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Abstract 10 

At a macroscopic level, part of the ant colony life-cycle is simple: a colony collects resources; these 11 

resources are converted into more ants, and these ants in turn collect more resources. Because 12 

more ants collect more resources, this is a multiplicative process, and the expected logarithm of the 13 

amount of resources determines how successful the colony will be in the long run. Over 60 years 14 

ago, Kelly showed, using information theoretic techniques, that the rate of growth of resources for 15 

such a situation is optimised by a strategy of betting in proportion to the probability of payoff. Thus, 16 

in the case of ants the fraction of the colony foraging at a given location should be proportional to 17 

the probability that resources will be found there, a result widely applied in the mathematics of 18 

gambling. This theoretical optimum generates predictions for which collective ant movement 19 

strategies might have evolved.  Here, we show how colony level optimal foraging behaviour can be 20 

achieved by mapping movement to Markov chain Monte Carlo methods, specifically Hamiltonian 21 

Markov chain Monte Carlo (HMC). This can be done by the ants following a (noisy) local 22 

measurement of the (logarithm of) the resource probability gradient (possibly supplemented with 23 

momentum, i.e. a propensity to move in the same direction). This maps the problem of foraging (via 24 

the information theory of gambling, stochastic dynamics and techniques employed within Bayesian 25 

statistics to efficiently sample from probability distributions) to simple models of ant foraging 26 

behaviour. This identification has broad applicability, facilitates the application of information theory 27 

approaches to understanding movement ecology, and unifies insights from existing biomechanical, 28 
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cognitive, random and optimality movement paradigms. At the cost of requiring ants to obtain 29 

(noisy) resource gradient information, we show that this model is both efficient, and matches a 30 

number of characteristics of real ant exploration.  31 

Key words: Movement ecology, collective behaviour, Bayesian methods, Markov chain Monte Carlo, 32 

Lévy foraging, sociobiology 33 

Introduction 34 

Life has undergone a number of major organisational transitions, from simple self-replicating 35 

molecules into complex societies of organisms  (Maynard Smith and Szathmary, 1995). Social insects 36 

such as ants, with a reproductive division of labour between the egg-laying queen and non-37 

reproductive workers whose genetic survival rests on her success, exemplify the highest degree of 38 

social behaviour in the animal kingdom: ‘true’ sociality or eusociality. The workers’ cooperative 39 

genius is observed in diverse ways (Camazine et al., 2001) from nest engineering (Dangerfield et al., 40 

1998) and nest finding  (von Frisch, 1967), to coordinated foraging swarms (Franks, 1989) and 41 

dynamically adjusting living bridges (Reid et al., 2015). This has inspired a number of technological 42 

applications from logistics to numerical optimisation (Dorigo and Gambardella, 1997; Karaboga and 43 

Basturk, 2007). All of these behaviours may be understood as solving particular problems of 44 

information acquisition, storage and collective processing in an unpredictable and potentially 45 

dangerous world (Detrain et al., 1999). Movement (the change of the spatial location of whole 46 

organisms in time) is intrinsic to the process. Here we consider how optimal information processing 47 

is mapped to movement, at the emergent biological levels of the organism and the colony, the 48 

‘superorganism’. We develop a Bayesian framework to describe and explain the movement 49 

behaviour of ants in probabilistic, informational terms, in relation to the problem they are having to 50 

solve: the optimal acquisition of resources in an uncertain environment, to maximise the colony’s 51 

geometric mean fitness (Orr, 2009). The movement models are compared to real movement 52 

trajectories from Temnothorax albipennis ants.  53 
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Operationalizing conceptual animal movement frameworks 54 

Scientists have studied animal movement for many years from various perspectives, and in recent 55 

years attempts have been made to unify insights into overarching frameworks. One such framework 56 

has been proposed by Nathan et al. (Nathan et al., 2008). We describe it briefly to set the research 57 

context for the reader. Their framework identifies four components in a full description: the 58 

organism’s internal state; motion capacity; navigational ability; and influential external 59 

environmental factors.  This framework also characterises existing research as belonging to different 60 

paradigms, namely ‘random’ (classes of mathematical model related to the random walk or 61 

Brownian motion); ‘optimality’ (relative efficiency of strategies for maximising some fitness 62 

currency); ‘biomechanical’ (the ‘machinery’ of motion); and the ‘cognitive’ paradigm (how 63 

individuals’ brains sense and respond to navigational information). However, scientists have yet to 64 

create a theoretical framework which convincingly unifies these components. Frameworks such as 65 

Nathan et al. are also focused on the individual and so for group-living organisms, especially for 66 

eusocial ones, they are incomplete. The concepts of search and uncertainty also need to be better 67 

integrated within foraging theory so that the efficiency of different movement strategies can be 68 

evaluated (Giuggioli and Bartumeus, 2010).  69 

Here, we contend that animal foraging (movement) models should be developed with 70 

reference to the particular information processing challenges faced by the animal in its ecological 71 

niche, with information in this context referring to the realised distribution of fitness-relevant 72 

resources: in particular the location and quality of foraging patches, which are unknown a priori to 73 

the organism(s). Furthermore, an important ‘module’ in any comprehensive paradigm for animal 74 

movement is the role of the group and its goals in determining individual movement trajectories; 75 

there has been much research on collective behaviour in recent years, with information flow 76 

between individuals identified as an important focus of research (Sumpter, 2006). Eusocial insects 77 

like ants exhibit a highly advanced form of sociality, even being described as a ‘superorganism’, that 78 

is, many separate organisms working together as one (Hölldobler and Wilson, 2009). Their 79 
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tremendous information processing capabilities are seen clearly in their ability to explore and exploit 80 

collectively their environment’s resources. Ants thrive in numerous ecological niches, and alone 81 

account for 15–20% of the terrestrial animal biomass on average, and up to 25% in tropical regions 82 

