxels of size equal to the number of voxels in EVC (i.e., 224);  

6) we estimate the pattern deformation for the real data by looking in the RDSV-GOF plane 

at the point of coordinates equal to the average (across subjects)      and    . Indeed, if 
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e.g. this point lies between two curves representing the results for the rates of decay of 

       and    , the estimated decay of the SVs curve would be         . 

We use four different simulated rates of exponential decay of the SVs, which indicate four different 

orders of magnitude of the exponential decay: 0, 0.1, 1, 10. We also use 10 different levels of noise 

strength  , which ranged from 0.2 to 0.83 with an incremental step of 0.07. This range is chosen in 

order to obtain GOF values in simulations which are similar to those obtained on real data. For each 

different rate of exponential decay and set of stimuli, i.e. the set composed of the 96 stimuli of all 

types, of the 24 faces and of the 8 places, the number of simulation is 1000. 

2.5 Real fMRI data 

The fMRI data set has been used in previous publications (Kriegeskorte et al., 2008a; 

Kriegeskorte, et al., 2008b; Mur et al., 2012). Four healthy human volunteers participated in the fMRI 

experiment (mean age 35 years; two females). 

The stimuli were 96 colour photographs (175 x 175 pixels) of isolated real-world objects on a 

gray background. The objects included natural and artificial inanimate objects as well as faces (24 

photographs), bodies of humans and nonhuman animals, and places (8 photographs). Stimuli were 

displayed at 2.9° of visual angle and presented using a rapid event-related design (stimulus duration: 

300 ms, interstimulus interval: 3700 ms) while subjects performed a fixation-cross-colour detection 

task. Each of the 96 object images was presented once per run in random order. Subjects 

participated in two sessions of six 9-min runs each. The sessions were acquired on separate days. 

Subjects participated in an independent block design experiment that was designed to localise 

regions of interest (ROIs). The block-localiser experiment used the same fMRI sequence as the 96 

images experiment and a separate set of stimuli. Stimuli were grayscale photos of faces, objects, and 

places, displayed at a width of 5.7° of visual angle, centered with respect to a fixation cross. The 

photos were presented in 30 s category blocks (stimulus duration: 700 ms, interstimulus interval: 300 

ms), intermixed with 20 s fixation blocks, for a total run time of 8 min. Subjects performed a one-

back repetition detection task on the images. 

2.5.1 Acquisition and Analysis 

Acquisition: Blood oxygen level-dependent (BOLD) fMRI measurements were performed at 

high spatial resolution (voxel volume:               ), using a 3 T General Electric HDx MRI 

scanner, and a custom-made 16-channel head coil (Nova Medical). Single-shot gradient-recalled 

echo-planar imaging with sensitivity encoding (matrix size: 128 96, TR: 2 s, TE: 30 ms, 272 volumes 

per run) was used to acquire 25 axial slices that covered inferior temporal cortex (ITC) and early 

visual cortex (EVC) bilaterally. 

Pre-processing: fMRI data preprocessing was performed using BrainVoyager QX 1.8 (Brain 

Innovation). All functional runs were subjected to slice-scan-time correction and 3D motion 

correction. In addition, the localiser runs were high-pass filtered in the temporal domain with a filter 
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of two cycles per run (corresponding to a cutoff frequency of 0.004 Hz). For the definition of FFA and 

PPA (see 2.5.2 below), data were spatially smoothed by convolution of a Gaussian kernel of 4 mm 

full-width at half-maximum. For definition of EVC and ITC, unsmoothed data were used. Data were 

converted to percentage signal change. Analyses were performed in native subject space (i.e., no 

Talairach transformation). 

Estimation of single-image patterns: Single-image BOLD fMRI activation was estimated by 

univariate linear modeling. We concatenated the runs within a session along the temporal dimension. 