(Schultz, 2000).  83 

The collective behaviour of tight-knit groups of animals like ants has been described as 84 

collective cognition (Couzin, 2009). Because a Bayesian framework seems natural for a single 85 

animal’s decision-making (McNamara et al., 2006), an obvious challenge would seem to be applying 86 

its methods to describe the functioning of a superorganism’s behaviour. First, we identify a simple 87 

model that describes the foraging problem that ants, and presumably other collectives of highly 88 

related organisms, have evolved to solve.  89 

Placing bets: choosing where to forage 90 

Evolution by natural selection should produce organisms that can be expected to have an efficient 91 

foraging strategy in their typical ecological context. In the case of an ant colony, although it consists 92 

of many separate individuals, each worker does not consume the food it collects and is not 93 

independent, but there is rather a colony-level foraging strategy enacted without central control 94 

that ultimately seeks to maximise colony fitness (Giraldeau and Caraco, 2000). Following the colony 95 

founding stage comes the ‘ergonomic’ stage of a colony’s life cycle (Oster and Wilson, 1978). This is 96 

when the queen is devoted exclusively to egg-laying, while workers take over all other work, 97 

including collecting food. Thus the colony becomes a ‘growth machine’ (Oster and Wilson, 1978), 98 

whereby workers collect food to increase the reproductive rate of the queen, who transforms 99 

collected food into increased biomass or more numerous gene copies. Ultimately, the success or 100 

failure of this stage determines the outcome of the reproductive stage, where accumulated ‘wealth’ 101 

(biomass) correlates with more offspring colonies. This natural phenomenon has parallels with 102 

betting, where the winnings on a game may be reinvested to make a bigger bet on the next game. In 103 

the context of information theory, John Kelly made a connection between the rate of transmission of 104 
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information over a communications channel, which might be said to noisily transmit the outcome of 105 

a game to a gambler while bets can still be made, and the theoretical maximum exponential growth 106 

rate of the gambler’s capital making use of that information (Kelly, 1956). To maximise the gambler’s 107 

wealth over multiple (infinite) repeated games, it is optimal to bet only a fraction of the available 108 

capital each turn across each outcome, because although betting the whole capital on the particular 109 

outcome with the maximum expected return is tempting, any losses would quickly compound over 110 

multiple games and erode the gambler’s wealth to zero. Instead, maximising logarithmic wealth is 111 

optimal, since this is additive in multiplicative games and prevents overbetting. Solving for this 112 

maximisation results in a probability matching or ‘Kelly’ strategy, where bets are made in proportion 113 

to the probability of the outcome (Cover and Thomas, 2006). For instance, in a game with two 114 

outcomes, one of 20% probability and one of 80% probability, a gambler ought to bet 20% of his 115 

wealth on the former and 80% on the latter. This does not depend on the payoffs being fair with 116 

respect to the probabilities of the outcome, or 𝜎" =
$
%&

 , which in the aforementioned case would be 117 

5 and 1.25. Instead it simply requires fair odds with respect to some distribution, or ∑ $
(&
= 1 where 118 

𝜎"  is the payoff for a bet of 1, so they could for instance be 2 to 1 or uniform odds in the case of a 119 

game with two outcomes (see supplementary Methods). For the purposes of our foraging model, we 120 

can simply impose the constraint of fair odds, and any distribution of real-life resource payoffs can 121 

be mapped to this when renormalized.  122 

In the case of ants choosing where to forage, the probability matching strategy can be 123 

directly mapped onto their collective behaviour. With two available foraging patches having a 20% 124 

and 80% probability of food being present at any one time, the superorganism should match this 125 

probability by deploying 20% and 80% of foragers to the two sites (though it is also possible to follow 126 

a Kelly strategy while holding back a proportion of wealth; see supplementary methods). Regardless 127 

of the particular payoff 𝜎"  available at each site, provided  ∑ $
(&
= 1 this strategy is optimal over the 128 

long term, with the evolutionary time scale of millions of years favouring its selection. Figure 1 129 
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shows a simulated comparison of the Kelly strategy where probabilities of receiving a resource 130 

payoff are matched, regardless of the payoff, with a strategy that allocates foragers proportional to 131 

the one-step expected return 𝑝"𝜎", which does take the payoff into account.132 

 133 

Figure 1. A comparison of the Kelly strategy with an expected return matching strategy, over the 134 
long term (identical one-step payoffs for a ‘win’ in both cases). In the top pane (probability 135 
matching) the proportion of ants ‘bet’ (yellow bars) matches the probability of success (grey). In the 136 
middle pane, the proportion of ants is allocated by the expected return (probability ×	payoff). The 137 
Kelly strategy increasingly outperforms any other strategy as time goes by (bottom pane, example 138 
simulation). 139 
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Previous analysis of the behaviour of Bayesian foragers versus those modelled using the marginal 140 

value theorem indicated that, rather than abandoning a patch when instantaneous food intake rate 141 

equals foraging costs, a forager should consider the potential future value of a patch before moving 142 

on, even when the current return is poor (Olsson et al., 2006). The priority of resource reliability 143 

over immediate payoff in our model, when long-term biomass maximisation is the goal, is itself an 144 

interesting finding about superorganismal behaviour; but here we go further and specify models of 145 

movement to operationalize this strategy. 146 

Certain methodologies designed to sample from probability distributions – Markov chain 147 

Monte Carlo (MCMC) methods – may be used as models of movement that also achieve a 148 

probability matching (Kelly) strategy. Exploring the environment and sampling from complex 149 

probability distributions can be understood as equivalent problems.  MCMC methods aim to build a 150 

Markov chain of samples that draw from each region of probability space in correct proportion to its 151 

density. A well-mixed Markov chain is analogous to a probability matching strategy. Once the 152 

Markov chain has converged on its equilibrium distribution (the target probability distribution, or 153 

resource quality distribution in our ant model) it spends time in each location proportional to the 154 

quality or value (probability) of each point.  155 

A colony-level strategy 156 

There is a central ‘social’ (colony-level) element in attempting to enact a Kelly strategy of allocating 157 

‘bets’ in proportion to the probability of their payoff. This is because it requires a ‘bank’ (collection 158 

of individuals) that can be allocated. This logic does not seem to apply when one is thinking of a 159 

single individual, which might instead prefer (or need) to pursue high expected returns to survive in 160 

the short-term. Therefore, our model is relevant to groups of individuals who have aligned interests 161 

in terms of their fitness function – this is notably true in the social insects such as the ants, because 162 

workers are (unusually) highly related, or in clonal bacteria, for instance.  163 
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However, using MCMC as a model of movement does not, in itself, imply social interactions are 164 

necessary. Multiple MCMC ‘walkers’ can sample in parallel from a space and still achieve sampling 165 

(foraging patch visitation) in proportion to probability. Nevertheless, social interactions could be 166 

highly advantageous in expediting an efficient sampling of the space, through for example ‘tandem 167 

running’ (Franks & Richardson, 2006) to sample important areas (Hunt et al., in prep, 2018b), or 168 

pheromone trails to mark unprofitable territory (Hunt et al., in prep, 2018c). 169 

Ant trajectory data  170 

We use our data (Hunt et al., 2016a) from previous work examining the movement of lone 171 

Temnothorax albipennis ants in an empty arena outside their colony’s nest (Hunt et al., 2016b). T. 172 

albipennis ants have been used as a model social system for study in the laboratory, because 173 

information flow between the environment and colony members, and among colony members, can 174 

be rigorously studied. The ants typically have one queen and up to 200-400 workers (Franks et al., 175 

2006). The colony inhabits fragile rock crevices and finds and moves into a new nest when its nest is 176 

damaged. With workers being only about 2mm long, relatively unconstrained trajectories of 177 

individuals can be tracked on the laboratory workbench (for example, Hunt et al. 2016b). 178 

Behavioural state-based models have been developed that account for the flow of individuals 179 

between states with differential equations (Sumpter and Pratt, 2003; Pratt et al., 2005), but these 180 

lack an account of the ants’ movement processes. 181 

Methods 182 

We run simulations of our Markov chain Monte Carlo movement models in MATLAB 2015b 183 

(pseudocode is available in the supplementary material). Each new model is introduced to explain an 184 

important additional aspect of the ants’ empirical movement behaviour. 185 

In our movement data (Hunt et al., 2016a) there are two experimental regimes, one in which 186 

the foraging arena was entirely novel to exploring ants, and one in which previous traces of the ants’ 187 
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activities remained. We use the data from the former treatment, where each ant encounters a 188 

cleaned arena absent of any pheromones or cues from previous exploring ants. We restrict our 189 

analysis to the first minute of exploration, well before any of the ants have an opportunity to reach 190 

the boundary of the arena. Log-binned root mean square displacement is calculated and a linear 191 

regression made against log time. A gradient equal to a half indicates a standard diffusion process 192 

(Brownian motion) whereas greater than a half indicates superdiffusive movements. This approach 193 

to characterising ant search behaviour has been taken in e.g.  Franks et al. (2010).  194 

A supplementary Methods section is at the end of the paper.  195 

 196 

Results 197 

We present simulation results from three different models of ant movement. Each model is directly 198 

based on a known Markov chain Monte Carlo method (MCMC). This follows the recognition that we 199 

can consider the problem of sampling from probability distributions of two continuous dimensions 200 

as analogous between animal movement and statistics (for example). The trajectories produced by 201 

each model are compared to real ant movement data. The development of MCMC methods from 202 

the 1950s onward, to become more efficient, might be considered to parallel the evolutionary 203 

history of animal foraging strategies. Some more details on the methods are found in the 204 

supplementary Methods section.  205 

Basic model: Metropolis-Hastings 206 

The first MCMC method to be developed was the Metropolis-Hastings (M-H) algorithm (Metropolis 207 

et al., 1953; Hastings, 1970), which is straightforward to implement and still commonly used today. 208 