For each ROI, data were extracted. We then performed univariate linear modelling for each voxel in 

each ROI to obtain response-amplitude estimates for each of the 96 stimuli. The model included a 

hemodynamic-response predictor for each of the 96 stimuli. The predictor time courses were 

computed using a linear model of the hemodynamic response (Boynton et al., 1996) and assuming an 

instant-onset rectangular neuronal response during each condition of visual stimulation. For each run, 

the design matrix included the stimulus-response predictors along with six head-motion parameter 

time courses, a linear-trend predictor, a six-predictor Fourier basis for nonlinear trends (sines and 

cosines of up to three cycles per run), and a confound-mean predictor. 

2.5.2 ROI definition 

ROIs were defined based on visual responsiveness (for EVC and ITC) and category-selective 

contrasts (for fusiform face area, FFA, and parahippocampal place area, PPA) of voxels in the 

independent block-localiser task and restricted to a cortex mask manually drawn on each subject’s 

fMRI slices (Mur et al., 2012).  

The FFA was defined in each hemisphere as a cluster of contiguous face-selective voxels in 

ITC cortex (number of voxels per hemisphere: 128). Face-selectivity was assessed by the contrast 

faces minus places and objects. 

Clusters were obtained separately in the left and right hemisphere by selecting the peak face-

selective voxel in the fusiform gyrus, and then growing the region from this seed by an iterative 

process. During this iterative process, the region is grown one voxel at a time, until an a priori 

specified number of voxels is selected. The region is grown by repeatedly adding the most face-

selective voxel from the voxels that are directly adjacent to the current ROI in 3D space, i.e., from 

those voxels that are on the “fringe” of the current ROI (the current ROI is equivalent to the seed 

voxel during the first iteration). 

The PPA was defined in an identical way but then using the contrast places minus faces and 

objects, growing the region from the peak place-selective voxel in the parahippocampal cortex in 

each hemisphere (number of voxels per hemisphere: 128). 

The ITC ROI was defined by selecting the most visually responsive voxels within the ITC 

portion of the cortex masks in each hemisphere (number of voxels for bilateral ITC region: 316). 

Visual responsiveness was assessed by the contrast visual stimulation (face, object, place) minus 

baseline. 
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In order to define EVC, we selected the most visually responsive voxels, as for ITC, but within 

a manually defined anatomical region around the calcarine sulcus within the bilateral cortex mask 

(number of voxels: 224). EVC was not defined for left and right hemispheres separately. 

For EVC and ITC, voxels were not constrained to be spatially contiguous. 

 

2.5.3 Metrics calculation on real data 

 

We exploited three different subsets of stimuli for estimating the linear pattern 

transformations: the whole set composed of the 96 stimuli, a subset composed of 24 faces and 

another subset composed of 8 places. In order to estimate and analyse the transformation between 

the input MV-patterns of EVC and the output MV-patterns of ITC, FFA and PPA, we relied on an 

across-sessions approach. We first estimated the transformation     , as well as the values of 

               and the cross-validated        from the input patterns of session 1 and the output 

patterns of session 2. Second, we estimated     , and the values of the three metrics, by using the 

input/output patterns of the session 2/1. Then, we averaged the obtained values, i.e. we defined 

                    ,                      and                        . The 

application of an across-sessions approach improves the interpretability of the measures by reducing 

possible confounds induced by the pattern fluctuations shared by the areas (Henriksson et al. 2015; 

Walther et al. 2016). 

 

3 Results 

3.1 Goodness-of-fit, explained variance 

The results obtained by analysing the goodness-of-fit (   , Fig. 4) clearly show the presence 

of a linear statistical dependency between EVC and ITC, FFA and PPA for each of the three sets of 

analysed stimuli, i.e. the sets composed of all 96 stimuli, of the 24 faces and of the 8 places. The 

cross-validated average     value across the four subjects for each pair of ROIs and set of stimuli is 

statistically different with respect to the     values obtained by using independent simulated random 

data (p < 0.05, K-S test).  

The     values achieved by EVC in estimating the ITC patterns show the largest values for 

every set of stimuli. For the sets of all 96 and the 24 faces stimuli, the EVC->ITC values are 

significantly larger (p ≤ 0.001,  -test) than the     values associated with EVC->PPA (panels A and 

B, Fig. 4).  For the set of 8 places stimuli, a significant difference (p = 0.007,  -test) can only be 

observed with respect to EVC->FFA (panel C, Fig. 4).  