We are trying to sample from the target probability distribution (resource quality 209 

distribution) 𝑃(𝑥) which can be evaluated (observed) for any 𝑥, at least to within a multiplicative 210 

constant. This means we can evaluate a function 𝑃∗(𝑥) such that  𝑃(𝑥) = 𝑃∗(𝑥)/𝑍. There are two 211 
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challenges that make it difficult to generate representative samples from 𝑃(𝑥).  The first challenge is 212 

that we do not know the normalising constant 𝑍 = ∫𝑑6𝑥𝑃∗(𝑥), and the second is that there is no 213 

straightforward way to draw samples from 𝑃 without enumerating most or all of the possible states. 214 

Correct samples will tend to come from locations in 𝑥-space where 𝑃(𝑥) is large, but unless we 215 

evaluate 𝑃(𝑥) at all locations we cannot know these in advance (Mackay, 2003). 216 

The M-H method makes use of a proposal density 𝑄 (which depends on the current state 𝑥) 217 

to create a new proposal state to potentially sample from. Q can be simply a uniform distribution: in 218 

a discretized environment these can be 𝑥(8) + [−1,0,1] with equal probability. After a given 219 

proposed movement is generated, the animal compares the resource quality at this new location 220 

with the resource quality at the previous location. If the new location is superior, it stays in its new 221 

location. In contrast, if the resource quality is worse, it randomly ‘accepts’ this new location, or 222 

‘rejects’ this location based on a very simple formula based on the ratio of resource quality (if it is far 223 

worse, the animal very rarely fails to return, whereas if it is not much worse, it often accepts this 224 

mildly inferior location – see also supplementary methods). What is important about this extremely 225 

simple algorithm is that, as long as the environment is ergodic (all locations can potentially be 226 

reached), given time, the exploring animal will visit each location eventually. Visits will be made with 227 

a probability proportional to its resource quality: it will execute an optimal Kelly exploration 228 

strategy. The problem here, however, is the time taken. Whilst the M-H method is widely used for 229 

sampling from high-dimensional problems, it has a major disadvantage in that it explores the 230 

probability distribution by a random walk, and this can take many steps to move through the space, 231 

according to √𝑇𝜖 where T is the number of steps and 𝜖 is the step length. T. albipennis ants were 232 

found to be engaged in a superdiffusive search in an empty arena (supplementary Methods), and 233 

similarly MCMC methods also have been developed to explore probability space more efficiently.   234 

235 
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Introducing momentum: Hamiltonian Monte Carlo (HMC) 236 

Random walk behaviour is not ideal when trying to sample from probability distributions, since it is 237 

more time-consuming than necessary. One popular method for avoiding the random walk-like 238 

exploration of state space is Hybrid Monte Carlo (Duane et al., 1987), also known as Hamiltonian 239 

Monte Carlo (HMC). This simulates physical dynamics to preferentially explore regions of the state 240 

space that have higher probability. 241 

Unlike the M-H model of movement, HMC makes use of local gradient information such that 242 

the walker (ant) tends to move in a direction of increasing probability. How T. albipennis may 243 

measure this is explored in the Discussion. For a system whose probability can be written in the form  244 

𝑃(𝑥) =
1
𝑍
exp[−𝐸(𝑥)] 245 

the gradient of 𝐸(𝑥) can be evaluated and used to explore the probability space more efficiently. 246 

This is defined as: 247 

𝐸(𝑥) = − ln𝑃(𝑥) 248 

Using this definition the local gradient ∇𝐸(𝑥) can be calculated numerically.  249 

The Hamiltonian is defined as 𝐻(𝒙, 𝒑) = 𝐸(𝒙) + 𝐾(𝒑), where 𝐾(𝒑) is a ‘kinetic energy’ which can 250 

be defined as:  251 

𝐾(𝒑) = 𝒑M𝒑/2 252 

In HMC, this momentum variable 𝒑 augments the state space 𝒙 and there is an alternation between 253 

two types of proposal. The first proposal randomises the momentum variable, with 𝒙 unchanged, 254 

and the second proposal changes both 𝒙 and 𝒑 using simulated Hamiltonian dynamics. The two 255 

proposals are used to create samples from the joint density 256 

𝑃O(𝒙, 𝒑) =
1
𝑍O

exp[−𝐻(𝒙, 𝒑)] =
1
𝑍O

exp[−𝐸(𝒙)]exp	[−𝐾(𝒑)] 257 
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As shown, this is separable, so the marginal distribution of 𝒙 is the desired distribution 258 

exp[−𝐸(𝒙)] /𝑍, and the momentum variables can be discarded and a sequence of samples {𝒙(8)} is 259 

obtained that asymptotically comes from 𝑃(𝒙) (Mackay, 2003). 260 

We set the variable number of leapfrog steps (see supplementary Methods and Brooks et 261 

al., 2011)) to 𝐿 = 10; after following the Hamiltonian dynamics for this number of steps a new 262 

momentum is randomly drawn and a new period of movement begins. This behaviour of moving 263 

intermittently in between updating the walker (ant) behaviour captures the behaviour observed in 264 

real ants (Hunt et al., 2016b) (see Discussion on gradient sensing). We set the leapfrog step length 265 

𝜀 = 0.3 (see supplementary Methods for further introduction to L and 𝜀). 266 

For 𝑁 = 18 simulated HMC ‘ants’ sampling from a sparse probability distribution (a gamma-267 

distributed noise; see supplementary Methods), for 600 iterations, the r.m.s. displacement was 268 

again found and its log was regressed on log time. The gradient was found to be 0.567, 95% 269 

confidence interval (0.528 0.606), which is significantly greater than 0.5, so in this respect it is more 270 

similar to the superdiffusive search found in real ants (Franks et al., 2010).  271 

We can also examine the correlation of velocities between successive movement periods. 272 

Since momentum 𝒑 = 𝑚𝒗  is a vector in two-dimensional space, we can set 𝑚 = 1 and find a 273 

magnitude for the momentum to determine the ‘speed’ of each movement (over the course of 𝐿 =274 

10 leapfrog steps). In previous research on ant movements (Hunt et al., 2016b) the correlation 275 

between successive average event speeds in the cleaning treatment was found to be 0.407 ± 0.039 276 

(95% CI). As expected for the HMC model, because the momentum is discarded and replaced with a 277 

new random momentum after each movement, the correlation of successive event speeds is equal 278 

to zero in this model. We can make the HMC model more ‘ant-like’ – and potentially more efficient – 279 

by only partially refreshing this momentum variable after the end of a movement period.  280 

281 
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Increasing correlations between steps: partial momentum refreshment (PMR) 282 

HMC with one leapfrog step is referred to as Langevin Monte Carlo after the Langevin equation in 283 

physics (e.g. Kennedy, 1990) and was first proposed by Rossky et al. (1978).  However, these 284 

methods do not require 𝐿 = 1, so we use 𝐿 = 10 to enhance comparability with the previous HMC 285 

model.  286 

The momentum at the end of each movement can be updated according to the equation  287 

 𝑝^ = 𝛼𝑝 + (1 − 𝛼`)$/`𝑛 , where 𝑝 is the existing momentum, 𝑝′ the new momentum, α is a 288 

constant in the interval [−1,1] and 𝑛 is a standard normal random vector. With α less than one 𝑝’	is 289 

similar to 𝑝 but with repeated iterations it becomes almost independent of the initial value. This 290 

technique of partial momentum refreshment (PMR) was introduced by Horowitz (1991). Such 291 

models are well-described in Brooks et al. (2011). Setting 𝛼 equal to 0.65 (for example) and 292 

simulating with 𝑁 = 18  results in speed correlations equal to 0.387 ± 0.012 (95% CI) which 293 

overlaps with the confidence interval for the real ant data.  294 

The PMR method can be compared to an ant moving with a certain momentum (direction 295 

and speed) and then intermittently updating this momentum in response to its changing position in 296 

the physical and social environment, with a degree of randomness also included. The momentum 297 

changes as per the HMC method along a single trajectory, according to its subjective perception of 298 

foraging quality and potentially influenced by the pheromonal environment. If at the end of the 299 

trajectory it does not find itself in a more attractive region than before, it returns to its previous 300 

position: and with the correct model parameters (step size and number of leapfrog steps) this should 301 

be a relatively infrequent occurrence (see methodological discussion in Brooks et al. (2011)). Real 302 

ants have been predicted, and found, to leave ‘no entry’ markers when they turn back from an 303 

unprofitable location (Britton et al. 1998; Robinson et al. 2005). Its starting momentum in a 304 

particular direction is maintained to some degree but with some randomness mixed in – and so its 305 

previous tendency to move toward regions of high probability (quality) is not discarded as in HMC 306 

but used to make more informed choices about which direction to move in next. This is because 307 
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foraging patches are likely to show some spatial correlation in their quality, with high quality regions 308 

more likely to neighbour other high quality regions (Klaassen et al., 2006; Van Gils, 2010). Previous 309 

empirical research (Hunt et al., 2016b) found evidence that ant movements are predetermined to 310 

some degree in respect of their duration. This implies that periods of movement are followed by a 311 

more considered sensory update and decision about where to move to next. A series of smaller 312 

movements (like 10 leapfrog steps) followed by a larger momentum update, as in the PMR model, 313 

would seem to correspond well with this intermittent movement behaviour.   314 

Measuring the performance of MCMC foraging models 315 

The performance of the three MCMC models developed here can be measured in the following way. 316 

As discussed, the foraging ants should pursue a probability matching strategy, whereby they allocate 317 

their numbers across the environment in proportion to the probability that it will return (any) 318 

payoff. This will maximise the long-term rate of growth of the colony, or its biological fitness. 319 

Matching the probability distribution of resources in the environment can be understood as 320 

minimising the distance between it and the distribution of resource gatherers. In the domain of 321 

information theory, the difference between two probability distributions is measured using the 322 

cross-entropy 323 

𝐻(𝑝, 𝑞) = 𝐻(𝑝) + 𝐷fg(𝑝||𝑞) 324 

Where 𝐻(𝑝) = −∑ 𝑝(𝑖)log	 𝑝(𝑖)"  is the entropy of 𝑝 and 𝐷fg(𝑝||𝑞) is the Kullback-Leibler (K-L) 325 

divergence of q from p (also known as the relative entropy of 𝑝 with respect to 𝑞). This is defined as 326 

𝐷fg(𝑝||𝑞) =l𝑝(𝑖) log
𝑝(𝑖)
𝑞(𝑖)

"