Furthermore, the percentage of variance of FFA explained by EVC (i.e. EVC->FFA) is 

significantly (p-value=0.007,  -test) larger than that for EVC->PPA for the set of 24 face stimuli 
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(panel B, Fig. 4). No other statistically significant differences can be observed (p-value =0.069 and p-

value =0.157,  -test) for the whole set of 96 and the set of 8 places stimuli (panels A and C, Fig. 4).  

As an additional validation of our linear transformations, we present the dissimilarity matrices 

for real and estimated FFA activity patterns in Figure S1. The correlation coefficient between the two 

matrices is 0.29, and visual inspections shows that some patterns of the real dissimilarity matrix are 

preserved in the estimate (e.g. the structure for face stimuli in the top left part of the matrices).  

 

 

Fig. 4. The goodness-of-fit (   ) values for the three sets of stimuli. A), B) and C) The average 

(and standard error) percentages of     by using the linear pattern transformations from EVC to the 

three output ROIs for the all 96 stimuli, the 24 faces stimuli and the 8 places stimuli, respectively. 

 

 

Fig. 5 shows the     as a function of the stimulus. The first 48 stimuli are images of animate 

objects (including animal and human faces) while the last 48 stimuli are images of inanimate objects 

(including natural and artificial places). For ITC and FFA, the     is generally higher for the animate 

than inanimate objects, while the opposite is observed for PPA. For 39 of the 48 animate objects, the 

    for EVC->PPA is lower than the average     across the 96 stimuli, while for 35 of the 48 

inanimate objects, the     is higher (p-values<0.001, Fisher exact test). Conversely, for 38 of the 48 

animate objects, the     for EVC->FFA is higher than the average     across the 96 stimuli, while 

for 36 of the 48 inanimate objects, the     is lower (p-values<0.001, Fisher exact test). The results 

for EVC->ITC are similar to those for EVC->FFA: for 35 of the 48 animate objects, the     for EVC-

>ITC is higher than average, while for 27 of the 48 inanimate objects, the     is lower (p-

values<0.01, Fisher exact test). 
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Fig. 5.   Goodness-of-fit (   ) as a function of the stimuli. A), B) and C) The solid lines (and the 

shaded areas) denote the average percentages of     across the four subjects (and standard error), 

by using the linear pattern transformations from EVC to the three output ROIs, as functions of the 

stimuli. The first 48 stimuli are animate images while the last 48 stimuli are inanimate images. A 

higher     (with respect to the mean) is evident for the animate stimuli for ITC and FFA, and for the 

inanimate stimuli for PPA. 

 

We also observe a general anticorrelation between the     and   values (Pearson correlation 

coefficient for 96, 24 and 8 stimuli:      ,      ,      , all p-values<0.001). As expected, the 

higher the variance explained by the estimated transformation   , the lower the optimal value of the 

regularisation parameter  . 

 

3.2 Sparsity 

Figures 6 and 7 show the results obtained for the rate of decay of the density curve (   ) 

and the     values (as described in the section 2.3.1), in order to characterise the sparsity of the 

MV-pattern transformations.  

We found a generally high level of sparsity for the transformations EVC->ITC, EVC->FFA and 

EVC->PPA. When all 96 stimuli were taken into account, all the transformations reach an estimated 

sparsity >80% (Fig. 6). The transformation EVC->FFA (panel B, Fig. 6) and EVC->PPA (panel C, Fig. 

6) show the highest estimated levels of sparsity (>90%), followed by the transformation EVC->ITC 

(80-90%) (panel A, Fig. 6). Similar results can also be observed for the set of 24 faces (panels A, B 

and C, Fig. 7) and the 8 places (panels D, E and F, Fig. 7). For the faces set, the transformation EVC-

>FFA shows the highest percentage of sparsity (>90%, but <99%, denoted by the black dotted line, 

panel B Fig. 7), followed by the other two estimated transformations EVC->ITC and EVC->PPA (both 

      panels A and C, Fig. 7). Conversely, for the set of 8 place stimuli, the transformations EVC-

>ITC and EVC->PPA show high sparsity (respectively, >90% and 80-90%, panels D and F, Fig. 7), 

while EVC->FFA is less sparse (<50%, panel E, Fig. 7).  
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All estimates show large standard errors that, in some cases (see panels E and F, Fig. 7), 

include both high and low estimated percentages of sparsity. This suggests that an accurate estimate 

of the actual sparsity for the pattern transformations may need a larger number of subjects and 

stimuli.  

 

 

Fig. 6. Estimated sparsity for the pattern transformation with 96 stimuli. A), B) and C) The estimates 

of the percentage of sparsity for the pattern transformations EVC->ITC, EVC->FFA and EVC->PPA, 

respectively. The solid lines between two coloured areas represent the mean     and     values 

across the simulations-realisations for each of the simulated percentages of sparsity, i.e. from 50% to 

90% with a step of 10%. Each coloured area thus represents a fixed range for the percentage of 

sparsity, e.g. the blue area denotes a degree of sparsity <50% and the yellow represents a 

percentage between 80% and 90%. The blue, red and green squares (and their error bars in the 

panels A, B and C denote the mean (and the standard error) estimate of     and     across the 

four subjects. All the estimates show a high percentage of sparsity for all transformations (>80%). 

Slightly higher percentages are shown by the transformations EVC->FFA and EVC->PPA. 
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Fig. 7. Estimated sparsity for the pattern transformations for the sets of 24 face and 8 place stimuli, 

respectively. A), B) and C) The estimates of the percentage of sparsity for the pattern 

transformations EVC->ITC, EVC->FFA and EVC->PPA for the 24 faces stimuli. D), E) and F) The 

same estimates for the 8 places stimuli. The solid lines between two coloured areas represent the 

mean     and     values across the simulations-realisations for each of the simulated percentages 

of sparsity, i.e. from 50% to 90% with a step of 10%. Each coloured area thus represents a fixed 

range for the percentage of sparsity, e.g. the blue area denotes a degree of sparsity <50% and the 

yellow represents a percentage between 80% and 90%. The blue, red and green squares (and their 

error bars) denote the mean (and the standard error) estimate of     and     across the four 

subjects. The results are in accordance to those obtained by using all the 96 stimuli. Indeed, almost 

all the transformations show a high degree of sparsity. The standard errors also show larger values 

with respect those obtained by using all the 96 stimuli, and the solid lines obtained by using the 

simulations show overlapping and unstable values. This suggests that an accurate estimate of the 

actual sparsity for the transformations may need a higher number of subjects and stimuli. 

 

3.3 Pattern deformation 

Figure 8 shows the results for the pattern deformation, i.e. for the estimated rate of decay of 

the SVs (    ) and the     values (see section 2.4.1), for the transformations EVC->ITC, EVC->FFA 

and EVC->PPA (panels A, B and C for the 96, 24 and 8 stimuli, respectively). For the set of 96 stimuli, 

all the transformations show high rates of decay of the SV-curve ( >10). A simple rotation/reflection 

is associated with a rate of decay    . Thus, all the three transformations do not uniformly deform 

the EVC MV-patterns, and the input and output MV-patterns are thus far from being considered as 

simple rotations of each other. However, for a lower number of stimuli (i.e. both for the 24 and for 

the 8 stimuli) the estimated rates of decay are lower (       ) than those obtained for the 96 

stimuli. Thus, these transformations are characterised by a more uniform deformation of the EVC MV-

patterns than the transformations obtained by using all the 96 stimuli. As a sanity check, we tested if 

these results are affected by the specific choice of voxels within ITC, FFA and PPA ROIs. To this end, 
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we repeated the analysis considering different voxels within each ROI but keeping the voxel number 

for each ROI equal to that of the previous analysis. The results do not change for different 

subsamples of the ITC, FFA and PPA voxels ( -value>0.05,  -test). 

Although the error bars (standard error of the mean) show small values along the y-axis, the 

characterisation of the rate of decay of SV-curve would benefit from a larger number of subjects and 

stimuli. 