 327 

If we take 𝑝 to be a fixed reference distribution (the probability of collecting resources in the 328 

environment), cross entropy and K-L divergence are identical up to an additive constant, 𝐻(𝑝), and 329 

is minimised when 𝑞 = 𝑝, where the K-L divergence is equal to zero. Cross-entropy minimisation is a 330 

common approach in optimization problems in engineering, and in the present case can be used to 331 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 25, 2019. ; https://doi.org/10.1101/497198doi: bioRxiv preprint 

https://doi.org/10.1101/497198


represent the task the ant foragers are trying to perform: match their distribution 𝑞 with the 332 

distribution 𝑝 of resources in the environment. The magnitude and rate of reduction of the cross-333 

entropy is therefore used to compare the effectiveness of the MCMC models (M-H, HMC, PMR) 334 

presented here. However, as noted later, for dynamic environments (where the distribution of 335 

resource probabilities 𝑝 is not fixed), K-L divergence is the suitable cost function to minimise.  336 

Example simulations for the three models sample from a target distribution 𝑝 with three 337 

simulated resources patches. This example distribution is generated by combining a gamma-338 

distributed background noise (shape parameter=0.2, scale parameter=1) on a 100×100 grid given a 339 

Gaussian blur (𝜎 = 3, filter size 100×100), what we refer to later as the ‘sparse distribution’, in 340 

equal 50% proportion with three patches of resources, which are single points of increasing relative 341 

magnitude of 1, 2, and 3 that have been given a Gaussian blur (𝜎 = 10, filter size 100×100). The 342 

distribution 𝑝 is thus also on a 100×100 grid. The simulations are run for 50,000 time steps, a 343 

reasonable period of time to explore this space of 10,000 points. Figure 2 shows the M-H model, 344 

which converges rather slowly on the target environment 𝑝. Figure 3 shows the performance of the 345 

HMC and PMR models, which show an improvement in the convergence rate because they avoid the 346 

random walk behaviour of the M-H model. 347 
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 348 

Figure 2. Performance of the M-H model as it generates a sample distribution 𝑞 that approximates 349 
the target distribution 𝑝, the location of resources in the environment. The minimum cross entropy, 350 
where 𝑞 = 𝑝, is shown as a dotted line. 351 
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 352 

 353 

Figure 3. Performance of the HMC and PMR models, compared to that of M-H. In general, HMC and 354 
PMR outperform M-H because random walk type exploration of probability space is avoided, by 355 
following local gradient information and making larger steps. Their performance depends on the 356 
nature of the target distribution and choosing suitable values for step length 𝜀 and number of steps 357 
𝐿.  358 
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 360 

Figure 4. Comparison of example trajectories from real ants and for the 3 MCMC models (100 361 
simulated timesteps). The model trajectories become increasingly superdiffusive. 362 

Figure 4 shows example trajectories from real ants (Hunt et al. 2016a) for a period of 100 s, and for 363 

100 timesteps of the 3 models. The ants are in an empty arena and the models are sampling from a 364 

sparse distribution (supplementary Methods). The random walk behaviour of the M-H model is 365 

evident, while the greater tendency to make longer steps in one direction is evident in the PMR 366 

model in comparison to the HMC model.   367 

 368 

Figure 5. The distribution of direction changes between steps in real ants (N=18) and the three 369 
MCMC models (simulated for N=18 ‘ants’ for 1000 timesteps).  370 
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Figure 5 shows the distribution of directional changes (change in angle heading) between steps. The 371 

distribution of direction changes is known as the phase function in statistical physics and has been 372 

applied to ant trajectory analysis by for instance Khuong et al. (Khuong et al. 2013). Real ants can 373 

make large changes of direction, of course, but this is rarely done with an abrupt heading shift. The 374 

M-H model moves grid-wise in single steps; the HMC model has no correlation between step 375 

directions; while the PMR model tends to make each new step in a similar (correlated) direction to 376 

the prior one. In this respect, too, PMR is a better model of ant movement.  377 

 378 

Optimal foraging and Lévy flights 379 

We have presented a new class of foraging models based on MCMC methods, which operationalise 380 

movement for a Kelly strategy (probability matching) in two-dimensional space. There is an 381 

extensive theoretical and empirical literature examining the distribution of step lengths for foraging 382 

animals that considers the hypothesis that a Lévy distribution is optimal (Bartumeus, 2007; 383 

Benhamou, 2007; Humphries et al., 2010; Viswanathan et al., 2008). Lévy flights are a particular 384 

form of superdiffusive random walk where the distribution of move step-lengths fits an inverse 385 

power law such that the probability of a move of length 𝑙 is distributed like (𝑙) ≈ 𝑙op , where 1 <386 

𝜇 ≤ 3. 387 

We use the method of Humphries et al. (2013) to identify individual movement steps in two 388 

dimensional data, treating monotonic movements in a certain direction in one dimension (i.e., 𝑥 or 389 

𝑦) as a step. We estimate the exponent using maximum likelihood estimation (White et al., 2008). 390 

The distribution of ranked step length sizes in both real and simulated data is shown in Figure 6. 391 
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 392 

Figure 6. The (apparently) power-law distributed step lengths for both real ants and simulated PMR 393 
walkers.   394 

There are similar exponents estimated (Table 1) for both the real ant data in an empty arena (N=18 395 

ants from 3 colonies) and PMR trajectories (100 ‘ants’ for 5000 iterations) sampling from a sparse 396 

probability distribution (supplementary Methods). The exponent 𝜇 in both cases is in the right region 397 

for a Lévy flight 1 < 𝜇 ≤ 3. This would seem to be evidence for a Lévy strategy in the ants (though 398 

variation in individual walking behavior can also contribute to the impression of a Lévy flight 399 