 

 

Fig 8. Pattern deformation for each pair of ROIs and set of stimuli. A), B) and C) The estimates of 

the rate of decay of SV-curve (RDSV), denoting the pattern deformation, of EVC->ITC, EVC->FFA and 

EVC->PPA for the three sets of stimuli. The solid lines between two coloured areas represent the 

mean      and     values across the simulations-realisations for each of the simulated rates of 

decay. Each coloured area thus represents a fixed range for the rate of decay. The blue, red and 

green squares (and their error bars) in the panels A, B and C denote the mean (and the standard 

error) estimate of      and     across the four subjects. 

 

4 Discussion  

In this study, we developed computational strategies for estimating and analysing linear 

transformations between multivariate fMRI patterns in pairs of ROIs. These methods allow 

investigating features of the voxel-by-voxel mappings between ROIs.  We first described a cross-

validated Tikhonov regularisation approach for robustly estimating the linear pattern transformation. 

Then, we described three different metrics to characterise specific features of these transformations, 

i.e. the goodness-of-fit, the sparsity of the transformation and the pattern deformation. The first 

metric describes to what degree the transformations can be represented as a matrix multiplication, 

i.e. it estimates the linear statistical dependency between two multi-voxel patterns. The second 

metric, sparsity, is closely related to the concept of topographic projections, i.e. one-to-one 

connections between voxels. The higher the percentage of sparsity, i.e. the higher the percentage of 

zero elements of the transformation, the higher is the degree to which the transformation represents 

a “one-to-one” mapping between voxels of the two ROIs. In order to estimate the percentage of 

sparsity, we relied on a Monte Carlo procedure to overcome the confounds induced by noise. The 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 14, 2018. ; https://doi.org/10.1101/497180doi: bioRxiv preprint 

https://doi.org/10.1101/497180
http://creativecommons.org/licenses/by/4.0/


third metric, pattern deformation, is a measure of the rate of decay of the singular value curve, 

describing the degree to which the transformation amplifies or suppresses certain patterns. For 

instance, a constant value for the singular values of the transformation is associated with two 

multivariate patterns which can be seen as rotated versions of each other, while a larger decay is 

associated with a larger deformation. We applied the Tikhonov regularisation method, and the three 

different metrics, to an event-related fMRI data set consisting of data from four human subjects 

(Kriegeskorte et al., 2008a).  

The results obtained using the goodness-of-fit measure showed the presence of a statistically 

significant linear dependency between EVC and the other three ROIs. Among the regions considered, 

ITC showed the highest linear dependency with EVC. Furthermore, in accordance with the existing 

literature (Kanwisher et al. 1997; Epstein & Kanwisher 1998; Mur et al. 2012), FFA and PPA showed 

the expected preference for faces and places as well as for animate and inanimate objects, 

respectively (Fig. 5). These findings indicate that, even if the true pattern transformations between 

brain areas might be non-linear, linear transformations can provide a good approximation. 

Importantly, while non-linear methods (such as neural networks) may increase the goodness-of-fit 

compared to linear methods (Anzellotti et al. 2016), linear methods allow the investigation of 

meaningful features of the transformation, such as sparsity and pattern deformation. 

Our Monte Carlo approach for analysing sparsity revealed that our estimated linear 

transformations can be considered as sparse. Almost all the pattern transformations showed an 

estimated percentage of sparsity higher than 80%. Nevertheless, although the observed percentages 

suggest the presence of a one-to-few voxels mapping, they are lower than those expected for a 

precise one-to-one voxel mapping. Such a mapping between two ROIs, of e.g.     voxels each, 

would imply a percentage of sparsity higher than 99.5%. Interestingly, for face stimuli sparsity was 

larger for the transformation EVC->FFA than for EVC->PPA, and vice versa for place stimuli, as 

expected based on the functional specialisation of these areas.  

The results obtained by applying the third metric pattern deformation showed that the ITC, 

FFA and PPA patterns cannot be considered as simple rotations or reflections of the EVC pattern. The 

average deformation induced by the transformation from EVC to an output pattern is higher than the 

one expected from an orthogonal transformation. Thus, each of these transformations amplifies 

certain MV-patterns while dampening others.  