(Petrovskii et al. 2011)), but we suggest an alternative in the next section of this paper.  400 
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 402 

 403 

 404 

 405 

Table 1. Power-law exponents in both empirical and PMR simulated trajectories potentially indicate 406 
a Lévy walk 407 

 408 

 409 

Discussion 410 

MCMC models and existing movement paradigms 411 

The framework we develop here is  an important step in integrating key perspectives in movement 412 

research, as described for example by Nathan et al. (2008). It incorporates elements of randomness, 413 

producing correlated random walks in certain environments; it quantifies optimality in respect of 414 

foraging strategies via cross-entropy (Kullback-Leibler divergence); it includes an important aspect of 415 

common animal behaviour, namely intermittent movement (Kramer and McLaughlin, 2001), and 416 

specifically for the ants’ neural and/or physiological behaviour, apparent motor planning (Hunt et al., 417 

2016a); and it makes explicit the information used by the animal step-by-step. Finally, and crucially, 418 

it explicates cognition at the emergent group level, because individual movement is at the service of 419 

a group-level Kelly strategy. One component of Nathan et al.’s framework is the internal state of the 420 

organism. This is not included in the models here, though state-dependent behaviours such as 421 

tandem running (Franks and Richardson, 2006) could be included by analogy with particle filtering 422 

(e.g. Gordon et al., 1993), for instance (Hunt et al., in prep, 2018b). Our use of the Markov 423 

assumption (movement being memoryless, depending only on the current position) is justifiable 424 

with respect both to the worker ant’s individual cognitive capacity, and its single-minded focus on 425 

Dimension of steps 
  

Maximum likelihood estimate of 
exponent, truncated Pareto distribution 

Empirical data  PMR data 

𝑥 2.41 2.26 

𝑦 2.55 2.26 
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serving the colony through discovering and exploiting resources. Its motion capacity is linked to the 426 

specification of a partial momentum refreshment model; while we specify the navigation capacity in 427 

its ability to measure the quality gradient, which is also an externally determined factor.  428 

The mechanisms and challenges of gradient sensing 429 

We may consider further the ability of ants to use local gradient information, as in the HMC and 430 

PMR models, with respect to the ants’ sensory system. Temnothorax albipennis is well-known for 431 

relying heavily on visual information in movement (McLeman et al., 2002; Pratt et al., 2001) and in 432 

common with most (or perhaps all) ants on olfactory information.  It may be that the intermittent 433 

movement examined in Hunt, Baddeley et al (Hunt et al., 2016b) is associated with limitations in the 434 

quality of sensory information when moving (Kramer and McLaughlin, 2001). We suggest that T. 435 

albipennis workers have relatively good eyesight for a pedestrian insect and their small size, having 436 

around 80 ommatidia in each compound eye (Hunt et al., 2018a) and may be assumed 437 

conservatively to have an angle of acuity of 7 degrees (Pratt et al., 2001). Therefore, movement 438 

would seem unlikely to make much difference to how well they can see. Since our model highlights 439 

the importance of gradient following, this may be more difficult to measure for the olfactory system 440 

during movement. Indeed, in Hunt et al. (2016b) we suggest that social information from 441 

pheromones or other cues is only fully attended to during periods of stopping because of motor 442 

planning, with the duration of movements being predetermined by some endogenous neural and/or 443 

physiological mechanism.  This may be therefore a mechanistic reason for the stepwise movement in 444 

the PMR model, in addition to its informational efficiency which is its evolutionary origin. Even more 445 

sophisticated MCMC models that rely on the second derivative of the probability distribution, such 446 

as the Riemann Manifold Langevin method (Girolami and Calderhead, 2011), may be relevant, 447 

because this property (the rate of change of the gradient) may be only measured with adequate 448 

accuracy when the ant is at rest.  449 

450 
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Lévy step length distributions indicate a world with little gradient information 451 

In a ‘flat’ quality landscape, or sparse world, our model generates Lévy-like behaviour as seen for 452 

instance in Reynolds et al., 2013. This remains an adaptive response, but it is not a true Lévy 453 

distribution, because there is a finite variance. Much interest has been generated by Lévy flight 454 

based foraging models which theoretically optimise mean resource collection for certain random 455 

worlds; and this would seem to be evidence for just such a strategy in T. albipennis ants. Yet here we 456 

make a simple point that rather than being a deliberate strategy, Lévy-like behaviour may result 457 

from an organism lacking cues about which way to move.  Scale-free reorientation mechanisms have 458 

indeed been suggested as a response to uncertainty in invertebrates (Bartumeus and Levin, 2008). 459 

Yet the generation of a Lévy -like distribution from our gradient-following model suggests that such 460 

observations may not really be scale-free. The empirical distribution of momentums provides insight 461 

into the length-scales on which the world remains smooth.  462 

Measuring efficiency, selecting for unpredictability 463 

The rate of resource collection can be straightforwardly calculated by finding the cross-entropy 464 