Our results are based on data sets from only four subjects, and the face and place stimulus 

subsets containing only 24 and 8 stimuli, respectively. This is not sufficient for a reliable statistical 

analysis, and these results should therefore be seen mostly as a proof-of-concept of our novel 

approach. However, the functional specificity of the patterns of goodness-of-fit and the high degree 

of sparsity, which suggests the presence of one-to-few voxels mappings, are promising hints that 

these methods will be useful for the characterisation of neural pattern transformations in future 

studies.  
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Several variations and extensions of our approach are possible. In order to estimate the 

pattern transformations, we relied on Tikhonov regularisation (Bertero et al. 1985). This method aims 

at minimising the    norm of the residuals as well as the    norm of the transformation itself. This is 

not the only approach that can be used as a regression analysis method. For example, one can also 

apply the least absolute shrinkage and selection operator (LASSO, Tibshirani 1996) which is a least-

squares method with an    penalty term, or an elastic net approach, which contains both    and     

penalties (Zou & Hastie, 2005). These estimators will lead to a higher degree of sparsity in the 

transformations. Classic algorithms (Boyd 2010) for solving these minimisation problems require the 

pattern transformation to be vectorised, and the input pattern to be transformed into a matrix 

composed of copies of the original pattern, thus requiring long computation times. Nevertheless, 

future work should compare pattern transformations estimated using different regression analysis 

approaches, and their effects on our novel transformation metrics. An advantage of our regression 

approach is that it produces explicit transformations, from which we can extract meaningful features. 

It remains to be seen if this is also the case for non-linear methods such as neural networks 

(Anzellotti et al., 2016) or multivariate kernel methods (O’Brien et al. 2016). 

Furthermore, other computational approaches could be developed in order to further 

characterise the pattern transformations or the relation between the multivariate patterns. For 

instance, an approach similar to that of explained variance could be developed by comparing the 

actual and estimated representational connectivity (Kriegeskorte et al., 2008a). As an alternative to 

explained variance, it is possible to analyse the correlation between the dissimilarity matrix associated 

with a pattern   and the matrix obtained using the output pattern         (Fig. S1). 

We found a high degree of sparsity for our estimated transformations, which is consistent 

with the presence of topographic mappings. In the future, one could define a metric for “pattern 

divergence” using information about spatial proximity of voxels, in order to test whether voxels that 

are close-by in in the output region project to voxels that are also close-by in the input region.  

Finally, our method could be generalised to be applied to other neuroimaging modalities, such 

as electro- and magnetoencephalography (EEG and MEG). This would open up the possibility to study 

transformation across time, i.e. whether there are (non-)linear transformations that relate a pattern in 

an output region to patterns in an input region at different time points. While current approaches 

using RSA or decoding can test whether patterns or pattern similarities are stable over time (e.g. King 

& Dehaene, 2014), our approach can potentially reveal whether there are stable or dynamic 

transformations among patterns of brain activity. In the linear case, this would be related to 

multivariate auto-regressive (MVAR) modelling (e.g. Stokes & Purdon, 2017; Seth et al., 2015). So 

far, these methods have been used to detect the presence of significant connectivity among brain 

regions. Future work should investigate whether we can use the actual transformations to 

characterise the spatial structure of these connections in more detail.  Our study demonstrates that 
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linear methods can be a powerful tool in this endeavour, and may pave the way for more 

biophysically informed approaches using non-linear methods. 
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Supplementary material 

 

 

Fig. S1. Representational dissimilarity matrices for actual and estimated patterns. A) Percentile of 

the correlation distance (as a dissimilarity measure) among the multivariate patterns of the actual 

FFA. B) Percentile of the correlation distance among the estimated FFA from EVC. The estimate of 

the multivariate pattern of FFA was obtained by using the pattern transformation between EVC and 

FFA. While some information is lost, some characteristic patterns which are visible in the panel A 

(e.g., the patterns highlighted by the grey boxes) are also visible in the panel B. The Pearson 

correlation coefficient between the lower triangular portions of the two matrices is 0.29,  -

value<0.001. 
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