(Kullback-Leibler divergence) between the spatial distribution of resources, and the realised foraging 465 

distribution resulting from the foraging strategy. The distribution of resources is seen from a ‘genes-466 

eye’ view of the animal or superorganism, with respect to maximising the long-term biomass or 467 

number of copies of genes in the environment: this focuses on a location’s probability of yielding 468 

resources, or reliability, as opposed to the one-off payoff. The foraging strategy is that chosen by 469 

natural selection. Minimising the cross-entropy (Kullback-Leibler divergence) is achieved by obeying 470 

the matching law: foraging proportional to the probability finding the best resources at each 471 

available location. This strategy is especially suited to a superorganism like an ant colony, because it 472 

can forage in multiple locations simultaneously by allocating worker ants in numbers proportional to 473 

the location’s reliability, through self-organisation (Camazine et al., 2001).  474 
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There has been some intimation before that MCMC could be a model for biological 475 

processes (Neal, 1993), with some query about whether the requisite randomness is possible in 476 

organisms. We think that not only is spontaneous (i.e. non-deterministic, ‘random’) behaviour 477 

present, it is necessary for survival in terms of being unpredictable around predators, prey or 478 

competitors  (Brembs, 2010), or for finding food using a ‘strategy of errors’ (Deneubourg et al., 479 

1983). Indeed, the Bayesian framework developed here allows predictions to be developed 480 

regarding the optimal amount of ‘randomness’ in behaviour at both the level of the individual and 481 

colony (in the partial momentum refreshment model, this is adjusted with the 𝛼 parameter) that can 482 

be tested in future empirical research. Further predictions arise from the momentum reversal step in 483 

MCMC PMR (Brooks et al., 2011), which may be compared to observations of U-turning in ants 484 

(Beckers et al., 1992; Hart and Jackson, 2006). Recent literature (Hoffman and Gelman, 2014) has 485 

developed methods to adjust the path length dynamically, while removing the need to have a 486 

parameter 𝐿 for the number of leapfrog steps. Observing how ants (and other organisms) adjust 487 

their step lengths according to different resource distributions will be instructive of their underlying 488 

movement model.  489 

Selection for collective foraging phenotypes 490 

The major evolutionary transitions (Maynard Smith and Szathmary, 1995) can be seen as successive 491 

leaps forward in information processing efficiency. The Bayesian framework developed here permits 492 

the evaluation and prediction of alternative movement strategies, for groups of  high-related 493 

organisms, in quantitative, informational terms, in relation to environmental resource distributions. 494 

Our framework permits us to make the simple statement that for a movement strategy to be 495 

favoured under natural selection: 496 

𝐷fg(𝑝||𝑞uvw) < 	𝐷fg(𝑝||𝑞xyz) (1) 497 

 i.e. the Kullback-Leibler divergence (measuring the similarity of two distributions) between a 498 

potential (genetically accessible) collective movement strategy that results in the equilibrium 499 
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distribution of foragers 𝑞uvw,  and the organism’s resource environment 𝑝, has to be lower than 500 

under the current strategy found in the population that results in distribution 𝑞xyz. This reduction 501 

may indeed be achieved by more sophisticated, coordinated, collective behaviour, notwithstanding 502 

higher individual energetic cost. Future research could relate such an expression to concepts in 503 

evolutionary genetics such as fitness landscapes (Orr, 2009). The theoretical relationship between 504 

the level of relatedness within a social group, and the relevance of the Kelly strategy, could be 505 

explored in future research.  506 

 507 

Conclusion 508 

We described the foraging problem as a repeated multiplicative game, where an ant colony has to 509 

place ‘bets’ on which foraging patches to visit, with an ultimate payoff of more colonies or copies of 510 

their genes being created. Ants are very successful in terms of their terrestrial biomass (Schultz, 511 

2000), and so it would seem likely that they are following a highly evolved strategy. We suggest the 512 

theoretical optimum is a ‘Kelly’ or probability matching strategy, which maximises the long term 513 

‘wealth’ or biomass of the colony rather than the resource collection of single ants. By mapping the 514 

foraging problem to a set of methods designed to effectively sample from probability distributions, 515 

we present models of ant movement that achieve this matching behaviour. These MCMC-based 516 

models thus provide spatially explicit predictions for movement that describe and explain how 517 

colonies optimally explore and exploit their environment for food resources. We also show how Lévy 518 

-like step length distributions can be generated by following a local gradient that is uninformative, 519 

suggesting that contrary to being an evolved strategy, Lévy flight behaviour may be a spontaneous 520 

phenomenon. While we do not include interactions between ants in the model, past theoretical 521 

analysis of information use in collective foraging suggests that totally independent foraging is 522 

actually optimal for a broad range of model parameters when the environment is dynamic. This is 523 
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because information about food patches may not be worth waiting for if they are short lived 524 

(Dechaume-Moncharmont et al., 2005).  525 

Understanding the logic of information flow at the level of the gene and the cell has been 526 

identified as a priority (Nurse, 2008). However, given that no level of organisation is causally 527 

privileged in biology (Noble, 2011), explicating this at the organismal and super-organismal level 528 

should also advance our understanding. Our Bayesian framework operationalizes earlier proposed 529 

frameworks (such as that of Nathan et al., 2008) for movement in a coherent and logical way, 530 

accounting for the uncertainty in both the individual ant and the colony’s cognition in relation to the 531 

foraging problem. It also allows quantification of the system’s emergent information processing 532 

capabilities and hypothesis generation for different organisms moving in different environments. 533 

Our MCMC models can be used as a foundation upon which further organismal and ecological 534 

complexity can be explained in future research; and suggest that the movement strategies of animal 535 

collectives may be instructive for biomimetic improvements to MCMC methods. 536 
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